ALL MAths Formulas From Maths.org

Embed Size (px)

Citation preview

  • 7/27/2019 ALL MAths Formulas From Maths.org

    1/25

    www.mathportal.org

    Algebra Formulas

    1. Set identities

    Definitions:

    I: Universal set

    A: Complement

    Empty set:

    Union of sets

    { }|A B x x x BrA o =

    Intersection of sets

    { }|A B x x x BdA an =

    Complement

    { }|A x I x A =

    Difference of sets

    { }\ |B A x x B x Aand=

    Cartesian product

    ( ){ }, |A B x y x A and y B =

    Set identities involving union

    Commutativity

    A B B A =

    Associativity( ) ( )A B C A B C =

    Idempotency

    A A A =

    Set identities involving intersection

    commutativity

    A B B A = Associativity

    ( ) ( )A B C A B C =

    Idempotency

    A A A =

    Set identities involving union and intersection

    Distributivity

    ( ) ( ) ( )A B C A B A C =

    ( ) ( ) ( )A B C A B A C =

    Domination

    A =

    A I I =

    Identity

    A A =

    A I A =

    Set identities involving union, intersection and

    complement

    complement of intersection and union

    A A I =

    A A =

    De Morgans laws

    ( )A B A B =

    ( )A B A B =

    Set identities involving difference

    ( )\B A B A B=

    \B A B A=

    \A A =

    ( ) ( ) ( )\ \A B C A C B C =

    \A I A =

    2. Sets of Numbers

    Definitions:N: Natural numbers

    No: Whole numbers

    Z: Integers

    Z+: Positive integers

    Z-: Negative integers

    Q: Rational numbers

    C: Complex numbers

    Natural numbers (counting numbers )

    { }1, 2, 3,...N =

    Whole numbers ( counting numbers + zero )

    { }0, 1, 2, 3,...oN =

    Integers

    { }1, 2, 3,...Z N+ = =

    { }..., 3, 2, 1Z =

    { } { }0 . .., 3, 2, 1, 0, 1, 2, 3,...Z Z Z= =

  • 7/27/2019 ALL MAths Formulas From Maths.org

    2/25

    www.mathportal.org

    Irrational numbers:

    Nonerepeating and nonterminating integers

    Real numbers:

    Union of rational and irrational numbers

    Complex numbers:

    { }|C x iy x R and y R= +

    N Z Q R C

    3. Complex numbers

    Definitions:

    A complex nuber is written as a + bi where a and b arereal numbers an i, called the imaginary unit, has theproperty that i

    2=-1.

    The complex numbers a+bi and a-bi are called complex

    conjugate of each other.

    Equality of complex numbers

    a + bi = c + di if and only if a = c and b = d

    Addition of complex numbers

    (a + bi) + (c + di) = (a + c) + (b + d)i

    Subtraction of complex numbers

    (a + bi) - (c + di) = (a - c) + (b - d)i

    Multiplication of complex numbers

    (a + bi)(c + di) = (ac - bd) + (ad + bc)i

    Division of complex numbers

    2 2 2 2

    a bi a bi c di ac bd bc ad i

    c di c di c di c d c d

    + + + = = +

    + + + +

    Polar form of complex numbers

    ( )cos sin modulus, amplitudex iy r i r + = +

    Multiplication and division in polar form

    ( ) ( )

    ( ) ( )

    1 1 1 2 2 2

    1 2 1 2 1 2

    cos sin cos sin

    cos sin

    r i r i

    r r i

    + + =

    = + + +

    ( )

    ( )( ) ( )

    1 1 1 11 2 1 2

    2 2 2 2

    cos sincos sin

    cos sin

    r r

    r r

    + = +

    +

    De Moivres theorem

    ( ) ( )cos sin cos sinn nr r n n + = +

    Roots of complex numbers

    ( )11 2 2

    cos sin cos sinnnk k

    r rn n

    + + + = +

    From this the n nth roots can be obtained by putting k = 0,1, 2, . . ., n - 1

    4. Factoring and product

    Factoring Formulas

    ( )( )2 2a b a b a b = +

    ( )( )3 3 2 2a b a b a ab b = + +

    ( )( )3 3 2 2a b a b a ab b+ = + +

    4 4 2 2( )( )( )a b a b a b a b = + +

    ( )( )5 5 4 3 2 2 3 4a b a b a a b a b ab b = + + + +

    Product Formulas

    2 2 2( ) 2a b a ab b+ = + +

    2 2 2( ) 2a b a ab b = +

    3 3 2 2 3( ) 3 3a b a a b ab b+ = + + +

    3 3 2 2 3( ) 3 3a b a a b ab b = +

    ( )4 4 3 2 2 3 4

    4 6 4a b a a b a b ab b+ = + + + +

    ( )4 4 3 2 2 3 44 6 4a b a a b a b ab b = + +

    2 2 2 2( ) 2 2 2a b c a b c ab ac bc+ + = + + + + +

    2 2 2 2( ...) ...2( ...)a b c a b c ab ac bc+ + + = + + + + + +

    5. Algebric equations

    Quadric Eqation: ax2

    + bx + c = 0

    Solutions (roots):

    2

    1,2 42

    b b acx

    a

    =

    if D=b2-4ac is the discriminant, then the roots are

    (i) real and unique if D > 0

    (ii) real and equal if D = 0

    (iii) complex conjugate if D < 0

  • 7/27/2019 ALL MAths Formulas From Maths.org

    3/25

    www.mathportal.org

    Cubic Eqation: 3 21 2 3 0x a x a x a+ + + =

    Let

    32

    1 2 3 12 1

    3 2 3 23 3

    9 27 23,

    9 54

    ,

    a a a aa aQ R

    S R Q R T R Q R

    = =

    = + + = +

    then solutions are:

    ( ) ( )

    ( ) ( )

    1 1

    2 1

    3 1

    1

    3

    1 1 13

    2 3 2

    1 1 13

    2 3 2

    x S T a

    x S T a i S T

    x S T a i S T

    = +

    = + +

    = +

    if D = Q3

    + R3

    is the discriminant, then:

    (i) one root is real and two complex conjugate if D > 0

    (ii) all roots are real and at last two are equal if D = 0(iii) all roots are real and unequal if D < 0

    Cuadric Eqation: 24

    4 31 2 3 0x ax a x a x a ++ + + =

    Let y1 be a real root of the cubic equation

    ( ) ( )3 2 2 22 1 3 4 2 4 3 1 44 4 0y a y a a a y a a a a a + + = Solution are the 4 roots of

    ( ) ( )2 2 21 1 2 1 1 1 41 14 4 4 02 2

    z a a a y z y y a+ + + =

  • 7/27/2019 ALL MAths Formulas From Maths.org

    4/25

    www.mathportal.org

    Functions Formulas

    1. Exponents

    ... 0,p

    p

    a a a a p N p a Rif= >

    0 1 0ia f a=

    r s r s

    a a a + = r

    r s

    s

    aa

    a

    =

    ( )s

    r r sa a

    =

    ( )r r r

    a b a b =

    r r

    r

    a a

    b b

    =

    1rr

    aa

    =

    r

    s rsa a=

    2. Logarithms

    Definition:

    ( )log , 0,yay x a x a x y R= = >

    Formulas:

    log 1 0a =

    log 1a a =

    log log loga a amn m n= +

    log log loga a am

    m nn

    =

    log logna am n m=

    log log loga b am m b= log

    loglog

    ba

    b

    mm

    a=

    1og

    loga

    b

    l ba

    =

    ( )ln

    og og lnln

    a a

    xl x l e x

    a= =

    3. Roots

    Definitions:

    a,b: bases ( , 0 2a b if n k = )

    n,m: powers

    Formulas:

    n n nab a b=

    nm m nn ma b a b=

    , 0n

    nn

    a ab

    b b=

    , 0mn

    nmnm

    a ab

    bb=

    ( )p

    n nm mpa a=

    ( )n

    n a a=

    npn m mpa a=

    m n mna a=

    ( )m

    n mn a a=

    1

    1 , 0

    n n

    na aaa

    =

    2 2

    2 2

    a a b a a ba b

    + =

    1 a b

    a ba b=

  • 7/27/2019 ALL MAths Formulas From Maths.org

    5/25

    www.mathportal.org

    4. Trigonometry

    Right-Triangle Definitions

    Oppositesin

    Hypotenuse

    =

    Adjacent

    cosHypotenuse

    =

    Opposite

    Adjacenttg =

    1 Hypotenusecsc

    sin Opposite

    = =

    1 Adjacentcot

    Oppositetg

    = =

    1 Hypotenuseseccos Adjacent

    = =

    Reduction Formulas

    sin( ) sinx x =

    cos( ) cosx x =

    sin( ) cos2

    x x

    =

    cos( ) sin2 x x

    =

    sin( ) cos2

    x x

    + =

    cos( ) sin2

    x x

    =

    sin( ) sinx x =

    cos( ) cosx x =

    sin( ) sinx x + =

    cos( ) cosx x + =

    Identities

    2 2sin cos 1x x+ =

    2

    2

    11

    costg x

    x+ =

    2

    2

    1cot 1

    sinx

    x+ =

    Sum and Difference Formulas

    ( )sin sin cos sin cos + = +

    ( )sin sin cos sin cos = ( )cos cos cos sin sin + =

    ( )cos cos cos sin sin = +

    ( )tan tan

    tan1 tan tan

    ++ =

    ( )tan tan

    tan1 tan tan

    =

    +

    Double Angle and Half Angle Formulas

    ( )sin 2 2sin cos =

    ( ) 2 2cos 2 cos sin =

    ( )2

    2tan 2

    1

    tg

    tg

    =

    1 cossin

    2 2

    =

    1 coscos

    2 2

    +=

    1 cos sintan

    2 sin 1 cos

    = =

    +

    Other Useful Trig Formulae

    Law of sines

    sin sin sin

    a b c

    = =

    Law of cosines

    2 2 2

    2 cosc a b ab = + Area of triangle

    1sin

    2K ab =

  • 7/27/2019 ALL MAths Formulas From Maths.org

    6/25

    www.mathportal.org

    5. Hyperbolic functions

    Definitions:

    sinh2

    x xe e

    x

    =

    cosh2

    x xe ex+

    =

    sinhtanh

    cosh

    x x

    x x

    e e xx

    e e x

    = =

    +

    2 1csch

    sinhx xx

    e e x

    = =

    2 1sech

    coshx x

    xe e x

    = =

    +

    coshcoth

    sinh

    x x

    x x

    e e xx

    e e x

    += =

    Derivates

    sinh coshd

    x xdx

    =

    cosh sinhd

    x xdx

    =

    2tanh sechd

    x xdx

    =

    csch csch cothd

    x x xdx

    =

    sech sech tanhd

    x x xdx

    =

    2coth cschd

    x xdx

    =

    Hyperbolic identities

    2 2cosh sinh 1x x = 2 2tanh sech 1x x+ = 2 2coth csch 1x x =

    sinh( ) sinh cosh cosh sinhx y x y x y =

    sinh( ) cosh cosh sinh sinhx y x y x y =

    sinh 2 2sinh coshx x x= 2 2cosh 2 cosh sinhx x x= +

    2 1 cosh 2sinh

    2

    xx

    +=

    2 1 cosh 2cosh2

    xx

    +=

    Inverse Hyperbolic functions

    ( ) ( )1 2sinh ln 1 ,x x x x = + +

    ( )

    1 2cosh ln 1 [1, )x x x x

    = +

    ( )11 1

    tanh ln 1,12 1

    xx x

    x

    + =

    ( ) ( )11 1

    coth ln , 1 1,2 1

    xx x

    x

    + =

    2

    1 1 1sech ln (0,1]x

    x xx

    +

    =

    ( ) ( )2

    1 1 1csch ln ,0 0,

    xx x

    x x

    = +

    Inverse Hyperbolic derivates

    1

    2

    1sinh

    1

    dx

    dx x

    =

    +

    1

    2

    1cosh

    1

    dx

    dx x

    =

    1

    2

    1tanh

    1

    dx

    dx x

    =

    2

    1csch

    1

    dx

    dx x x=

    +

    1

    2

    1sech

    1

    dx

    dx x x

    =

    1

    2

    1coth

    1

    dx

    dx x

    =

  • 7/27/2019 ALL MAths Formulas From Maths.org

    7/25

    www.mathportal.org

    Analytic Geometry Formulas

    1. Lines in two dimensions

    Line forms

    Slope - intercept form:

    y mx b= + Two point form:

    ( )2 11 12 1

    y yy y x x

    x x

    =

    Point slope form:

    ( )1 1y y m x x = Intercept form

    ( )1 , 0x y

    a ba b

    + =

    Normal form:cos sinx y p + =

    Parametric form:

    1

    1

    cos

    sin

    x x t

    y y t

    = +

    = +

    Point direction form:

    1 1x x y y

    A B

    =

    where (A,B) is the direction of the line and 1 1 1( , )P x y lies

    on the line.

    General form:

    0 0 0A x B y C A or B + + =

    Distance

    The distance from 0Ax By C+ + = to 1 1 1( , )P x y is

    1 1

    2 2

    A x B y Cd

    A B

    + +=

    +

    Concurrent linesThree lines

    1 1 1

    2 2 2

    3 3 3

    0

    0

    0

    A x B y C

    A x B y C

    A x B y C

    + + =

    + + =

    + + =

    are concurrent if and only if:

    1 1 1

    2 2 2

    3 3 3

    0

    A B C

    A B C

    A B C

    =

    Line segment

    A line segment 1 2P P can be represented in parametric

    form by

    ( )

    ( )

    1 2 1

    1 2 1

    0 1

    x x x x t

    y y y y t

    t

    = +

    = +

    Two line segments 1 2P P and 3 4P P intersect if any only if

    the numbers

    2 1 2 1 3 1 3 1

    3 1 3 1 3 4 3 4

    2 1 2 1 2 1 2 1

    3 4 3 4 3 4 3 4

    x x y y x x y y

    x x y y x x y ys and t

    x x y y x x y y

    x x y y x x y y

    = =

    satisfy 0 1 0 1s and t

    2. Triangles in two dimensions

    Area

    The area of the triangle formed by the three lines:

    1 1 1

    2 2 2

    3 3 3

    0

    00

    A x B y C

    A x B y CA x B y C

    + + =

    + + =

    + + =

    is given by

    2

    1 1 1

    2 2 2

    3 3 3

    2 21 1 3 3

    3 32 2 1 1

    2

    A B C

    A B C

    A B CK

    A BA B A B

    A BA B A B

    =

    The area of a triangle whose vertices are 1 1 1( , )P x y ,

    2 2 2( , )P x y and 3 3 3( , )P x y :

    1 1

    2 2

    3 3

    11

    12

    1

    x y

    K x y

    x y

    =

    2 1 2 1

    3 1 3 1

    1.

    2

    x x y yK

    x x y y

    =

  • 7/27/2019 ALL MAths Formulas From Maths.org

    8/25

    www.mathportal.org

    Centroid

    The centroid of a triangle whose vertices are 1 1 1( , )P x y ,

    2 2 2( , )P x y and 3 3 3( , )P x y :

    1 2 3 1 2 3( , ) ,

    3 3

    x x x y y yx y

    + + + + =

    Incenter

    The incenter of a triangle whose vertices are 1 1 1( , )P x y ,

    2 2 2( , )P x y and 3 3 3( , )P x y :

    1 2 3 1 2 3( , ) ,ax bx cx ay by cy

    x ya b c a b c

    + + + + =

    + + + +

    where a is the length of2 3

    P P , b is the length of1 3

    P P ,

    and c is the length of1 2.PP

    Circumcenter

    The circumcenter of a triangle whose vertices are

    1 1 1( , )P x y , 2 2 2( , )P x y and 3 3 3( , )P x y :

    2 2 2 2

    1 1 1 1 1 1

    2 2 2 2

    2 2 2 2 2 2

    2 2 2 2

    3 3 3 3 3 3

    1 1 1 1

    2 2 2 2

    3 3 3 3

    1 1

    1 1

    1 1( , ) ,1 1

    2 1 2 1

    1 1

    x y y x x y

    x y y x x y

    x y y x x yx yx y x y

    x y x y

    x y x y

    + +

    + +

    + + =

    Orthocenter

    The orthocenter of a triangle whose vertices are

    1 1 1( , )P x y , 2 2 2( , )P x y and 3 3 3( , )P x y :

    2 2

    1 2 3 1 1 2 3 1

    2 2

    2 3 1 2 2 3 1 2

    2 2

    3 1 2 3 3 1 2 3

    1 1 1 1

    2 2 2 2

    3 3 3 3

    1 1

    1 1

    1 1( , ) ,

    1 1

    2 1 2 1

    1 1

    y x x y x y y x

    y x x y x y y x

    y x x y x y y xx y

    x y x y

    x y x y

    x y x y

    + +

    + +

    + + =

    3. Circle

    Equation of a circle

    In an x-y coordinate system, the circle with centre (a, b)

    and radius r is the set of all points (x, y) such that:

    ( ) ( )2 2 2

    x a y b r + =

    Circle is centred at the origin

    2 2 2x y r+ =

    Parametric equations

    cos

    sin

    x a r t

    y b r t

    = +

    = +

    where t is a parametric variable.

    In polar coordinates the equation of a circle is:

    ( )2 2 2

    2 coso or rr r a + =

    Area

    2A r =

    Circumference

    2c d r = =

    Theoremes:

    (Chord theorem)

    The chord theorem states that if two chords, CD and EF,intersect at G, then:

    CD DG EG FG = (Tangent-secant theorem)

    If a tangent from an external point D meets the circle atC and a secant from the external point D meets the circleat G and E respectively, then

    2DC DG DE= (Secant - secant theorem)

    If two secants, DG and DE, also cut the circle at H and Frespectively, then:

    DH DG DF DE = (Tangent chord property)

    The angle between a tangent and chord is equal to thesubtended angle on the opposite side of the chord.

  • 7/27/2019 ALL MAths Formulas From Maths.org

    9/25

    www.mathportal.org

    4. Conic Sections

    The Parabola

    The set of all points in the plane whose distances from afixed point, called the focus, and a fixed line, called thedirectrix, are always equal.

    The standard formula of a parabola:2

    2y px=

    Parametric equations of the parabola:

    22

    2

    x pt

    y pt

    =

    =

    Tangent line

    Tangent line in a point 0 0( , )D x y of a parabola2

    2y px=

    ( )0 0y y p x x= + Tangent line with a given slope (m)

    2

    py mx

    m= +

    Tangent lines from a given point

    Take a fixed point 0 0( , )P x y .The equations of the

    tangent lines are

    ( )

    ( )

    0 1 0

    0 2 0

    2

    0 0 01

    0

    2

    0 0 0

    1

    0

    22

    2

    2

    y y m x x and

    y y m x x where

    y y pxm and x

    y y pxm

    x

    =

    =

    + =

    =

    The Ellipse

    The set of all points in the plane, the sum of whosedistances from two fixed points, called the foci, is aconstant.

    The standard formula of a ellipse

    2 2

    2 21

    x y

    a b+ =

    Parametric equations of the ellipse

    cos

    sin

    x a t

    y b t

    =

    =

    Tangent line in a point 0 0( , )D x y of a ellipse:

    0 0

    2 21

    x x y y

    a b+ =

    Eccentricity:

    2 2a be

    a

    =

    Foci:

    2 2 2 2

    1 2

    2 2 2 2

    1 2

    ( ,0) ( ,0)

    (0, ) (0, )

    if a b F a b F a b

    if a b F b a F b a

    > =>

    < =>

    Area:

    K a b=

    The Hyperbola

    The set of all points in the plane, the difference of whosedistances from two fixed points, called the foci, remainsconstant.

    The standard formula of a hyperbola:2 2

    2 21

    x y

    a b =

    Parametric equations of the Hyperbola

    sin

    sin

    cos

    ax

    t

    b ty

    t

    =

    =

    Tangent line in a point 0 0( , )D x y of a hyperbola:

    0 0

    2 21

    x x y y

    a b =

    Foci:

    2 2 2 2

    1 2

    2 2 2 2

    1 2

    ( ,0) ( ,0)

    (0, ) (0, )

    if a b F a b F a b

    if a b F b a F b a

    > => + +

    < => + +

    Asymptotes:

    b bif a b y x and y x

    a aa a

    if a b y x and y xb b

    > => = =

    < => = =

  • 7/27/2019 ALL MAths Formulas From Maths.org

    10/25

    www.mathportal.org

    5. Planes in three dimensions

    Plane forms

    Point direction form:

    1 1 1x x y y z z

    a b c

    = =

    where P1(x1,y1,z1) lies in the plane, and the direction(a,b,c) is normal to the plane.

    General form:

    0Ax By Cz D+ + + =

    where direction (A,B,C) is normal to the plane.

    Intercept form:

    1x y z

    a b c+ + =

    this plane passes through the points (a,0,0), (0,b,0), and(0,0,c).

    Three point form

    3 3 3

    1 3 1 3 1 3

    2 3 2 3 2 3

    0

    x x y y z z

    x x y y z z

    x x y y z z

    =

    Normal form:

    cos cos cosx y z p + + =

    Parametric form:

    1 1 2

    1 1 2

    1 1 2

    x x a s a t

    y y b s b t

    z z c s c t

    = + +

    = + +

    = + +

    where the directions (a1,b1,c1) and (a2,b2,c2) areparallel to the plane.

    Angle between two planes:

    The angle between two planes:

    1 1 1 1

    2 2 2 2

    0

    0

    A x B y C z D

    A x B y C z D

    + + + =

    + + + =

    is

    1 2 1 2 1 2

    2 2 2 2 2 2

    1 1 1 2 2 2

    arccosA A B B C C

    A B C A B C

    + +

    + + + +

    The planes are parallel if and only if

    1 1 1

    2 2 2

    A B C

    A B C= =

    The planes are perpendicular if and only if

    1 2 1 2 1 20A A B B C C+ + =

    Equation of a plane

    The equation of a plane through P1(x1,y1,z1) and parallelto directions (a1,b1,c1) and (a2,b2,c2) has equation

    1 1 1

    1 1 1

    2 2 2

    0

    x x y y z z

    a b c

    a b c

    =

    The equation of a plane through P1(x1,y1,z1) andP2(x2,y2,z2), and parallel to direction (a,b,c), has equation

    1 1 1

    2 1 2 1 2 1 0

    x x y y z z

    x x y y z z

    a b c

    =

    Distance

    The distance of P1(x1,y1,z1) from the plane Ax + By +Cz + D = 0 is

    1 1 1

    2 2 2

    Ax By Cz

    d A B C

    + +

    =+ +

    Intersection

    The intersection of two planes

    1 1 1 1

    2 2 2 2

    0,

    0,

    A x B y C z D

    A x B y C z D

    + + + =

    + + + =

    is the line

    1 1 1 ,x x y y z z

    a b c

    = =

    where

    1 1

    2 2

    B Ca

    B C=

    1 1

    2 2

    C Ab

    C A=

    1 1

    2 2

    A Bc

    A B=

    1 1 1 1

    2 2 2 2

    1 2 2 2

    D C D Bb c

    D C D B

    x a b c

    =+ +

    1 1 1 1

    2 2 2 2

    1 2 2 2

    D A D Cc c

    D A D Cy

    a b c

    =+ +

    1 1 1 1

    2 2 2 2

    1 2 2 2

    D B D Aa b

    D B D Az

    a b c

    =+ +

    If a = b = c = 0, then the planes are parallel.

  • 7/27/2019 ALL MAths Formulas From Maths.org

    11/25

    www.mathportal.org

    Limits and Derivatives Formulas

    1. Limits

    Properties

    if lim ( )x a

    f x l

    = and lim ( )x a

    g x m

    = , then

    [ ]lim ( ) ( )x a

    f x g x l m

    =

    [ ]lim ( ) ( )x a

    f x g x l m

    =

    ( )lim

    ( )x a

    f x l

    g x m= where 0m

    lim ( )x a

    c f x c l

    =

    1 1lim

    ( )x a f x l= where 0l

    Formulas

    1lim 1

    n

    xe

    n

    + =

    ( )1

    lim 1 nx

    n e

    + =

    0

    sinlim 1x

    x

    x=

    0

    tanlim 1x

    x

    x=

    0

    cos 1lim 0x

    x

    x =

    1limn n

    n

    x a

    x ana

    x a

    =

    0

    1lim ln

    n

    x

    aa

    x

    =

    2. Common Derivatives

    Basic Properties and Formulas

    ( ) ( )cf cf x =

    ( ) ( ) ( )f g f x g x = +

    Product rule

    ( )f g f g f g = +

    Quotient rule

    2

    f f g f g

    g g

    =

    Power rule

    ( ) 1n nd

    x nxdx

    =

    Chain rule

    ( )( )( ) ( )( ) ( )d

    f g x f g x g xdx

    =

    Common Derivatives

    ( ) 0d

    cdx

    =

    ( ) 1d

    xdx

    =

    ( )sin cosd

    x x

    dx

    =

    ( )cos sind

    x xdx

    =

    ( ) 22

    1tan sec

    cos

    dx x

    dx x= =

    ( )sec sec tand

    x x xdx

    =

    ( )csc csc cotd

    x xdx

    =

    ( )2

    2

    1

    cot cscsin

    d

    x xdx x= =

    ( )12

    1sin

    1

    dx

    dx x

    =

    ( )12

    1cos

    1

    dx

    dx x

    =

    ( )1 21

    tan1

    dx

    dx x

    =

    +

    ( ) lnx xd

    a a adx

    =

    ( )x xd

    e edx

    =

    ( )1

    ln , 0d

    x xdx x

    = >

    ( )1

    ln , 0d

    x xdx x

    =

    ( )1

    log , 0ln

    a

    dx x

    dx x a= >

  • 7/27/2019 ALL MAths Formulas From Maths.org

    12/25

    www.mathportal.org

    3. Higher-order Derivatives

    Definitions and properties

    Second derivative

    2

    2

    d dy d yf

    dx dx dx

    =

    Higher-Order derivative( ) ( )( )1n nf f

    =

    ( )( ) ( ) ( )n n n

    f g f g+ = +

    ( )( ) ( ) ( )n n n

    f g f g =

    Leibnizs Formulas

    ( ) 2 .f g f g f g f g = + +

    ( ) 3 3f g f g f g f g f g = + + +

    ( )( ) ( ) ( ) ( ) ( ) ( )1 21

    ...1 2

    n n n n nn nf g f g nf g f g fg

    = + + + +

    Important Formulas

    ( )( )

    ( )

    !

    !

    nm m nm

    x xm n

    =

    ( )( )

    !n

    nx n=

    ( )( ) ( ) ( )

    11 1 !

    logln

    n

    n

    a n

    nx

    x a

    =

    ( )( ) ( ) ( )

    11 1 !

    ln

    n

    n

    n

    nx

    x

    =

    ( )( )

    lnn

    x x na a a=

    ( )( )n

    x xe e=

    ( )( )

    lnn

    mx n mx na m a a=

    ( )( )

    sin sin2

    n nx x

    = +

    ( )( )

    cos cos2

    n nx x

    = +

  • 7/27/2019 ALL MAths Formulas From Maths.org

    13/25

    www.mathportal.org

    Integration Formulas

    1. Common Integrals

    Indefinite Integral

    Method of substitution

    ( ( )) ( ) ( )f g x g x dx f u du = Integration by parts

    ( ) ( ) ( ) ( ) ( ) ( )f x g x dx f x g x g x f x dx =

    Integrals of Rational and Irrational Functions

    1

    1

    nn x

    x dx Cn

    +

    = ++

    1lndx x C

    x= +

    c dx cx C = + 2

    2

    xxdx C= +

    32

    3

    xx dx C= +

    2

    1 1dx C

    x x= +

    2

    3

    x xxdx C= +

    2

    1arctan

    1dx x C

    x= +

    +

    2

    1arcsin

    1dx x C

    x= +

    Integrals of Trigonometric Functions

    sin cosx dx x C= +

    cos sinx dx x C= +

    tan ln secx dx x C= +

    sec ln tan secx dx x x C= + +

    ( )21

    sin sin cos2

    x dx x x x C= +

    ( )21

    cos sin cos2

    x dx x x x C= + +

    2tan tanx dx x x C= +

    2sec tanx dx x C= +

    Integrals of Exponential and Logarithmic Functions

    ln lnx dx x x x C= +

    ( )

    1 1

    2ln ln1 1

    n n

    n

    x xx x dx x Cn n

    + +

    = ++ +

    x xe dx e C = +

    ln

    xx b

    b dx C b

    = +

    sinh coshx dx x C= +

    cosh sinhx dx x C= +

  • 7/27/2019 ALL MAths Formulas From Maths.org

    14/25

    www.mathportal.org

    2. Integrals of Rational Functions

    Integrals involving ax + b

    ( )( )

    ( )( )

    1

    11

    nn ax b

    ax b dxa

    fo nn

    r

    ++

    + =+

    1 1lndx ax b

    ax b a= +

    +

    ( )( )

    ( ) ( )( ) ( )

    1

    2

    11

    2,

    12

    n na n x bx ax b dx ax b

    a n nfor n n

    +

    + + = +

    + +

    2ln

    x x bdx ax b

    ax b a a= +

    +

    ( ) ( )2 2 2

    1ln

    x bdx ax b

    a ax b aax b= + +

    ++

    ( )( )

    ( )( )( )( )12

    12

    1,

    21n n

    a n x bx dx

    ax b a n nfor n

    ax bn

    =+

    +

    ( )( )

    222

    3

    12 ln

    2

    ax bxdx b ax b b ax b

    ax b a

    + = + + + +

    ( )

    2 2

    2 3

    12 ln

    x bdx ax b b ax b

    ax baax b

    = + + ++

    ( ) ( )

    2 2

    3 3 2

    1 2ln

    2

    x b bdx ax b

    ax baax b ax b

    = + + ++ +

    ( )

    ( ) ( ) ( )( )

    3 2 122

    3

    21

    3 2 11, 2,3

    n n n

    n

    ax b b a b b ax bxdx

    n nfo

    nar n

    ax b

    + + + = + +

    ( )

    1 1ln

    ax bdx

    x ax b b x

    +=

    +

    ( )2 21 1

    lna ax b

    dxbx xx ax b b

    += +

    +

    ( ) ( )2 2 2 321 1 1 2

    ln

    ax b

    dx a xb a xb ab x bx ax b

    += +

    ++

    Integrals involving ax2

    + bx + c

    2 2

    1 1 xdx arctg

    a ax a=

    +

    2 2

    1ln

    1 2

    1ln

    2

    a xfor x a

    a a xdx

    x ax afor x a

    a x a

    +

  • 7/27/2019 ALL MAths Formulas From Maths.org

    15/25

    www.mathportal.org

    2

    2 2

    22

    2 2 2

    2

    2 2arctan 4 0

    4 4

    1 2 2 4ln 4 0

    4 2 4

    24 0

    2

    ax bfor ac b

    ac b ac b

    ax b b acdx for ac b

    ax bx c b ac ax b b ac

    for ac bax b

    + >

    + =

    + += + + +

  • 7/27/2019 ALL MAths Formulas From Maths.org

    16/25

    www.mathportal.org

    4. Integrals of Logarithmic Functions

    ln lncxdx x cx x=

    ln( ) ln( ) ln( )b

    ax b dx x ax b x ax ba

    + = + + +

    ( ) ( )2 2

    ln ln 2 ln 2x dx x x x x x= +

    ( ) ( ) ( )1

    ln ln lnn n n

    cx dx x cx n cx dx

    =

    ( )

    2

    lnln ln ln

    ln !

    i

    n

    xdxx x

    x i i

    =

    = + +

    ( ) ( )( ) ( )( )

    1 11

    1

    1ln 1 ln lnn n n

    for ndx x dx

    nx n x x

    = +

    ( )( )1

    2

    ln 1n

    11l

    1

    m m xx xdx xm m

    for m+ = + +

    ( )( )

    ( ) ( )1

    1lnln

    1 11ln

    nmn nm m

    x x nx x dx x x dx

    mr

    mfo m

    +

    = + +

    ( ) ( )( )

    1ln ln

    11

    n nx x

    dx for nx n

    +

    = +

    ( )( )

    2

    lnln0

    2

    nn xx

    dx for nx n

    =

    ( ) ( )( )

    1 2 1

    ln ln 1

    1 11

    m m m

    x xdx

    x m x mfor

    xm

    =

    ( ) ( )

    ( )

    ( )( )

    1

    1

    ln ln n1

    l

    11

    n n n

    m m m

    x x xndx dx

    mx m x xfor m

    = +

    ln lnln

    dxx

    x x=

    ( )( ) ( )

    1

    1 lnln ln 1

    !ln

    i ii

    ni

    n xdxx

    i ix x

    =

    = +

    ( ) ( )( ) ( )11

    ln 1 ln1

    n n

    dx

    x x nf

    xor n

    =

    ( ) ( )2 2 2 2 1ln ln 2 2 tanx

    x a dx x x a x aa

    + = + +

    ( ) ( ) ( )( )sin ln sin ln cos ln2

    xx dx x x=

    ( ) ( ) ( )( )cos ln sin ln cos ln2

    xx dx x x= +

  • 7/27/2019 ALL MAths Formulas From Maths.org

    17/25

    www.mathportal.org

    5. Integrals of Trig. Functions

    sin cosxdx x=

    cos sinxdx x=

    2 1sin sin 2

    2 4

    xxdx x=

    2 1cos sin 2

    2 4

    xxdx x= +

    3 31sin cos cos

    3xdx x x=

    3 31cos sin sin

    3xdx x x=

    ln tansin 2

    dx xxdx

    x=

    ln tancos 2 4

    dx x

    xdxx

    = +

    2cot

    sin

    dxxdx x

    x=

    2tan

    cos

    dxxdx x

    x=

    3 2

    cos 1ln tan

    sin 2sin 2 2

    dx x x

    x x= +

    3 2

    sin 1ln tan

    2 2 4cos 2cos

    dx x x

    x x

    = + +

    1sin cos cos 2

    4x xdx x=

    2 31sin cos sin

    3x xdx x=

    2 31sin cos cos

    3x xdx x=

    2 2 1sin cos sin 4

    8 32

    xx xdx x=

    tan ln cosxdx x=

    2

    sin 1

    coscos

    xdx

    xx=

    2sin

    ln tan sincos 2 4

    x xdx x

    x

    = +

    2tan tanxdx x x=

    cot ln sinxdx x=

    2

    cos 1

    sinsin

    xdx

    xx=

    2cos

    ln tan cossin 2

    x xdx x

    x= +

    2

    cot cotxdx x x=

    ln tansin cos

    dxx

    x x=

    2

    1ln tan

    sin 2 4sin cos

    dx x

    xx x

    = + +

    2

    1ln tan

    cos 2sin cos

    dx x

    xx x= +

    2 2tan cot

    sin cos

    dxx x

    x x=

    ( )( )

    ( )( )

    2 2sin sin

    sin sin2 2

    m n x m n xmx nxdx

    n m nm n

    m

    + +

    + =

    ( )

    ( )

    ( )

    ( )2 2

    cos cossin cos

    2 2

    m n x m n xmx nxdx

    n m nm n

    m

    +

    + =

    ( )

    ( )

    ( )

    ( )2 2

    sin sincos cos

    2 2

    m n x m n xmx nxdx

    m n m nm n

    + = +

    +

    1cos

    sin cos1

    nn xx xdx

    n

    +

    = +

    1sinsin cos1

    nn xx xdxn

    +

    =+

    2arcsin arcsin 1xdx x x x= +

    2arccos arccos 1xdx x x x=

    ( )21

    arctan arctan ln 12

    xdx x x x= +

    ( )21

    arccot arccot ln 12

    xdx x x x= + +

  • 7/27/2019 ALL MAths Formulas From Maths.org

    18/25

    www.mathportal.org

    Math Formulas: Definite integrals of rationalfunctions

    1.

    0

    dx

    x2 + a2=

    2a

    2.

    0

    xp1 dx

    1 + x=

    sin(p), 0 < p < 1

    3.

    0

    xm

    xn + an=

    am+1n

    n sin[(m + 1)/n], 0 < m + 1 < n

    4.

    a

    0

    dx

    a2 x2=

    2

    5.

    a

    0

    a2 x2 dx =

    a2

    4

    6.

    a

    0

    xm (an

    xn)p dx =

    am+1+np [(m + 1)/n] (p + 1)

    n [(m + 1)/n + p + 1]

    http://www.mathportal.org/mathformulas.phphttp://www.mathportal.org/mathformulas.php
  • 7/27/2019 ALL MAths Formulas From Maths.org

    19/25

    www.mathportal.org

    Math Formulas: Definite integrals of trigfunctions

    Note: In the following formulas all letters are positive.

    Basic formulas

    1.

    /20

    sin2 x dx =

    /20

    cos2 x dx =

    4

    2.

    0

    sin(px)

    xdx =

    /2 p > 00 p = 0/2 p < 0

    3.

    0

    sin2px

    x2=

    p

    2

    4.

    0

    1 cos(px)x2

    dx = p

    2

    5.

    0

    cos(px) cos(qx)x

    dx = lnq

    p

    6.

    0

    cos(px) cos(qx)x2

    dx =(qp)

    2

    7.

    20

    dx

    a + b sin x=

    2a2 b2

    8.

    20

    dx

    a + b cos(x)=

    2a2 b2

    9.0 sin ax

    2

    dx =0 cos(ax

    2

    ) dx =

    1

    2

    2a

    10.

    0

    sin xx

    dx =

    0

    cos xx

    dx =

    2

    11.

    0

    sin3 x

    x3dx =

    3

    8

    12.

    0

    sin4 x

    x4dx =

    3

    13.

    0

    tan x

    xdx =

    2

    14./20

    dxa + b cos x

    = arccos(b/a)a2 b2

    Advanced formulas

    15.

    0

    sin(mx) sin(nx) dx =

    0 m, n integers and m = n/2 m, n integers and m = n

    16.

    0

    cos(mx) cos(nx) dx =

    0 m, n integers and m = n/2 m, n integers and m = n

    17.

    0

    sin(mx)

    cos(nx) dx = 0 m, n integers and m + n odd2m/(m

    2

    n2

    ) m, n integers and m + n even

    18

    /2sin2m x dx =

    /2cos2m x dx =

    1 3 5 . . . 2m 1

    http://www.mathportal.org/mathformulas.phphttp://www.mathportal.org/mathformulas.php
  • 7/27/2019 ALL MAths Formulas From Maths.org

    20/25

    www.mathportal.org

    19.

    /20

    sin2m+1 x dx =

    /20

    cos2m+1 x dx =2 4 6 . . . 2m

    1 3 5 . . . 2m + 1

    20.

    0

    sin2p1 x cos2q1 x dx =(p) q

    2 (p + q)

    21.

    0

    sin(px)

    cos(qx)

    x dx =

    0 p > q > 0

    /2 0 < p < q/4 p = q > 0

    22.

    0

    sin(px) sin(qx)x2

    dx =

    p/2 0 < p q q/2 p q > 0

    23.

    0

    cos(mx)

    x2 + a2dx =

    2aema

    24.

    0

    x sin(mx)

    x2 + a2dx =

    2ema

    25.

    0

    sin(mx)

    x (x2 + a2)dx =

    2a2

    1 ema

    26.20

    dx(a + b sin x)2

    =20

    dx(a + b cos x)2

    = 2 a(a2 b2)3/2

    27.

    20

    dx

    1 2a cos x + a2 =2

    1 a2 , 0 < a < 1

    28.

    0

    x sin x dx

    1 2a cos x + a2 =

    a ln(1 + a) |a| < 1 ln(1 + 1a) |a| > 1

    29.

    0

    cos(mx) dx

    1 2a cos x + a2 =am

    1 a2 , a2 < 1

    30.

    0

    sin(axn) dx =1

    na1/n(1/n) sin

    2n, n > 1

    31.0

    cos(axn) dx = 1na1/n

    (1/n) cos 2n

    , n > 1

    32.

    0

    sin x

    xpdx =

    2 (p) sin(p/2), 0 < p < 1

    33.

    0

    cos x

    xpdx =

    2 (p) cos(p/2), 0 < p < 1

    34.

    0

    sin(ax2) cos(2bx) dx =1

    2

    2a

    cos

    b2

    a sin b

    2

    a

    35.

    0

    cos(ax2) cos(2bx) dx =1

    2

    2a

    cos

    b2

    a+ sin

    b2

    a

    36.

    0

    dx

    1 + tanm xdx =

    4

    http://www.mathportal.org/mathformulas.phphttp://www.mathportal.org/mathformulas.php
  • 7/27/2019 ALL MAths Formulas From Maths.org

    21/25

    www.mathportal.org

    Math Formulas: Definite integrals ofexponential functions

    1.

    0

    eax cos bxdx =a

    a2 + b2

    2.

    0

    eax sin bxdx =b

    a2 + b2

    3.

    0

    eax sin bx

    xdx = arctan

    b

    a

    4.

    0

    eax ebx

    xdx = ln

    b

    a

    5.

    0

    eax2

    dx =1

    2

    a

    6.

    0

    eax2

    cos bxdx =1

    2

    a

    eb2

    4a

    7.

    e(ax2+bx+c)dx =

    2eb24ac

    4a

    8.

    0

    xn eaxdx =(n + 1)

    an+1

    9.

    0

    xm eax2

    dx =m+12

    2a(m+1)/2

    10.

    0

    e(ax2+b/x2)dx =

    1

    2

    ae2

    ab

    11.

    0

    x dx

    ex

    1 =

    2

    6

    12.

    0

    xn1

    ex 1dx = (n)

    1

    1n+

    1

    2n+

    1

    3n+

    13.

    0

    x dx

    ex + 1=

    2

    12

    14.

    0

    xn1

    ex + 1dx = (n)

    1

    1n

    1

    2n+

    1

    3n

    15.

    0

    sinmx

    e2x 1dx =

    1

    4coth

    m

    2

    1

    2m

    16.0

    11 + x e

    x dxx =

    17.

    0

    ex2

    ex

    xdx =

    1

    2

    18.

    0

    1

    ex 1

    ex

    x

    dx =

    19.

    0

    eax ebx

    x sec(px)dx =

    1

    2ln

    b2 + p2

    a2 + p2

    20.

    0

    eax ebx

    x csc(px)dx = arctan

    b

    p arctan

    a

    p

    21.0

    eax(1

    cosx)x2

    dx = arccot a a2

    ln(a2 + 1)

    http://www.mathportal.org/mathformulas.phphttp://www.mathportal.org/mathformulas.php
  • 7/27/2019 ALL MAths Formulas From Maths.org

    22/25

    www.mathportal.org

    Math Formulas: Definite integrals oflogarithmic functions

    1. 1

    0

    xm(ln x)ndx =(1)nn!

    (m + 1)n+1, m > 1, n = 0, 1, 2, . . .

    2.

    10

    ln x

    1 + xdx =

    2

    12

    3.

    10

    ln x

    1 x dx = 2

    6

    4.

    10

    ln(1 + x)

    xdx =

    2

    12

    5.

    10

    ln(1 x)x

    dx = 2

    6

    6. 10

    ln x ln(1 + x) dx = 2

    2 l n 2

    2

    12

    7.

    10

    ln x ln(1 x) dx = 2 2

    6

    8.

    0

    xp1 ln x

    1 + xdx = 2 csc(p) cot(p), 0 < p < 1

    9.

    10

    xm xnln x

    dx = lnm + 1

    n + 1

    10.

    0

    ex ln x dx =

    11.0

    e

    x

    2

    ln x dx =

    4 ( + 2 ln2)

    12.

    0

    ln

    ex + 1

    ex 1

    dx =

    2

    4

    13.

    /20

    ln(sin x)dx =

    /20

    ln(cos x)dx = 2

    ln 2

    14.

    /20

    (ln(sin x))2dx =

    /20

    (ln(cos x))2dx =

    2(ln 2)2 +

    3

    24

    15.

    0

    x ln(sin x)dx = 2

    2ln 2

    16.

    /2

    0

    sin x ln(sin x)dx = ln 2 1

    17.

    20

    ln(a + b sin x)dx =

    20

    ln(a + b cos x)dx = 2 ln

    a +

    a2 b2

    18.

    0

    ln(a + b cos x)dx = ln

    a +

    a2 b22

    19.

    0

    ln

    a2 2ab cos x + b2

    dx =

    2 ln a a b > 02 ln b b a > 0

    20./40 ln(1 + tan x)dx =

    8 ln 2

    21

    2

    sec x ln

    1 + b cos x

    dx =

    1 arccos2 a arccos2 b

    http://www.mathportal.org/mathformulas.phphttp://www.mathportal.org/mathformulas.php
  • 7/27/2019 ALL MAths Formulas From Maths.org

    23/25

    www.mathportal.org

    Series Formulas

    1. Arithmetic and Geometric Series

    Definitions:

    First term: a1

    Nth term: anNumber of terms in the series: n

    Sum of the first n terms: Sn

    Difference between successive terms: d

    Common ratio: q

    Sum to infinity: S

    Arithmetic Series Formulas:

    ( )1 1na a n d = +

    1 1

    2

    i ii

    a aa +

    +=

    1

    2

    nn

    a aS n

    +=

    ( )12 1

    2n

    a n dS n

    + =

    Geometric Series Formulas:

    11

    nna a q

    =

    1 1i i ia a a +=

    1

    1

    n

    n

    a q a

    S q

    =

    ( )1 11

    n

    n

    a qS

    q

    =

    1

    11 1fo

    aS

    qr q

    <

  • 7/27/2019 ALL MAths Formulas From Maths.org

    24/25

    www.mathportal.org

    3. Taylor and Maclaurin Series

    Definition:

    ( )( )

    ( )

    ( )

    112 ( )( )( )( ) ( ) ( ) . . .

    2! 1 !

    nn

    n

    f a x af a x af x f a f a x a R

    n

    = + + + + +

    ( ) ( )( )

    ( ) ( )( ) ( )

    ( )

    1

    '!

    '1 !

    nn

    n

    nn

    n

    f x aR Lagrange s form a x

    n

    f x x aR Cauch s form a x

    n

    =

    =

    This result holds if f(x) has continuous derivatives of order n at last. If lim 0nn

    R

    = , the infinite series obtained is called

    Taylor series for f(x) about x = a. If a = 0 the series is often called a Maclaurin series.

    Binomial series

    ( )( ) ( )( )1 2 2 3 3

    1 2 2 3 3

    1 1 2...

    2! 3!

    ...1 2 3

    n n n n n

    n n n n

    n n n n na x a na x a x a x

    n n na a x a x a x

    + = + + + +

    = + + + +

    Special cases:

    ( )1 2 3 4

    1 1 ... 1 1x x x x xx

    + = + + <

  • 7/27/2019 ALL MAths Formulas From Maths.org

    25/25

    www.mathportal.org

    Series for trigonometric functions

    3 5 7

    sin ...3! 5! 7!

    x x xx x= + +

    2 4 6

    cos 1 ...2! 4! 6!

    x x xx = + +

    ( )( )

    2 2 2 13 5 7

    2 2 12 17tan ...3 15 315 2 ! 2 2

    n n n

    nB xx x xx xn

    x

    = + + + + + < <

    ( )

    2 2 13 5 21 2cot ...

    3 45 94 20

    5 !

    n n

    nB xx x xxx

    xn

    = <