34
20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding © 2014 IEEE International Solid-State Circuits Conference 0 of 28 Kenichi Okada, Ryo Minami, Yuuki Tsukui, Seitaro Kawai, Yuuki Seo, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Yasuaki Takeuchi, Tatsuya Yamaguchi, Ahmed Musa, Rui Wu, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

A 64-QAM 60GHz CMOS Transceiver with 4-Channel · PDF file20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding © 2014 IEEE ... 20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel

Embed Size (px)

Citation preview

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 0 of 28

Kenichi Okada, Ryo Minami, Yuuki Tsukui,

Seitaro Kawai, Yuuki Seo, Shinji Sato,

Satoshi Kondo, Tomohiro Ueno, Yasuaki Takeuchi,

Tatsuya Yamaguchi, Ahmed Musa, Rui Wu,

Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

A 64-QAM 60GHz CMOS Transceiver

with 4-Channel Bonding

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 1 of 28

Outline

• Motivation

• Transmitter

• Mixer-first transmitter

• Receiver

• Open-loop FVF-based amp.

• Measurement and Comparison

• Conclusion

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 2 of 28

60GHz-Band Capability

QPSK 3.52Gbps/ch

16QAM 7.04Gbps/ch

64QAM 10.56Gbps/ch (not reported yet)

16QAM

2-ch bonding 14.08Gbps

3-ch bonding 21.12Gbps (not reported yet)

4-ch bonding 28.16Gbps (not reported yet)

57 58 59 60 61 62 63 64 65 66

Channel

Number

Low Freq.

(GHz)

Center Freq.

(GHz)

High Freq.

(GHz)

Nyquist BW

(GHz)

Roll-Off

Factor

A1 57.24 58.32 59.40 1.76 0.25

A2 59.40 60.48 61.56 1.76 0.25

A3 61.56 62.64 63.72 1.76 0.25

A4 63.72 64.80 65.88 1.76 0.25

Channel

Number

Low Freq.

(GHz)

Center Freq.

(GHz)

High Freq.

(GHz)

Nyquist BW

(GHz)

Roll-Off

Factor

A1 57.24 58.32 59.40 1.76 0.25

A2 59.40 60.48 61.56 1.76 0.25

A3 61.56 62.64 63.72 1.76 0.25

A4 63.72 64.80 65.88 1.76 0.25

1 2 4

240

MHz

120

MHz

1.76 GHz2.16 GHz

3

fGHz

from IEEE802.11ad/WiGig

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 3 of 28

Design Considerations

• Wideband gain characteristics

• RF: 57-66GHz

• BB: 1.2GHz(1ch), 5GHz(4-ch bonding)

• Wide dynamic range

• Linearity & Sensitivity

• RX SNDR >40dB

• Low phase noise (performance limiter)*

• -96dBc/Hz@1MHz (64QAM)

• I/Q mismatch & LO leakage**

• Image rejection ratio <-40dBc

*K. Okada, et al., JSSC 2013

**S. Kawai, et al., RFIC 2013

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 4 of 28

Block Diagram

• Direct-conversion

• TX

• Mixer-first topology

• RX

• FVF BB amp.

• Current-bleeding

mixer

• LO

• Injection-lock

• 60GHz QILO*

+20GHz PLL*K. Okada, et al., ISSCC 2011

TX60GHz

20GHz PLL

RX60GHz

BB

BB

Control

Logic

60GHz QILO*

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 5 of 28

TX Design Considerations

-29mW

-29mW+15dB

+13mW

OIP3 -15dB<3GHz

<3GHz

This workPrevious work*

*K. Okada, et al., ISSCC 2012

50W input

4x 6x

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 6 of 28

Mixer-First Transmitter

*M. Soer, et al., ISSCC 2009 **C. Andrews, et al., ISSCC 2010

RFout BBin

LO

PA

Mixer-first transmitterMixer-first receiver*, **

BBout RFin

LO

This work

10MHz 2GHz

(20MHz-BW)

4.5GHz57-66GHz

(9GHz-BW)up-converted**down-converted

even for Zin

0 0

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 7 of 28

Input Impedance and Leakage Cancel

*C. Andrews, et al., ISSCC 2010

Wideband ZRF is realized by Rf-feedback.

𝒁𝐢𝐧 𝝎𝐁𝐁 = 𝟐𝟎𝟎𝛀// 𝑹𝐬𝐰 +𝟒

𝝅𝟐𝒁𝐑𝐅 𝝎𝐁𝐁 +𝝎𝐋𝐎 + 𝒁𝐑𝐅 𝝎𝐁𝐁 −𝝎𝐋𝐎

LO+

LO+

LO-

50W

To PA BB

input

200W

200W

Matc

hin

g

netw

ork

Rf

Rf

ZRF

ZRF

RSW

RSW

RSW

RSW

Zin

Zin

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 8 of 28

0

5

10

15

20

25

30

0.00 1.08 2.16 3.24 4.32

TX Measurement ResultG

ain

[d

B]

Frequency [GHz]

Lower-side-band gain including RF path

LO=61.56GHz

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 9 of 28

Image Rejection & LO Leakage

*S. Kawai, et al., RFIC 2013

-50

-40

-30

-20

-10

0

57.62 57.97 58.32 58.67 59.02

Frequency [GHz]

No

rma

lized

Po

wer

[dB

c]

<-47dBc-41dBc

I/Q mismatch calibration* is applied.

RF VGA & QILO phase adjustment

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 10 of 28

-30

-25

-20

-15

-10

0 1 2 3 4 5 6 7 8 9 10

EV

M [

dB

]

Average output power [dBm]

TX EVM Measurement

16QAMch.3 with 7.04Gb/s

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 11 of 28

RX Mixer

• Current-bleeding to

reduce LO power

• CCC at RF input

• Pdc: 11mW

• CG: -7dB

• flow: 0.27MHz

• fhigh: >4GHz

BBout+ BBout-

RF+ RF-

Ibleed

Iswitch

Itail

M4 M5

LO-LO+ LO+

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 12 of 28

RX Baseband Amplifier

*R. Carvajal, et al., TCAS-I 2005

𝑨𝐕 ≅ −𝒈𝐝𝐬𝟑𝒈𝐦𝟑

• Wide bandwidth (>5GHz)

• High gain and high linearity

• Low power consumption

Flipped Voltage Follower* (FVF)

Open-loop FVF-based amplifier

vin

M3

M1

vout

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 13 of 28

RX Baseband Amplifier (Cont.)

−𝟏

𝒈𝐦𝟑𝑹𝐒//(1/j𝛚𝑪𝐒)−𝒈𝐦𝟕𝑹𝐋

𝑨𝐕 ≅𝒈𝐦𝟕𝒈𝐦𝟑

𝑹𝐋𝑹𝐒

𝑨𝐕 ≅ −𝟏

𝒈𝐦𝟑𝑹𝐒

modified FVF

OUT-

IN+ IN-

+ -

OUT+

M3Cs M4

Cs

M1 M2Rs Rs

M5 M6

RL RL

M9 M10

M7 M8

Vref

SleepVload

vin

M3

M1

vout Rs

by 6mW

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 14 of 28

Ga

in [

dB

]

RX Measurement Result

Frequency [GHz]

0

5

10

15

20

25

30

35

40

0.00 1.08 2.16 3.24 4.32

Lower-side-band gain including RF path

LO=61.56GHz

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 15 of 28

60GHz LO Considerations

2ch-bond

4ch-bond

f [GHz]58.32 60.48 62.64 64.8059.40 63.7261.56

Ch.1 Ch.2 Ch.3 Ch.4

*K. Okada, et al., JSSC 2013

• -96dBc/Hz@1MHz for 64QAM

60GHz Quadrature Injection Locked Oscillator*

• Channel bonding

7 carrier frequencies

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 16 of 28

60GHz Quadrature LO Design

36/40MHz ref.

PFD CP LPF

20GHz PLL

4 (54,55,56,57

58,59,60)

2

5

4.5

60GHz QILO*

58.32GHz

59.40GHz

60.48GHz

61.56GHz

62.64GHz

63.72GHz

64.80GHz

*K. Okada, et al., ISSCC 2011

• 20GHz PLL: 64mW

• 60GHz QILO: 18mW(TX)&15mW(RX)

• QILO frequency range: 58-66GHz

• Phase noise improvement by injection locking*

• -96.5dBc/Hz @ 1MHz at 61.56GHz

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 17 of 28

PA

60GHz

QILO

LNA

I Mixer

Q Mixer

LO buf.

RF amp.

I Mixer

Q Mixer

LO buf.60GHz

QILO

20GHz

PLL

TX Output

Control

Logic

I Q

I Q

Detailed Block Diagram

BB amp.

(FVF-FVF-SF)

RX Input

RF amp.Psat=10.3dBm

NF=4.2dB

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 18 of 28

Die Photo

PA

Q MIXER

I MIXER

LO BUF.

LO BUF.

Q.OSC.

Logic

PLL

LNA

I MIXER& RF amp

LO BUF.

LO BUF.

Q.OSC.

RX

BB

ou

t

TX

ou

tR

Xin

TX BB in4.2mm

Area

TX 1.03mm2

RX 1.25mm2

PLL 0.90mm2

Logic 0.67mm2

CMOS 65nm, 1Al+11Cu

TX: 186mW

RX: 155mW

PLL: 64mW

Q MIXER& RF amp

65nm CMOS

TX: 186mW

RX: 155mW

PLL: 64mW

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 19 of 28

Measurement Setup

RF board(TX mode) RF board

(RX mode)

Arbitrary

Waveform

Generator

Power supply

Oscilloscope

Power supply

• 25-GS/s AWG

• 100-GS/s oscilloscope (33GHz BW)

• 14-dBi horn antennas

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 20 of 28

Setup for TX-to-RX Measurement

• Symbol rate: 1.76GS/s (1ch), 7.04GS/s (4ch bonding)

• Roll-off factor: 25% for WiGig spectrum mask

• A maximum distance is defined within a SNR of

9.8dB(QPSK), 16.5dB(16QAM), and 22.5dB(64QAM)

for a theoretical BER of 10-3.

RF board

(TX mode)

Oscilloscope

Tektronix DSA73304D

(33-GHz BW, 100GS/s)

RF board

(RX mode)

Powersupply

14 dBi

Power supply

Arbitrary Waveform Generator

Tektronix AWG70002A

(25GS/s)

Controlsignals

36MHz ref.Controlsignals

36MHz ref.

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 21 of 28

10.56Gb/s 64QAM

Channel/ Carrier freq.

ch.1 58.32GHz

ch.2 60.48GHz

ch.3 62.64GHz

ch.4 64.80GHz

Modulation 64QAM

Data rate 10.56Gb/s 10.56Gb/s 10.56Gb/s 10.56Gb/s

Constellation

Spectrum

TX EVM -27.1dB -27.5dB -28.0dB -28.8dB

TX-to-RX EVM

-24.6dB -23.9dB -24.4dB -26.3dB

Distance 0.08m 0.08m 0.13m 0.06m

-50

-40

-30

-20

-10

0

55.82 58.32 60.82

-50

-40

-30

-20

-10

0

57.98 60.48 62.98

-50

-40

-30

-20

-10

0

60.14 62.64 65.14

-50

-40

-30

-20

-10

0

62.30 64.80 67.30

64QAM with 10.56Gb/s is achieved for the full 4 channels.

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 22 of 28

7.04Gb/s 16QAM (max 28.16Gb/s)

28.16Gb/s is achieved by using 4-bonded channel.

Channel/ Carrier freq.

ch.1 58.32GHz

ch.2 60.48GHz

ch.3 62.64GHz

ch.4 64.80GHz

ch.1-ch.4 Channel

bond

Modulation 16QAM

Data rate 7.04Gb/s 7.04Gb/s 7.04Gb/s 7.04Gb/s 28.16Gb/s

Constellation

Spectrum

TX EVM -27.8dB -27.6dB -28.4dB -28.8dB -20.0dB

TX-to-RX EVM

-24.6dB -24.1dB -24.6dB -27.0dB -17.2dB

Distance 0.7m 0.6m 0.8m 0.4m 0.07m

-50

-40

-30

-20

-10

0

55.82 58.32 60.82

-50

-40

-30

-20

-10

0

57.98 60.48 62.98

-50

-40

-30

-20

-10

0

60.14 62.64 65.14

-50

-40

-30

-20

-10

0

62.30 64.80 67.30-50

-40

-30

-20

-10

0

55.56 58.56 61.56 64.56 67.56

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 23 of 28

Channel/ Carrier freq.

ch.1 58.32GHz

ch.2 60.48GHz

ch.3 62.64GHz

ch.4 64.80GHz

ch.1-ch.4 Channel

bond

Modulation QPSK

Data rate 3.52Gb/s 3.52Gb/s 3.52Gb/s 3.52Gb/s 14.08Gb/s

Constellation

Spectrum

TX EVM -28.1dB -27.7dB -29.0dB -29.7dB -20.1dB

TX-to-RX EVM

-25.3dB -24.5 dB -24.5dB -26.6dB -17.9dB

Distance 2.4m 2.0m 2.6m 0.9m 0.3m

-50

-40

-30

-20

-10

0

55.82 58.32 60.82

-50

-40

-30

-20

-10

0

57.98 60.48 62.98

-50

-40

-30

-20

-10

0

60.14 62.64 65.14

-50

-40

-30

-20

-10

0

62.30 64.80 67.30-50

-40

-30

-20

-10

0

55.56 58.56 61.56 64.56 67.56

3.52Gb/s QPSK (max 14.08Gb/s)

14.08Gb/s is achieved by using 4-bonded channel.

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 24 of 28

Performance Comparison of 60GHz TRX

Data rate / ModulationTX-to-

RX EVM

Power

consumption

SiBeam [3] 7.14Gb/s(16QAM) -19dBTX: 1,820mW

RX: 1,250mW

Tokyo

Tech [4, 5]

16Gb/s(16QAM)

20Gb/s(16QAM)[5] -21dB

TX: 319mW

RX: 223mW

IMEC [6] 7Gb/s(16QAM) -18dBTX: 167mW

RX: 112mW

Panasonic

[9]2.5Gb/s(QPSK) -22dB

TX: 347mW

RX: 274mW

This work10.56Gb/s(64QAM)

28.16Gb/s(16QAM)-26dB

TX: 251mW

RX: 220mW

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 25 of 28

Measurement for IEEE802.11ad/WiGig

MCS ModulationData rate

[Mb/s]

TX EVM [dB]

Spec. Meas.

9 QPSK SC 2502.5 -15 -27.1

12 16QAM SC 4620 -21 -27.0

24 64QAM OFDM 6756.75 -26 -26.5

MCS9 MCS12 MCS24

Measured by

Agilent AWG

+ Osc. + VSA

+ 81199A

in ch.3

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 26 of 28

60GHz CMOS Transceiver

0

5

10

15

20

25

30

2007 2008 2009 2010 2011 2012 2013 2014

Data

ra

te [

Gb

/s]

Year

UCB

NEC

Univ. of Toronto

SiBeam, CEA-LETI

Toshiba

IMEC

Panasonic

UCB

Broadcom

First 64QAM

16QAM(4ch bonding)

Tokyo Tech

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 27 of 28

Conclusion

• A 60GHz direct-conversion transceiver in

65nm CMOS

• The first 64QAM transceiver (10.56Gbps/ch)

– IEEE802.11ad/WiGig conformance: MCS1-

MCS24(64QAM/OFDM)

• The first transceiver capable of 4-channel

bonding (28.16Gbps by 16QAM)

realized by

–Mixer-first transmitter

–Open-loop FVF-based baseband amplifier

–Quadrature injection-locked oscillator

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 28 of 28

Acknowledgement

This work was partially supported by MIC,

SCOPE, MEXT, STARC, Canon Foundation,

and VDEC in collaboration with Cadence

Design Systems, Inc., and Agilent

Technologies Japan, Ltd. The authors thank

Dr. Hirose, Dr. Suzuki, Dr. Sato, and Dr.

Kawano of Fujitsu Laboratories, Ltd., and

Prof. Ando of Tokyo Institute of Technology

for their valuable discussions and technical

supports.

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 29 of 28

References[1] K. Okada, et al., “A 60GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver

for IEEE 802.15.3c,” IEEE ISSCC, pp. 160-161, Feb. 2011.

[2] A. Siligaris, et al., “A 65nm CMOS Fully Integrated Transceiver Module for 60GHz

Wireless HD Applications,” IEEE ISSCC, pp.162-163, Feb. 2011.

[3] S. Emami, et al., “A 60GHz CMOS Phased-Array Transceiver Pair for Multi-Gb/s

Wireless Communications,” IEEE ISSCC, pp.164-165, Feb. 2011.

[4] K. Okada, et al., “A Full 4-Channel 6.3Gb/s 60GHz Direct-Conversion Transceiver with

Low-Power Analog and Digital Baseband Circuitry,” IEEE ISSCC, pp. 218-219, Feb.

2012.

[5] S. Kawai, et al., “A Digitally-Calibrated 20Gb/s 60GHz Direct-Conversion Transceiver in

65-nm CMOS,” IEEE RFIC Symp., pp.137-140, June 2013.

[6] V. Vidojkovic, et al., “A Low-Power 57-to-66GHz Transceiver in 40nm LP CMOS with -

17dB EVM at 7Gb/s,” IEEE ISSCC, pp. 268-269, Feb. 2012.

[7] T. Mitomo, et al., “A 2Gb/s-Throughput CMOS Transceiver Chipset with In-Package

Antenna for 60GHz Short-Range Wireless Communication,” IEEE ISSCC, pp. 266-267,

Feb. 2012.

[8] V. Vidojkovic, et al., “ A Low-Power Radio Chipset in 40nm LP CMOS with

Beamforming for 60GHz High-Data-Rate Wireless Communication,” IEEE ISSCC, pp.

236-237, Feb. 2013.

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 30 of 28

References[9] T. Tsukizawa, et al., “A Fully Integrated 60GHz CMOS Transceiver Chipset Based on

WiGig/IEEE802.11ad with Built-in Self-Calibration for Mobile Applications,” IEEE

ISSCC, pp. 230-231, Feb. 2013.

[10] M. Soer, et al., "A 0.2-to-2.0GHz 65nm CMOS Receiver Without LNA Achieving

>11dBm IIP3 and <6.5dB NF," IEEE ISSCC, pp.222-223, Feb. 2009.

[11] C. Andrews, and A.C. Molnar, "A Passive-Mixer-First Receiver with Baseband-

Controlled RF Impedance Matching, < 6dB NF, and > 27dBm Wideband IIP3," IEEE

ISSCC, pp. 46-47, Feb 2010.

[12] R. Carvajal, et al., “The Flipped Voltage Follower: A Useful Cell for Low-Voltage Low-

Power Circuit Design,” IEEE Trans. CAS-I, Vol. 52, No. 7, pp. 1276-1291, July 2005.

[13] K. Okada, et al., “Full Four-Channel 6.3-Gb/s 60-GHz CMOS Transceiver with Low-

Power Analog and Digital Baseband Circuitry,” IEEE JSSC, Vol. 48, No. 1, pp.46-65,

Jan. 2013.

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 31 of 28

Backup slides

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 32 of 28

Setup for TX Measurement

Symbol rate: 1.76GS/s (1ch), 7.04GS/s (4ch bonding)

Roll-off factor: 25% for WiGig spectrum mask

RF board

(TX mode)

Power supply

Oscilloscope

Tektronix DSA73304D

(33-GHz BW, 100GS/s)

Isolator

Signal Generator

Agilent E8257D

Spectrum Analyzer

Agilent E4448A

Millitech MixerMXP-15-RFSFL

Divider6GHz

ATT

Attenuator

Pre-amplifierB&Z BZP140UD1

(0.1GHz-40GHz)

fLO-6GHz(e.g. 54.48GHz)

Arbitrary Waveform Generator

Tektronix AWG70002A

(25GS/s)

Controlsignals

36MHz ref.

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

© 2014 IEEE International Solid-State Circuits Conference 33 of 28

Measurement Results

-15

-10

-5

0

5

10

15

20

25

-25 -20 -15 -10 -5 0 5 10 15

Output power of Tx

Pin [dBm]

Pout[d

Bm

] , C

G [d

B]

Pout

CG

Conversion gain of Rx

Frequency [GHz]

0

5

10

15

20

25

30

35

40

57.24 59.4 61.56 63.72 65.88

CG

[d

B]

ch. 1 ch. 2 ch. 4ch. 3

-80

-60

-40

-20

0

20

40

60

-60 -50 -40 -30 -20

Output power of Rx

Pin [dBm]

SN

DR

[d

B]

Pout, I

M3, N

ois

e F

loo

r [d

Bm

]

SNDR

Pout

IM3Noise Floor

Conversion gain of Tx

Frequency [GHz]

0

5

10

15

20

25

30

35

40

57.24 59.4 61.56 63.72 65.88

CG

[d

B]

ch. 1 ch. 2 ch. 4ch. 3