An 01 Electrical Encoder 1

Embed Size (px)

Citation preview

  • 8/2/2019 An 01 Electrical Encoder 1

    1/7

    El

    Document

    Version:1.

    NetzerPre

    MisgavInd

    D.N.Misga

    Israel

    Tel:+9724

    Fax:+972

    www.netzglobalinfo

    Appli

    ctricEn

    No.:AN0

    ,Jan2009

    isionMoti

    ustrialPark

    v,20179

    9990420

    9990432

    rprecision.@netzerpr

    ation

    coder

    nSensors

    ,P.O.Box

    comcision.com

    Note

    ;DSpro

    Ltd.

    359

    1 Th

    ductlin

    Elect

    angul

    icEnc

    arpositi

    der

    onsens rs

    http://www.netzerprecision.com/mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://www.netzerprecision.com/
  • 8/2/2019 An 01 Electrical Encoder 1

    2/7www.netzerprecision.com AN01,TheElectricEncoder 2/7

    1. TheElectricEncoderaperspectiveThepatented,stateofart,ElectricEncodertechnologyprovidesamixofperformancefeatures

    unmatchedbyanycompetingtechnology,optical,magneticorotherwise.TherotaryElectric

    Encoderis

    implemented

    using

    either

    of

    two

    topologies:

    3

    plate

    and

    2

    plate,

    both

    include

    a

    space/timemodulatedelectricfieldinsideashieldedspace.Thetotalfieldisintegratedand

    convertedintoasignalcurrentwhichisprocessedbyonboardelectronicstoprovideDCoutput

    signalsproportionaltothesineandcosineoftherotationangle.Inthe3platetopology,shownin

    Figure1aadielectricrotorwhoserotationangleinfluencesthefieldbetweenstationary

    transmitterandreceiverplates.Inthe2platetopology,showninFigure1b,thefieldisconfined

    betweenastationarytransmitter/receiverplateandaconductivelypatternedrotor.

    TheElectricEncoderhastwooperationmodesselectablebyalogiclevelcommand;TheCoarse

    modehasMsine/cosineperiods/revolution,andgeneratesacorrespondingnumberofElectrical

    Cycle/Revolution(EC/R).Thismodeisaccurateenoughtohelpidentifyonsystemturnon in

    combinationwiththeFinemodedata,theinitialabsoluteposition.TheFinechannelhasNEC/Rs

    andprovidestheaccuracyandresolutionofthecomputedabsoluteangledata.Mtypicallyranges

    fromoneto7andNfrom16to128 dependingonthespecificdesign.Inordertoprovidean

    unambiguousreadingover360mechanicaldegrees(i.e.,eachangularpositionhasauniquepair

    ofFineandCoarseelectricalangles)MandNhavenocommondenominator.Inpracticethe

    coarsemodeisneededonlyuponsystemturnon,afterwhichtheencoderispermanently

    switchedto

    the

    Fine

    mode.

    Signal

    conditioning

    is

    based

    on

    digitizing

    and

    processing

    the

    output

    analogsignals,usingfactorysuppliedcodeandprovideshighaccuracyabsoluteposition

    informationseeapplicationnotesAN02,AN03.

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349 36

    Figure 2

    Figure

    1(a)

    (b)

  • 8/2/2019 An 01 Electrical Encoder 1

    3/7www.netzerprecision.com AN01,TheElectricEncoder 3/7

    Figure2illustratestheoutputsignalsanElectricEncoderwithM=1andN=16,asafunctionof

    therotationangle.ComparedtoanopticalSin/CosencodertheElectricEncodergenerates

    muchlessEC/Rs,however,theSine/Cosineoutputsignalsarenearperfect,resultinginhigh

    accuracyandresolution.OtheradvantagesoftheElectricEncoderare:

    Hollow,

    floating,

    (no

    bearings)

    shaft

    Verylowpowerconsumption

    Immunitytomagneticandelectricinterference

    Lowprofile

    Highmechanicaldurability

    Hightolerancetomechanicalinstallationerrors

    Widetemperatureoperationrange

    Simplemechanicalandelectricalinterface

    2.TheHolisticrotor

    ManyoftheadvantagesoftheElectricEncoderresultfromitsholisticrotor seeFigure3.

    Unlikeinotherencoders,thewholeareaoftheElectricEncoderrotorparticipatesinsignal

    generation,i.e.,multiplespatialperiodsareintegrated;thisresultsintwopowerfulmechanisms:

    Figure 3

    1.Geometricalcompensation eachtwoopposingregionsoftheencoderreactoppositelytotilt

    andtranslationoftherotorplaneshownbywhitearrows,theElectricEncoderisalso

    insensitiveto

    axial

    motion

    shown

    by

    the

    red

    arrow;

    it

    thus

    approaches

    closer

    than

    any

    other

    encodertheidealinbeingsensitivetorotationonly.Onepracticaloutcomeisthat,unlike

    opticalencoderswithcomparableaccuracy,nointernalballbearingsareneededandtherotor

    canbedirectlymountedonthehostshaftwithoutflexibleshaftcouplingorsoftstatormounting.

    Thisuniquefloatinghollowshaftresultsinthelowestpossibleaxialspacerequirementsbutalso

    enhancereliabilitybyeliminatingthemajorlongtermdegradationmechanism.Figure4illustrates

    thesignificantlylowererrorinducedbyrotoreccentricityoftheElectricEncodercomparedto

    anopticalencoderofthesamediameter.

  • 8/2/2019 An 01 Electrical Encoder 1

    4/7www.netzerprecision.com AN01,TheElectricEncoder 4/7

    Figure 4

    2.Averaging

    the

    output

    signals

    are

    the

    integrated

    sum

    of

    multiple

    periods,

    any

    effect

    due

    to

    geometricalerrors,temperaturevariations,contamination,etc,tendstoaverageout,in

    proportiontothenumberofpoles.

    3.Commonsignalprocessingchain therotationinducedsignalsareprocessedinananalog

    channel shownasablockdiagraminFigure5wheremostoftheblocksarecommontotheSine

    andtheCosinesignalsandthenseparatedbyunitygaindemodulatorsandfilteredbyunitygain

    lowpassfilters.Thetwooutputamplitudesarethereforetightlymatched,irrespectiveof

    componenttolerances,ortemperatureinfluence.Inaddition,sincetheprocessedsignalsareAC,

    offsetvoltagesarenearlyeliminated.

    Figure 5

  • 8/2/2019 An 01 Electrical Encoder 1

    5/7www.netzerprecision.com AN01,TheElectricEncoder 5/7

    3. EnvironmentalcompatibilityFigure6illustrates(inred)thebuiltinelectrostaticshieldoftheElectricEncoder,theshield

    comprisesgroundlayersandagroundedconductivelabyrinthwhichallowsmechanical

    attachmenttotherotorwhileblockingpotentialparasiticcouplingfromthehostshaft.The

    physicsoftheElectricEncoderprovidesinherentinsensitivitytomagneticfields;thereforenomagneticshieldisrequired,evenwhenmountedinsideelectricmotors.TheElectricEncoder

    alsohasvirtuallynomagneticsignature;acriticalfeatureinspecialapplications.

    AnotheruniquefeatureoftheElectricEncoderisthelowfrequencyrange(typicallyunder1

    kHz)oftheoutputsignals.ThisisduetothelownumberofEC/Rs,andenablesthesignalstobe

    carriedoverlongdistances,eveninnoisyenvironments,sincecoupledinterferences,suchas

    PWM,areinmostcasesofmuchhigherfrequenciesandcanbeeasilyfilteredoutpriorto

    digitization.

    TheElectricEncoderisunusuallyimmunetocontaminantsandmoistureconditionsandhas

    proventoperformnotonlyimmersedinoilbuteveninhumidandcondensingconditions.This

    immunityisespeciallynoticeableinthe3platetopologywhich,inadditiontohavingaholistic

    rotor,has

    athree

    dimensional

    construction

    which

    is

    largely

    uninfluenced

    by

    foreign

    material

    deposit.

    AsaresultofitsrobustconstructiontheElectricEncodernotonlysurvivesextremeshockand

    vibrations,butactuallyperformsunderharshconditions.Thetemperaturestabilityoftheoutput

    signalsresultsfromitsconstructionmaterials,theholisticrotor,andtheuniquesignal

    conditioning,asdescribedabove.Theencodercanbedesignedtooperatefromcryogenic

    temperatureupto125Candabove.Figure7illustratesatypicalplotofthereadoutangleofa

    premiumDS58encodercycledovertemperature.

    Figure 6

  • 8/2/2019 An 01 Electrical Encoder 1

    6/7www.netzerprecision.com AN01,TheElectricEncoder 6/7

    Figure

    7

    4.Comparisonwiththeresolver

    TheoutputsignalsoftheElectricencoderareproportionaltothesine/cosineoftherotation

    angle,i.e.,theyareDCsignalsatanyfixedangleandaresinusoidalonlyatconstantrotation

    speeds.ThisisincontrastwiththeresolverwherethesignalsaremodulatedonanACcarrier

    whosefrequencyislimitedbytheinductancetotypically10kHz;theeffectiveservobandwidthis

    usuallyfurtherlimitedbytheResolvertoDigitalConverter(R/DC).Theexcitationfrequencyofthe

    ElectricEncoderisnearlyunlimited,whichresultsinpotentiallyunlimitedservobandwidth 1

    kHzinthestandardproducts,andmuchhigherincustomizedversions.Thefollowingtable

    comparesthe

    two

    technologies.

    Parameter Resolver Electricencoder

    1 Operatingtemp.range 55to+150 55to+125

    2 Weight/Diameter Larger Smaller

    3 Profile Larger Smaller

    4 Rotor Active Passive

    5 Electricallyfloatingrotor Addsaxiallength Inherent

    6 Sensitivitytomagneticfield

    Onlyifshielded Inherentlyinsensitive

    7 Powerconsumption Severalwatts Typically30mW

    8 Mountingtolerance Relativelytight Relativelyloose

    9 Powersupply AC DC

    10 Cost/performance Higher Lower

    11 Accuracy/diameter Lower Higher

    12 Servobandwidth Medium High

    13 Absolutepositionoutpu Yes Yes

    14

    Number

    of

    wires

    6

    6

    15 Redundancyoption Yes Yes

  • 8/2/2019 An 01 Electrical Encoder 1

    7/7www.netzerprecision.com AN01,TheElectricEncoder 7/7

    5 ElectricalEncoderoutputsTheDSproductlineprovidesSine/CosineoftheCoarseandFinesignals(electricangle)however,severaladditionaldigitaloutputsavailablebyselectedmodelsexecutedbyexternalinterpolatoror

    onboardversions.