8
1 Akuisisi Seismik Dasar Laut 2D 4-C Studi Kasus di Green Canyon, Semenanjung Meksiko Ocean Bottom Seismic Acquisition Case Study of Green Canyon, Gulf of Mexico Indriani 11/316690/PA/13819 Geophysics Sub Department, Faculty of Mathematics and Science, Universitas Gadjah Mada, Yogyakarta, Indonesia Email : [email protected] ABSTRAK Karya tulis ini mendeskripsikan teknologi OBS (Ocean Bottom Seismic) serta aplikasinya pada area Semenanjung Meksiko. Metode yang umum digunakan dalam proses akuisisi OBS adalah OBC (Ocean Bottom Cables). Dilihat dari sisi komersial, OBC jauh efektif dibandingkan akuisisi seismik menggunakan streamer karena menghasilkan resolusi data yang lebih tinggi dan lebih presisi menggambarkan kondisi geologi pada kedalaman laut. Pada kabel dengan interval regular dipasang receiver multi- component (4c). Tujuan dari survei ini adalah memperkirakan konsentrasi hidrat pada daerah dekat dasar laut. Interpretasi kedalaman menggunakan event gambaran dekat offset dari P-P dan P-SV dibandingkan dengan rasio Vs/Vp dan zero-offset reflection times. Rasio percepatan tersebut digunakan untuk interpretasi estimasi kandungan hidrat. Kata kunci : hidrat, ocean-bottom-cable, inversi, dasar laut. PENDAHULUAN Penelitian ini bertujuan untuk memberikan gambaran umum mengenai proses akuisisi OBC standar. OBC merupakan tipe khusus yang melibatkan pembentangan lintasan penerima pada lantai dasar samudra, sensor multi-component dari penerima disusun sebagai coupling dari hydrophone dan tiga buah geophone. Susunan dari survey OBC minimal terdiri dari satu unit kapal sumber, kapal penerima, dan setidaknya satu unit kapal kabel. OBC umumnya beroperasu pada kedalaman air lebih dari 100 m, batas akhir ditentukan oleh desain kapal dibandingkan dengan peralatan. Meskipun demikian, pada umumnya peralatan dapat diperasikan pada kedalaman 200m.

Akuisisi Seismik Dasar Laut 2D _ Indriani_13819

Embed Size (px)

DESCRIPTION

help yourself :)

Citation preview

  • 1

    Akuisisi Seismik Dasar Laut 2D 4-C Studi Kasus di Green Canyon, Semenanjung Meksiko

    Ocean Bottom Seismic Acquisition

    Case Study of Green Canyon, Gulf of Mexico

    Indriani

    11/316690/PA/13819

    Geophysics Sub Department, Faculty of Mathematics and Science, Universitas Gadjah Mada, Yogyakarta, Indonesia

    Email : [email protected]

    ABSTRAK

    Karya tulis ini mendeskripsikan teknologi OBS (Ocean Bottom Seismic) serta aplikasinya pada area Semenanjung Meksiko. Metode yang umum digunakan dalam proses akuisisi OBS adalah OBC (Ocean Bottom Cables). Dilihat dari sisi komersial, OBC jauh efektif dibandingkan akuisisi seismik menggunakan streamer karena menghasilkan resolusi data yang lebih tinggi dan lebih presisi menggambarkan kondisi geologi pada kedalaman laut. Pada kabel dengan interval regular dipasang receiver multi-component (4c). Tujuan dari survei ini adalah memperkirakan konsentrasi hidrat pada daerah dekat dasar laut. Interpretasi kedalaman menggunakan event gambaran dekat offset dari P-P dan P-SV dibandingkan dengan rasio Vs/Vp dan zero-offset reflection times. Rasio percepatan tersebut digunakan untuk interpretasi estimasi kandungan hidrat.

    Kata kunci : hidrat, ocean-bottom-cable, inversi, dasar laut.

    PENDAHULUAN

    Penelitian ini bertujuan untuk memberikan gambaran umum mengenai proses akuisisi OBC standar. OBC merupakan tipe khusus yang melibatkan pembentangan lintasan penerima pada lantai dasar samudra, sensor multi-component dari penerima disusun sebagai coupling dari hydrophone dan tiga buah geophone.

    Susunan dari survey OBC minimal terdiri dari satu unit kapal sumber, kapal penerima, dan setidaknya satu unit kapal kabel. OBC umumnya beroperasu pada kedalaman air lebih dari 100 m, batas akhir ditentukan oleh desain kapal dibandingkan dengan peralatan. Meskipun demikian, pada umumnya peralatan dapat diperasikan pada kedalaman 200m.

  • 2

    Gambar 1 Susunan Operasi Ocean Bottom Cable dengan kapal dan lintasan penerima di lantai dasar samudra.

    Tujuan utama dari kajian ini adalah menentukan informasi yang dapat diperoleh dari sedimen dekat lantai dasar samudra ( 500m di Semenanjung Meksiko (GOM), lepas pantai Lousiana, Green Canyon dengan luas area sekitar 2200 km2. Subset data telah dugunakan sebelumnya untuk karakterisasi properti dasar laut yang dikenal sebagai zona gas hidrat. Pada kajian sebelumnya dijelaskan adanya citra P-P dan P-SV yang tinggi dari analisa data seismic 2D untuk menentukan nilai interval yang kuat dari kecepatan Vp dan Vs di lantai dasar samudra yang melewati beberapa lapisan tanah di bawah lantai dasar samudra hingga melewati batas bawah zona dasar stabilitas hidrat (BHSZ).

    Wilayah Penelitian

    Kajian ini menggunakan data yang diperoleh dari Lapangan Genesis pada

    area Green Canyon, Semenanjung Meksiko (Gambar 2). Diperoleh dua set data, yakni set data OBC 4-C 2D frekuensi rendah (10-200 Hz) dan set data AUV (Autonomous Underwater Vehicle) frekuensi tinggi (1-10 kHz) pada lokasi spasial yang sama. Serta laporan geoteknik telah berhasil mendeskripsikan pengukuran laboratorium terhadap properti sedimen lantai dasar samudra yang diambil dari pengeboran di Lapangan Genesis.

    Parameter Akuisisi Data

    Data seismic 2D OBC 4-C diperoleh dengan menggunakan sensor dengan interval penerima 25 m dan sumber berupa airgun 6m di bawah permukaan laut yang ditembakkan setiap interval 50 m secara langsung ke kabel penerima sesuai arah lintasan. Lintasan data 2D memiliki grid berarah utara-selatan serta timur-barat dengan jarak antarlintasan 3.2 km. Lama perekaman adalah 18.432 detik dengan

  • 3

    interval sampling 2 ms. Offset sumber-penerima yang terekam bervariasi antara 0 hingga 12000 m. Namun pada studi ini data dibatasi pada offset 3000m dan lokasi penerima pada kedalaman 500-100 m.

    Data AUV menggunakan kendaraan khusus dengan ketinggian sekitar 50

    m dari dasar samudra. Akurasi navigasi sangat tepat dengan deviasi berada pada orde 1 atau 2 m pada cakupan blok sebesar 480 m. AUV tersusun atas side-scan sonar, multibeam bathymetry, dan chirp-sonar.

    Gambar 2 Peta lokasi dari data 2D 4-C OBC yang digunakan. Data dibatasi hingga offset 3000 m dengan lokasi penerima pada kedalaman 500-1000 m. Sekitar 200 km data OBC telah berhasil

    diproses.

    METODE

    Data OBC 2D 4-C diolah dengan

    menggabungkan CRG (Common-

    Receiver Gather) dan menghasilkan

    citra dari lingkungan dasar laut dengan

    bandwith yang lebih bagus serta

    resolusi yang lebih tinggi dibandingkan

    pengolahan konvensional. Data

    hydrophone (P), vertical geophone (Z),

    dan radial geophone digabungkan

    untuk memperbaiki pemantulan dari P-

    P dan P-SV. Selanjutnya dilakukan

    dekonvolusi terhadap gelombang P.

    Kunci utama dalam kajian ini adalah

    perbandingan antara data P-SV OBC

    2D 4-C dengan data P-P AUV pada

    lokasi spasial yang sama.

  • 4

    Gambar 3 Perbandingan antara a) citra OBC P-SV dan b) citra AUV P-P pada lintasan 276.

    Berdasarkan perbandingan pada Gb. 3

    diperoleh :

    Dasar dari lapisan hemipelagic

    adalah horizon C dengan

    ketebalan antara 6-20 ms dari

    citra P-P AUV.

    Pada citra P-SV dasar lapisan

    hemipelagic berada pada

    kisaran 200-220 ms.

    Setelah dilakukan komparasi,

    dilakukan interpretasi karakter

    seismic berdasarkan citra P-P dan

    P-SV. Selanjutnya dilakukan

  • 5

    Raytracing untuk analisa

    kecepatan (Vp/Vs). Kemudian

    dilakukan inversi gabungan dari

    data resitivitas dan kecepatan

    dengan menggunakan pendekatan

    Bayesian yang menggabungkan

    teori fisika batuan elastik (Helgerud

    et al., 1999; Sava dan Hardage,

    2006) dan hubungan empiris untuk

    resisitivitas elektrik (Archie, 1942)

    yang dimodifikasi untuk sedimen

    mengandung lempung yang

    dikemukakan oleh Schlumberger

    Wireline dan Testing (1989).

    Gambar 4 Model Interpolasi interval Vp dan Vs OBC sepanjang lintasan 549.

  • 6

    Gambar 5 a) Interval kecepatan Vp dan Vs, log resisitivitas, dan perkiraan konsentrasi pada Well C berdasarkan data seismik (gb.2). Batas BHSZ ditandai dengan perubahan secara reversal dari

    magnitude kecepatan Vp . Peningkatan resistivitas dibawah BHSZ diakibatkan oleh kandungan gas bebas. b) Hanya Vp yang dapat digunakan untuk inversi. Hasil inversi menunjukkan kecepatan pada

    lapisan 2,3, dan 4.

    HASIL

    Identifikasi konsentrasi hidrat pada strata yang merentang pada zona stabilitas hidrat hingga area laut dalam pada Green Canyon diperoleh dengan :

    1. Kalibrasi dari respon sensor hydrophone dan geophone untuk menghasilkan estimasi gelombang mengarah ke atas dan kebawah secara optimal ketika menambahkan dan mengurangi data hydrophone dan geophone.

    2. Mengunakan data seismik OBC 2D 4-C yang menghasilkan citra dari kondisi geologi dekat dasar

    laut P-P dan P-SV dengan resolusi tinggi

    3. Prosedur raytrace dengan menciptakan model dari dasar samudra dari perselingan Vp dan Vs pada stasiun penerima tertentu.

    4. Pembuatan model fisika batuan yang menghubungkan kecepatan seismik dengan konsentrasi hidrat untuk empat morfologi sedimen-hidrat yang berbeda.

    5. Digunakan fungsi distribusi probabilitas untuk menjelaskan semua variable yang digunakan untuk memperkirakan konsentrasi hidrat.

  • 7

    6. Innversi gabungan antara resisitivitas dan kecepatan untuk memastikan prediksi

    konsentrasi hidrat pada kisaran yang paling memungkinkan.

    Gambar 6 Estimasi konsentrasi hidrat sepanjang lintasan 549 OBC. Konsentrasi hidrat pada lapisan 1 tidak dapat diperkirakan karena ketiadaan data log untuk mengkonfirmasi trend dari kurva kompaksi

    normal pada interval dangkal. Pada ujung selatan dari lintasan, batas BHSZ diketahui dari perubahab kecepatan Vp. Pada ujung utara, thermal constraint untuk metana 90% (Milkov dan Sasen, 2001)

    digunakan untuk menentukan BHSZ.

    Gambar 7 Jumlah hidrat in situ pada wilayah kajian. Nilai yang diplot pada peta tersebuat merupakan produk = (konsentrasi hidrat) (porositas lapisan) (ketebalan lapisan) 250 m. Faktor 250 m

    merupakan jarak antara titik analisa kecepatan yang berdekatan dengan kecepatan Vp yang telah terhitung. Garis warna menunjukkan jumlah hidrat in situ di bawah garis 1 m 250 m yang terpusat

    pada stasiun sekuen penerima dasar laut dimana analisa dilakukan.

  • 8

    REFERENSI

    Archie, G.E., 1942. The electric resistivity log as an aid in determining some reservoir characteristic. Petrol, Transact. Am. Inst. Mining, Metallur. Petrol Engin., 146: 54-56.

    DeAngelo, M.V., Sava D.C., Hardage, B.A., dan Murray, P.E., 2010. Integrated 2D 4-C OBC analysis for estimating hydrate concentrations, Green Canyon, Gulf of Mexico. Journal of Seismic Exploration, 19:263-278.

    Helgerud, M.B., Dvorkin, J., Nur, A., Sakai, A., dan Collet, T., 1999. Elastic-wave velocity in marine sediments with gas hydrates : Effective medium modeling. Geophys. Res. Lett., 26: 2021-2024.

    Milkov, A.V., dan Sassen, R., 2001. Estimate of gas hidrate resource, northwestern Gulf of Mexico continental slope. Mar. Geol., 179: 71-83.

    Roberts, H.H., Hardage, B.A., Shedd, W.W., dan Hunt Jr., J., 2006. Seafloor

    reflectivity- An important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. The Leading Edge, 25 : 620-628.

    Rodriguez-Suarez, C., dan Stewart, R.R., 1998. Survey design for vertical cable seismic acquisition. CREWES Research Report, 10: 6-19.

    Sava, D.C., dan Hardage, B.A., 2006. Rock physics characterization of hydrate-bearing deepwater sediments. The Leading Edge, 25 : 616-619.

    Schlumberger Wireline Services, 1989. Log Interpretation principles/applications. Schlumberger Educational Serv., Houston, TX.

    Ugbor, C.C., 2007. First dual-sensor ocean bottom cable 3D seismic acquisition south Atlantic Ocean, offshore Niger Delta, Nigeria. The Pacific Journ. Of Sci. and Tech., 8 : 36-48.