88
AFGL- TR-76-0246 INFRARED ABSORPTION BY CH 4 , H 2 0 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt -Dorianne K: Zgonc Aeronutronic Fofd Corporation Aeronutronic Division Ford Road Newport Beach, California 926.63 December 1976- Final Report for Period 1 October 1975 - 17 !December 1976 Approved for public release;-distribution unlimited - . -MY12 :19 AIR- 'FORCE -GEOPHYSICS LABORATORIES SAIR FORCE SYSTEMS COMMAND IJNITED STATES AIR .FORCE HANSCOM AFB, MASSACHUSETTS 01731 _7 n,-7,

AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

Embed Size (px)

Citation preview

Page 1: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

AFGL- TR-76-0246

INFRARED ABSORPTION BY CH4 , H2 0 AND CO2

David A. GryvnakDarrell E. BurchRobert L. Alt-Dorianne K: Zgonc

Aeronutronic Fofd CorporationAeronutronic DivisionFord RoadNewport Beach, California 926.63

December 1976-

Final Report for Period 1 October 1975 - 17 !December 1976

Approved for public release;-distribution unlimited -.

-MY12 :19

AIR- 'FORCE -GEOPHYSICS LABORATORIESSAIR FORCE SYSTEMS COMMAND

IJNITED STATES AIR .FORCEHANSCOM AFB, MASSACHUSETTS 01731

_7 n,-7,

Page 2: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

Qualified requestors may obtain additional copies-f-tiii- the-:Defense Documentationi Center. AllI others-sh6uild- aPly-to the National TechniLcal Information-Service.

Page 3: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

/ Xv

UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)___________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONSBEFORE COMPLETING FORM

R '_ TNUM2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4. TTLE and ubtile)S. TYPE OF REPORT & PERIOD COVEREO

PNFARDABSORPTION BY CHI and

Final 10/01/75 - 12/17/76INa-E #,&4' A2M WW'.. P ORG. REPORT NUMBER

7. AUHOR(& % EC LASFTIO NTDONGBRAIN

Dapvd fo puli reeae dstiutonuliitd

IS. NAPLMETAE NOTESES1. RGA EEET.POE oTS

Atopeic Transission -1, 20

Ceontn Abopto

Air Fc e Geohyso t i cs d a at re s and ) -!n62b t ee73/c nHanscmAF, NA 500/cm 85/c

800/rc aondtr 1250/cm. The Saes repesetedcer wide SCRange CAS(ofthamoun MOIOf AbsbNg gAEa Rsl prereo anterature. Thes dararneded)

Aprmaril o provide eckas;foisrithe atosheicmbitted. lnepaaet

18.~ SUPLEENAR NOESINO O SOSLT

19. ~ ~ ~ ~ ~ ~ ECRT CLKEYCATO OFRD THISinu PAG (oveen Data Entered)ad dntt b loknubr

Page 4: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

SECURITYIT CLASSIFICATTION OF THIS PAGE(Wnon Date Ernteged

Page 5: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1

2 ABSORPTION BY CH4 BETWEEN 1100 cm AND 1400 cm I 6

3 CONTINUUM ABSORPTION BY H 20 BETWEEN 600 cm- I AND 17

1300 cm1

-1I

4 ABSORPTION BY H 20 BETWEEN 333 cm"I AND 444 cm " 20

5 ABSORPTION BY CO2 BETWEEN 500 cm" AND 850 cm 36

6 REFERENCES 83

,4w

9 NTIG WN~ C 1ie0

........ ...................... 1............. ... .......................................STIi/AMILAfl 4EUW

Page 6: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

SECTION I

INTRODUCTION

BACKGROUND

The primary purpose for the experimental work reported herein has been -toprovide absorption data to check -the Air Force Geophysical Labor:tories -(AFGL)line-parameter listing I and -to serve as a basis for possible modification tothe listing. The particular absorption bands studied have been selectedbecause of current applications that require that the absorption by these bandsin known atmospheric paths be predictable as accurately as possible. Emphasishas been placed ou data from which improved values of line intensities-, linewidths and continuum absorption- c.efficients can be determined. No new data-are reported on line positions because reliable data on the center positionsof most of the significant absorption lines are either already incorporated-in the AFGL listing or are available elsewhere.

Section 2 provides spectral data on the absorption by CH4 between 1150and 1400 cm- I. Absorption in- the lower atmosphere by CH4 is typically muchless than that by H20 in this same spectral region. However, in the lesshumid,- upper atmosphere, CH4 produces a large fraction oK the absorption thatoccurs. Because of the complex- nat. of CH4 absorption spectra, it is quitedifficult to derive a set of CH line parameters from which absorption-spectra4can be predicted accurately. -Recent comparisons of calculated spectra-withexperimental data indicate that major revisions in the current listing of1CH4lines are in order. Relative intensities of many of the individual lines canbe checked-with the detailed--data provided in Section 2. The samples investi-

gated cover wide ranges of absorber thickness and pressure with the temperaturenear 304K.

Some new and Improved data are presented in Section 3 on- the continuumabsorption by pure H20 between 600 and 1300 cm"1 . Some of these data are -believedto be more accurate than similar data reported previously by us.Impurities in the H20 samples studied previously may have resulted in-values

of the continuum absorption coefficient that are too high by as much as 29-percent in some parts of this- spectral region. The samples reported inSection 3 varied in temperature from 296K to 430K. The continuum absorption

coefficient decreases rapidly with increasing temperatures.

Detailed spectral data are presented in Section 4 on the absorption byH20 between- 333 and 444 cm'li Calculating H20 absorption- in this spectral-region from a list of line parameters is complicated by tihe apparent presenceof some continuum absorption in- addition to absorption by Vhe 'ines centeredwithin the region. The data in Section 4 represent samples that covet wideii1

R. A. McClatchey, W. Si Benedict, S. A. Clough, D. "7. Burch, R.F. Calfee,

* K. Fox, L. S. Rothman, and J. S. Garing, "AFCRL Atmospheric Absorption Line- 4 Parameters Compilation", AFCRL-TR-73-0096, 26 January 1973. (Associated with

this report is a magnetic -tape listing the line parameters-.)2 D. E. Burch, "Investigatibn of the Absorption of Infrared Radiation by

Atmospheric Gases"; Semi-Annual Technical Report, Contract F19628-69-C-0263,

31 January 1970.

Page 7: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

ranges of absorber thickness and pressure, making it possible to determine therelative contribution by the continuum and by nearby lines.

Absorption and emission by the well-known 15 4m bands of CO2 forms thebasis for experi.ents on the remote sensing of the atmospheric temperatureprofile from satellite-borne instruments. The many overlapping bands in thisregion make i, difficult -to- calculate accurately the irradiance at the top of

- the atmosp-ere, or at a satellite, within- any narrow spectral interval in theband systemi The extensvtz data presented- in Section 5- are intended to providea means of checking the int(sities, widths, and shapes of the C02 lines thatare involved in the atmospheric calculations. The samples studied cover wideranges of absorber thickness and pressures from approximately 0.002 atm toi atm. Three sample temperatures, approximately 245 K, 274 K and 310 K, wereemployed to represent most of the temperature range in the earth's atmosphere.Although temperatures somewhat lower than those employed occur in the atmos-phere, the -wide temperature range -of the samples studied should provide areliable check on the predicted temperature dependence. Thus, reliable extra-polation to lower temperatures should be -possible after the best possible setof line parameters has been- derived.

DEFINITIONS,. SYMBOLS, AND NOMENCLATURE

The absorber thickness, u, of a gas sample is given by

u(molecuies/cm 2) = 2.69 x 1019 p* (atm)- L(cm) -(273/6)(1)

7.34 x- 021 p* L/e.

The temperature 0 is in degrees Kelvin, and L is the geometrical path -lengththrough the sample. The density-equivalent-pressure p* of the absorbing- gas mayvary slightly from the partial pressure p at high pressures. The gas does -notfollow exactly the perfect gas law at the higher pressures for which the Vander Waals'- equation of state is required, The deviation from the perfect gas lawcauses a non-linear relationship between the pressure and-the density of the gas.At partial opressures less :than I atm, p can be substituted for p* withoutintroducing -Significant-error, but p* may differ significantly from p at high-pressures-. For all of the -pressures used in- the present investigation, thefollowing simple expression is sufficiently accurate:

-p* = p(l + c p) (2)

The pressures are in atm, and c depends on the gas species and temperature.Near room temperature, c E 0.005 for CO--, and 0.002 for CH4 . When a sampleconsists of two or more gas species, the total pressure is represented by P.

2

VWzz

Page 8: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

The true transmittance that would be observed with infinite resolving

power is given by

T' = exp (-uk), or (-l/u).T' = , (3)

whereiis the absorption coefficient. Because of the finite slitwidth of aspectrometer and variations inkwith wavenumber due to line structure-, theobserved transmittance T may differ from T' at the same wavenumber. Thequani.ty T represents a weighted average of T' over the interval passed by thespectrometer.

The absorption coefficient due to a single collision-broadened absorptionline at a point within a few cm-1 of the line centers, V , is given approxi-mately by the Lorentz shape:

" Sjk = _ (4)L... 2 2 "(4

L 1 (v -v ) +a

The line intensity

SJ = fkdv (5)

is essential-ly independent of pressure for the conditions of the present study.It has been 'shown 3, 4, 5 that for J-V - Vol greater than a few cm"1 , theLorentz equation may require modification. The equatin can be modified by em-ploying a correction factor X, which is a function of IV - V.I, so that

S eX (6)k kL X (v - ) 2 + 2

/0

where kL denotes the value given by the Lorentz coefficient. The value of Xis approximately equal to unity for small IV - Vol, but may be quite d1fferentfor large I- V. I. For example, x << I for the extreme wings of CO2 lines,

3D. E. Burch, D. A. Gryvnak, R. R. Patty, and C. E. Bartky; J. Opt. Soc.Am. 59, 267 (1969). Also Publication No. U-3203, Philco-Ford Corporation,Aeronutronic Division, Contract NOnr 3560(00), 31 August 1968.

B. H. Witters, S. Silverman, and W. S. Benedict: Journal of QuantitativeSpeatroscopy and Radiative Transfer 4, 527 (1964).

D. E. Burch, D. A. Gfyvnak, and J. D6 Pembrook; "The Absorption by H20Between 1630 and 2245 cm " ", Philco-Ford Report U-5090, Contract No.F19628-73-C-0011, January 1973.

3

-1,

Page 9: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

but X may be greater than I for H20 lines. (Ref..5). Mbst of the samples inthe present study were at sufficiently high pressures for collision broadeningto be dominant. Under this condition, the line half-width ce is proportional tothe collision frequency and thus to the gas pressure. At pressures- less thanapproximately 0.01 atm, the more complex Voigt profile is appropriate.

In many reports and papers, including ones published previously -by- us,Sj is called line strength. In order to conform with- the majority of theworkers in the field, we now refer to Sj as the intensity, not the strength.The terms Sv refers to the intensity of a vibration-rotation band -that -con-tains many lines. The combined intensity of a system of -bands is denotedby Ssys. If essentially all of the absorption in a given spectral region-results from a 2ystem of overlapping bands, we see from Eq. (3) that

SSy s = J(dV = (-I/u) f&T' dv. (7)

When the spectral slitwidth is only a few-tenths of a cm"1 wide and gassamples are preosurized to approximately 10 atm or more, the observedttrans-mittance T is very nearly equal to the true, monochromatic transmittance V.Under this condition, S.A-T' dv is approximately equal to the measurable-quantity Zf. T dv so that Ss s can be determined experimentally. The intensityof the CH4 -band system reported in Section 2 has- been measured by thissuggested method from spectra of high-pressure samples of CH4 + N2.

Because of differences in the efficiencies of collisions with molecules

of different gas species, the half-width- of a collision-broadened linedepends on the partial pressure of each of the gas species present in a sample.The equivalent pressure Pe given by the following equation is a -convenientparameter when dealing with absorption by- a mixture -that contains non-absorbingN2 in addition to the absorbing gas species:

P = Bp + N (B-) p + P, (8)

where P is the total pressure, PN is the partial pressure of N2 , and-p is

the partial pressure of the absoring gas species. The experimetally

determined constant B is the ratio of the self-broadening ability -to thebroadening ability of N2 . The equivalent pressure is therefore directly-pro-portional to &', regardless of the relative concentrations of the absorbinggas and the N2. We note that Pe approximates P for dilute mixtures of the

r absorbing gas species in-N9 (P << PN2) The CO2 samples discussed-in Seccion 5 con-7 sisted of CO2 plus dry air7 the dry air cjnsisted of 79% N and 21'/0- to

closely approximate the atmorphere. The same symbol, Pe' represents ther equivalent pressure of these samples with pair replacing PN2 in -Eq. (8).

[4 air N2.

r. 41

Page 10: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

Because of the proportional relationship between ( and pressure, kI s also proportional to pressure in the extreme vings of a line where

- Vol > a '. It follows from Eq. (6) that the wing-absorptioncoefficient C due to the extreme wings of several lines is equal to the sum

of all k's due tb the individual lines and is proportional to pressure.

Because wing absorption changes slowly with wavenumber, it is frequently called

continuum absorption. Continuum absorption may also arise from dimers, such

as H20:H20, or from pressure-induced bands. These two types of continuum

have the same pressure dependence as absorption by line wings; therefore, in

some cases we cannot distinguish which is the source of the absorption beingmeasured. The absorption coefficient due to local lines whose centers occur

within a few cm-1 of the point of observation is denoted by (local). Thisquantity may vary rapidly with wavenumber and depends on pressure because ofcollision-broadening of the absorption lines. At a given wavenumber, theremay be absorption by local lines as well as by continuum. Therefore, for apure H20 sample, the total absorption coefficient tin Eq. (3) is given by

IC_ k(local) + COP. (9)

The normalized continuum coefficient CO is the value of Cs at a given tempera-ture when p I 1 atm. The subscript s denotes self-broadening of the lines.Since (YO is proportional to p, and u is proportional to pL, it follows that(- AT) lor continuum due to the wings of lines is proportional to p2L.

For a mixture of H-0 + N2 , such as several of those used in the present study,Eq. (9) must be modified to account for broadening of the H20 lines by N2.

k=I(local) + C p + CN P " (10)

Consider the continuum at a wavenumber where the absorption is due to thewings (IV - Vol >>,a) of several lines with the Lorentz shape given by Eq.(4). It follows from the above discussion that Co / C§2 is equal to theratio-sO / UR2 of the normalized half-widths for self-broadening and N2C broadening. Previous results of measurements at wavenumbers where most of

the absorption is due to H20 lines centered between approximately I and 20cm-! away from the point of the measurement indicate that this ratio isapproximately 5. However, at wavenumbers where much of the absorption isapparently due to more distant lines, the ratio C C may be much greaters. 2 .than 5. These results indicate that the extreme wings of lines are non-Lorentzian and that the correction factor X (Eq. (5)) is greater at largev - Vol for self-broadened lines than for N2-broadened H20 lines. Variations

in the values of Co / Co are discussed in Sections 3 and 4 for H20.S N2

Page 11: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

SECTION 2

ABSORPTION BY CH BETWEEN 1100 cm AND 1400 cm

SAMPLING

The mixtures of CH4 + N2 were mixed in a 50-liter, glass-lined mixingtank. The CH4 was first added to the evacuated tank, and the pressure wasmeasured after the gas in the tank had stabilized. The N2 was then added, andthe resulting mixture was stirred by an internal mixer. The internal bladeof the mixer was driven through a rotary seal by a hand-held drill motor. Thegases were-mixed for approximately 30 seconds, and the mixture was allowed tostabilize before the final pressure was measured. Total pressures of themixtures-were typically 10 atm. The concentration of the mixture was calculatedby dividing the pressure of the CH4 by the total pressure of the mixture witha smal-l correction made for the non-linearity in the relationship between themolecular-density and the pressure (see Eq. (2)). Two or three separatebatches were-mixed for each concentration, and the absorption by a few samplesfrom each batch-was measured. The results were compared as a check for theconsistency-of the mixing procedure.

All of the CH4 samples for which data are reported were contained in oneof two sample-cells. The cell lengths are 10.2 cm and 0.574 cm. Each cellhad two gas lines attached to it. The gas inlet line was attached to thegas-handling manifold; the other line went to the vacuum pump. The valves andmanifold system were arranged -so that it was convenient to fill the cell andflush it at near-ly constant pressure with a pre-mixed sample of gas. The cellcould also be evacuated quickly. The sample cells used for the majority ofthe data were contained in a vacuum tank that was connected directly to thevacuum tank containing the grating monochromator. The optical path externalto- the sample cell was evacuated to eliminate interference due to absorptionby H20 in the atmosphere. A few of the data were obtained a few years agowith the sample cell in an enclosure that was flushed with dry nitrogen.

A typical sampling procedure consisted of filling the evacuated samplecel from a previously mixed batch to a pressure slightly above the desired

- final pressure. The gas mixture was then allowed to flush slowly through thecell at a nearly constant pressure for several seconds in order to flush out

- - any small amount of air that might have leaked into the gas-handling system.After the cell was flushed adequately, a portion of the mixture was pumped

k -from the sample cell, leaving the desired final pressure for study. Severalchecks were made for possible errors introduced by leaks or by adsorption ofsome of the sample gas on the walls of the sample cell or gas lines. Thetotal pressures and absorber thicknesses listed below for the samples arebelieved to be accurate to less than + 1. and ± 2%, respectively.

The temperature of the sample cell was measured by a thermometer mountedin go d- thermal contact with it. The thermometer was read visually through aplexiglass cover on the vacuum tank. Sample cell temperatures varied between

6

Page 12: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

approximately 303 K anu 310 K. The-cells were not intentionally heated aboveroom temperature; heat from the ,radiation source and the motor in the vacuumtank increased the internal temperature.

SPECTRAL DATA

All of the CH4 data except for -thosp in Table 2 are based on spectralcurves obtained with the grating spectrometer described previously. 6 Thegrating used for the CH4 data contains 75 grooves/mm and is blazed for maximumefficiency at 12 Pm. Overlapping orders of shorter wavelength energy were elim-inated by an NaCl prism in the beam just ahead of the grating monochromator.The CH4 data in Table 2 were obtained earlier to determine the intensity of theband by employing a commercial grating monochromator (Perkin-Elmer Model E.l)with the optical path flushed with-dry nitrogen. The radiant energy from aNernst glower in either instrument was, choppe 4 at 450 Hz to permit amplificationand synchronous demodulation of the -ignal from the detector, which contains aGe:Cu element cooled by liquid helium. The dc output of the synchronousdemodulator was proportional to the amount of chopped energy incident on the-detector and was displayed on astrip-chart recorder. A "background" curve wass~adILea with the sample cell evacuated, either immediately before or after thesample spectrum was scanned. The spectral curve of transmittance for a samplewas obtained by comparing the original curve to the corresponding backgroundcurve.

Wavenumber calibration was- prvided from eleven CH4 lines and seven H2044lines of known wavenumber.7 Th&oCH4lin~eS chosen are either unblended, or--

only slightly blended, so that the positions could be determined with therequired accuracy. The H20 lines-were observed by allowing a small amount ofair to enter the vacuum tank that cOntained the sample cell. It was assumed

that each spectrum is linear -in wavenumber between each two adjacent cali-bration lines. Throughout most of the spectral region covered in Figs. 1 and2, the estimated uncertainty in-thi-wavenumber calibration is less than 0.3cm"1 . The spectral slitwidth for the data in these two figures varies fromapproximately 0.75 cm-1 at 1170cm 1 to 1.05 cm 1 at 1400 cm-1 . This slit-width is based on a "triangular" s1it function and is equal to the width ofthe triangle at half-maximum transmission.

Figures 1 and 2 show computer-potted curves of transmittance for elevenrepresentative samples of CH4 + N2. The important parameters for each sampleare given tn the figures. Samples 3 and 4 produce the most absorption, andthe corresponding curves cover -the widest spectral region. The sample pre-sures have been varied over a wide range up to 1 atm to provide informationon the effect of col-lision -broadening.

At the time the data were obtained, the detector noise was greater than

normal. As a result, the rms noise -on the recorder tracings corresponded to

6D. E. Burch, D. A, Gryvmnak, -and -R R-. Patty. J. Opt. Soc. Am. 57, 885(1967).

7NBS Monograph No. 16 (1959).

7

_ r-- - .L~*-.-

Page 13: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

between 1% and 2% of the signal observed with the sample cell evacuated. Theone-second electronic time constant used to reduce the noise necessitatedscanning the spectra slowly to avoid errors in regions of rapidly changingrecorder deflection. In addition to uncertainties introduced by the noise,the relatively long time required to scan a spectrum increased the possibilityof errors due to slow drift that resulted from variations in the sourceemittance or in the optical alignment. By carefully comparing a completespectrum with short regions scanned at separate times for an identical sample,we were able to detect and account for most of the significant errors due todrift. Complete spectra of the different samples were also compared for con-sistency. Areas of inconsistency were re-checked with new samples, and theappropriate changes were made to each spectrum before it was digitized. Thedigitizing process smoothed-out some of the noise that appeared on theoriginal records.

One apparent discrepancy that was not found until the data were reducedoccurs in the spectrum of Sample 3 in Fig. 2. The transmittance valuesindicated in the figure between approximately 1310 cm"1 and 1365 cm"1 ,wouldbe more accurate if they were multiplied by 0.98. The values at lower wave-numbers, between 1250 cm"1 and 1310 cm"1 , may also be too high by a slightlysmaller amount. This error probably resulted from placing the backgroundcurve too low on the sample spectrum. Some of the small structures in thespectra of the extreme wings of the band are uncertain and may be due toimpurities in the sample. Except for the errors noted, the values of trans-mittance indicated by Figs. I and 2 are believed to be accurate to + 0.02.

Table 1 shows values of the cumulative integrated absorptance for thesamples represented in Figs. I and 2. Each column corresponds to the sampleindicated at the top of the column. The lower and upper limits of integrationdepend on the amount of absorption by the sample.

In accordance with Eq. (7), the value of (-l/u) f&T' dv over the spectralregion including an entire band system is equal to the intensity of the bandsystem. As discussed in Section 1, immediately below Eq. (7), the value ofthe integral fhtT' dv is equal to the experimentally measurable quantityrAT dv when-the spectral structure is sufficiently wide relative to thespectral slitwidth. A widely used method of measuring band intensitiesinvolves measuring the transmittance T for a sample at high pressures so thatthe 'ndividual absorption lines are collision broadened to a width comparableto the spectral slitwidth. Table 2 summarizes the results of such a measure-ment on a OH4 + N2 sample at a total pressure of 10 atm and the absorberthickness equal to 6.93 x 1018 molecules/cm 2 . At this high sample pressure1the lines are broadened so that the transmittance T observed with a 0.8 cm

"i

spectral slitwidth is approximately equal to the true transmittance T' thatwould be observed with infinite resolving power. The value of absorber thick-ness is sufficiently large to produce measurable absorption throughout most.of the band wbile not producing too much absorption in the strongest portions

to be measured accurately. If the transmittance is too low, -4-T can not bemeasured accurately. The results in Table 2 are consistent with results notincluded that were obtained for other high-pressure samples with differentabsorber thicknesses.

8

hd- -h. 7 .

Page 14: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

* The combined intensity of all of the lines within a spectral interval is* approximately equal to the difference between the two values of the cumulative

integral listed in Table 2 for the two wavenumbers bounding the integral.Some allowance must be made for the finite slitwidth and for the contributions-by wings of lines. For example, all of the contribution by a line-may not beincluded if its center occurs in the spectral interval of interest :btt itswings extend outside the interval. The opposite effect results fromtheextreme wings of lines centered just outside of the interval.

The intensity measured for the entire band system is 574 + 25 x 10-20molecules-1 cm2 cm"1 . This value compares favorably with the previouslypublished values listed in Table 3 below.

9

Page 15: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

100 v W

CH4

itIIti tr.*$. tl t it$0.

OtSIl htt t (St.) 9.100 9 MO0

i|l.qt 6.) 192 I tioII,

0 -

100

CH4

P.t s! Ctt . .) 0.301 UN20 8t M R (t ) "O, I W Io8

P ... ..1. ..34 4.1.tI tLO . U£) 19.2 19.2

e = 7: ( l.) ,t 4

-100

IiiI

H

I..2

01 -- 1--------0 35

--ow x, 4. )

"I (z 1.23 11

I0

S8.00 WAVELENGTH (m-7.50

Figure 1. Spectral curves of transmittance of seven CH4 sd--Ples.

1

Page 16: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

--

-to-

0-0

UU4

lit~

NMIn

0 00 0-00- 1

0 00 b

30N~kl"S V)42

Page 17: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

A-

Table 1 --T -) d-v-.. P l. o. 3 4 6 1 31 90

p(.1.30 1.0 100 0.050 0.02$ 030- WO .07 ,1

1.110 .00 00 030 0.100 0.300 0.100'1'0..~.0o) 70 304 301 3023 -306-- 304 303 302

C. ~0.474 100 0. 10.2 -10.3 10.2 10.1 004ZC' ' '.A~ ) 13.6 24. 12. 6.20 7.9 3.70 1.33 2.43

0.

11360 ~ 3

1 1.33 1.13 3.31169.94 -a."&3 31.02

11923 0.30 3.

1165.03 0.9055 10

1196.03 0.456 3.3-0197.3of 3.357 3.23711 93.33 'I's, t.244

1119.9.3 .39 .,22.

-3313 10 39

2133.00 -. 17 .1

1233.33 3.106 341239.33s 3.19 062

1216.3 . 291 .742 5 .1 .2 13' .7 .6 .4

1215.3 0.126 3.73 .1 .2 17 .7 .6 .6

01.0 -31331 3.333 .13 3.17 3.@1-3 1.199 3.031 3.

1213.3 ::11 3.3 .3 8.99 31211- S.11 4.1 -336

1219.33 '169 039 .2 26106 17 0 .12 346 3.63

1223.3 -3.23 .326 0. 069 313197 8 3 IM 151 3.371 3.679

121 316- 1 .230 3.10 .19 13 ;34 3.131 $:.143 .06S

1273 3 1.769 3.13 362 347 .2 .1 .3

122.3 '340 4 1.75N .7 3.S1 33 ' .206 3.419 3.13120.3 .331A 4 6.63 1.9 3461- 3123 3.366 3..11-

1226.00 390538 1.1335 3.666 0.2033 s 13 3.9 -3.61 3.121

1207.3 c 3.939j 1.2$4 31 309 33 3.6 319 313

1203.33 0.911 1.913 3.S79 3.043 9.31 0.333 3.161 3.3

1229.0 Q.33 3.96 7.36 0.704 3.597 3.563 title 9.199 #.16l-

121.293 3 .009 309 %.a"5 3.136 3.191

12U3;..3 1.94, 1.33461 Ns3.;28li1 313 0.34 1.133 3.1939

1233.33 0.50191 69 1.035 3.7 6 5 341- 13 .11 3

1234.34 Z.266 133 3.333 3106 0.36 3.13 0.0374

1235.30 1.353a 7.96 1.43 3.719 S.6 6.62 320 90

13331.23 2.792 1.135 0.369 397 0,67 13.16 3.2491237.30 1 20 .139 1.333 3.997 1.-9 0.6 43 26 3.3364

13S3.09313-5 3.430 1.830 $.$IS 123 3:632 Ito7 3.0

1239.3 -1.4393 3 1.16 1.323 ;73 3.63 3: .232 3.7

1263 1367 139 1.30 0.157 I.313 3.667 30 3037

123?13 0T1 3.:1' 1:51N. -17 1.219 3.6:.9 333

1It.3 210 4. 9 35 1.931 1.177 11653 0.713 3.303 3.611

1Z423 21699 6.622 7.136 -1.369 1.556 3.7466 3,6 36111246.33 21639 612 2.9 -161f.2 .773 3.369 3.663

1269.33 Ian7 4.730 Z.16 1.676 1.656 8.73 3.377 -69456

124S.:3 21563 5.131 2.532 1.632 1;796 3.6336 3:,33 ::.3,

1473 3;154 9.63 2 0.3 1.700 1.359 f.27 4.6 .3

133 -3a173- g.l10 3.65 1.936 00C9: 1:0209 .3 330

1269M3 -3M33 0.9 .11 05 2.146 Alo 2 '33 '1 ,103

13.3 -31737 1.093 3.363 2,045s -rai3l 0.133 3.303 3.631

S 2003 33 3 3.1 346 2.196 21232 1.16 a 3.69 3.733

1252.3 3437 5:.35 3.659 1.0 221- 016, 90.56 373

12023 -3.927 6.05 3.IS 2.26 2126 1.132 0.7 .730-10607 6303 7.133 3.919 2.1W 7.559 -1.2 0.646 377

1204.33 4;S033 7.611 6.103 2.635 Z.666 x.37 3.3 33912563 61663 7.097 6.209 2,676 2;729- 1.6 373 3.2

-30.93 a36 76 6.13.. -2;133- 1.637 3.732 3.3

32509.33 V. go 3.313 4.6712 Z.616 2.33 11463 3736 .6

12

Page 18: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

Table I f' -T)dIV (cont'd)

38all.No. 3 1 6- 7 9 10 11 -u 13

1_ (.) 10 -0.100 oosd 0.029 0.030 .013 -00071 o.ood O.O1' 0o02 Y.01(0)0- -1.00 1.00 -1;00- 0.300 0.300 0.300 0.10d 0.100 0.100 0.030

Temeqrature (0t) 310- 304= 304 -302- 30- 304- -303 302 304 303 303

C 11-lanth (cA) 0.574- 10.2 10.2 10.2 10.2 10.2 -10.2 10.2 10.2 10.2 10.2

u(solcul~e/c02) 13.6 24.6 12.3 C720 7.39 3.70 1.06 2.4 1.23- 0.616 0.742

(W5.282 -.3 4.639- 3 52 3.053 1.574 -1.601 6.9!! 6. e. 6.1 2 6 h 0 1I 8 0 4 0 9 . 9 7 1 0 I -I t - . 1 0 0 0 1 4

-l2t1.16 5.623- 8.954 5.149 3o2S7 32312 1.601- -:14 6 .974 1.020z 1.17 .

-1242.00 5.931- 9.376 5.421 -3.429 3.371 1.753- -6.13 1,12 ,151- 1.131 8.822

-1263.86 6.216- 9.783 5.686 -3.68Z 3.52 1.823- -2.965 1.057 lll 0-147 0.142

1264.68 6.495: 11.177 5.949 -3.782 3.641 1964- -1.16 1.098 1.103 0.867 0.O52

-1265.66 6.91 16.322 .6136 3.83Z 3.669 1.910- 1.i35 1.116 -6s16- 6.675 1.152

124460 4.95Z 111.1! 6.385 1651- 3.451 2.813z 1.103 1.16 1.131- 0.996 6.671

1266014 1097 444 .09 .5 2.934- -1.119 1.179 -6.142 6.164 6.8742167.11 T*CZ4- ICA9S? 6.461 4*af- 3.l92 +-34 S?10 t 9 1.4 10.119 0.0I3-

-1268.8 7373 11.362 6.773 -4.307- 4.6Z0 2.167 -1.172 1.219 0.157 0.119 0.983-

1269.06 7.64 11.996 7.213 .96- 4.242 2.25s 1.259 1.295 -0.197 1.148 6.105

1270.0 8.821- 12.294 T.313 -4.7i3 4.329 2.311 1.286 1.315 l.2sl 1.166 1.112

127141 6.359- -12.679 7.679 41902 4.4- 2.384 1.331 1.346 1.223 R.176 6.121

1272.10 8.822- -13.310 $.1II 5.201- 4.784 2.541a -1.426 1.436 9.23 M14 0.143

1273.00 8.892 13.463 8.169 i.264 4.749 2.544 -1.442 1.449 2.279- 6.2 6 6.145

I24.66 6.926 13.517 8.190 526z 4.154 2.564- 1.443 1.449 1.279- 1.26T 9.145

92. 1.067 13.736 8.361 5.378- 4.821 2.591- 1.46Y 1.49 62j3- 1.216 S.15!

127600 9 .411 14.257 8.686 5.603 4.999 2.762 1.533 1.538 8.332 6.241 1.171

1277.60 9.682 14.618 8.932 5750- 5.114 2.765: -1.566 1.574 1.359 I.255 1.177

1278.16 18.025 15114 9.247 5.974- 5.287 2.879 1.636 1.632 1*4e1- 628 .191

1279.68 10.06 15.2Z7 9.295 6.015 5.314 2.692- 1.641 1.646 0 .409- .217 0.196

1288.68 18.I2- 15.349 9.353 6149- 5.352 2.963 1.645 1.655 ±411 -1.291 8.293-

1211.0 1;1762 15.475 9.411 6-186 5.324 2.923 1.6S4 1.662 t.415 1*294 1.214

1282.66 10T462- 15.856 9.660 -6250 5.516 20991- 1:691 1i.711 6437 8.365 0.269

1283.00 116896- 16.392 -11.654 -60486 S.687 3;996 1*75b -1.763 1.474 0.327 0.222

1214.08 11.393- 0.175 10.53r 6-834 5.966 3271. 1.076 1.866 6.535 1.367 -6.266

1265.60 Ito11 17.241- 10.606 -6.692 5.993- 3;267- -1.889 1.693 -6.537 1.375 6.267

1286.60 11.477- 07.315 10.642 $.914 -646 3.Z87- -1.889 1.895 96539- .377 6.276

1287.00 11.621- 17.521 106773 66.96 69 3.312 1.995 1.916 0.554 0.368 0.264

.128.00 11.95- 17.890 11.051 7.149 6.199 3.365 1.948 1 .(53 6.581 1.391 0.301

129.60 12406 18.536 -11.499 -7;44t 6.433 3i534- 2134 2.06 63 -6.419 0334

1290.18 02.683 -18.973 11.76! ?o616 6.565 3.625 2.682 2.,92 I20- -. 439 0.361-

1291.86 12.764 19.151 11.866- 7;677 6.605 3.650- 2.096 2.113 2.679 6.446 0.373

1292.10 12.820 19.257 11.926 -7.711- 6.621 3.662 2.166 2.131 -26062 8.446 6.394

1293.05 13.103- -19.630 12.196 1.873 6.759 3751, -2.15 2.193 0.715 1.478 6.462

1294.00 13.33. 19.986 12.468 7.994 6.065 3.822 2.166 2.242 6.736 0.416 0.504

1z95.66 13.738- 26.545 12.784 si217 7.659 3941- 2.256 2.313 8.775 6.58 I.550

1296.66 14.173- 21.056 13.894 8.410- 7.230 4.147 2.318 2.381 9414l i .527 .580

-1297.00 14.266 21.342 13.265 8.507 7.3q7 47064- 2.335 2.412 I.121 8.534 r4.629

1298.00 14.821- 22.007 13.786 -8.863- 7.636 4.274 2.457 2.538 -0.46T C.578 W713-

1299.6 15.i09: 22413 14.945 -9 C32 7.766 4.369 2.563 2.597 915 6.595 J.763

1300,00 15.582 23.005 14.465 4;296 ?.984 4.502 2.58 2.674 I6964 0.613 0.78i

1300.0 16.041z 23.646 14.885 9.571 8.204 4.658- 2.663 2.763 -1 186 0.639 1.818

1302.0 16726 24.394 15.531 10.016 8.595 4.88- 2.816 2:917 re694 0.686 .63

1363.60 17.594 25.280 16.2,&8 16.536 9.019 5.182- 2.989 3.88 1.185 6.751 8.926

1304.0 16.429Z 26.253- 17.141 -11;241- 9.634 5.619 3.267 3.327 1.329 6.841 1.100

1305.00 19.369 27.244 18.051 11.979 1O.291 64682 3.565 3.666 1.493 0.950 1.082

1306.00 28.346 28.241 19.18 =12±844 11.115 6.722 4.608 4.19 1.769 1.115 -1.225

130.06 210.44 29.190- 19.694 13;486 11.642 7.219 4.343 4.333 10986 1.264 1.335

1361 21.159- 29.335 19.03 _13o557 11.667 7.253 -Z.356- 4.352 :A094. 1.269 1.344

1309 .0 21.197- 23.425 19.85 -13 . 11.669 7o263 4.361 4.356 1.994 -1269 1.347

1310.0 21.2±6 29.478 19.87 -13.596 11.669- 7.265 4.363 4.39 1.94 1,26 1.350

1311,9. Z1*289= 29.578 19.948 13626 11.691 -7.26i 4.376 4.371 2.03 1.272 1.352

1312.00 21.543- 29.932 29.191- -13 786 11.861 7.366 4.416 4.416 2131 1.285 1.303

1313.68 21.567 30.062 20.236 13.815 11.614 7,377 4.425 4.425 2841 1.267 1.367

1314.60 21.575- 36.852 20.263 13.828 11.836 7.3S1V 4.431 4.429 23043 1.28 1.375

1315.00 21.577 -30.100 20.293 43.045 11.037 7.384 4.433 4.431 27i8? 1.289 1,369

1316.66 21589- 30.158 20.325 13.666 11.645 T±365- 4.437 4.435 20946 1.296 1.361

1317.00 21o1G5 30.481 20.551 _14.614 11.956 ?,451: 4.466 4.477 2-i66 1.299 1.388

1318.60 21.577 30.614 28.631 A14.06t 11.981 7.478 4.497 4.489 2a1s1 1.317 1.392

1319.80 21±894 30.69s 2.660 -14.C83 12.107 ?,494 -4.512 4.498 2.085 1.312 1.415

1320.06 21.897 30.747 20.713 -14.102 12.016 7.500 4.514 -4.499 z2±88 1.319 1.41-

21321.6 21.999- 30.812 29.F56 =144.125 12.025 ?.523w 4.587 4.566 21689 1.327 1.411

1322.00 22.198: 31.168 21.053 14.316 12.165 -7.566 4.563 4.567 2;119 1.346 1.423

1323.68 22.4C6 31.476 21-251 -14±457 12.260 -7±674 4.616 4.616 24164 1.373- 1444132400 Z2.449 31.582 21.315 44.467 1z.287 7.690- 4.620- 4.627 2A66 1.376 -1.447

22. 1325.6 22472 31.666 21.366 14±512 12.364 7.?63 4.626 4.642 2A71 1.376 1.44S

-r + 1326.66 22.500- 31-.747 21.423- -1%535 -.2.314 .±713- 4.621 4.449 2.177 1.311 -. 449

1327.00 22;612 32.113 21.734 14.784 12.469 7.804- 4.679 4.715 z.b6 L.397- -1.470

1328.00 23362- 32.766 22.254 -15182 12.1 8.872 4.854 4.858 27367 .5 1.517

1329.41 23A456 32.931 22.350 -15.227 12.827 $.10oa 4.647 4.868 2321 1.476 1.523

134.

Page 19: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

Table I (conf'd)

Sampleo, . 4 -6 7 8 9 .0 11 12 13

p (at.) 1.00 0.100 vu.36 0 .025. 0.030 0.013 0,0073 0.010 0.005 0.0025 O.:co

p 1.00 1.00 1.00 -1.00 0.300 0.30 0.300 0.100 0.100 0.100 0.03

T.m.ratur* ( ) 310 304 004 302 304 34 303 302 304 303 30S

Cell LUngth(cm) 0.574 10.2 10.2 10,2 10.2 10.2 10.2 10.2 10.23 10.2 10.2

u(oolecul../c.2) 13.6 24.6 12.3 6.20 7.39 3.70 1.86 2.48 1.23 0.618 0.742

10-1 8

(".1) .7 152

1336.80 23.496 33.026 22.405 -15.241 12.841 8.121 4i869 4.8$3 2.324 1.474 1.527

1331.00 23.531 '3,114 22.459 15.268 12.65Z 8.128 .-670 4.893 2.328 1.475 1.527

1332.00 23.815 43.494 22.753 -15.4e5 12.982 8.197 4;922 4.943 2.358 1.457 1.542

1333.04 ^* X13 34.284 23.408 16.008 13.403- 8.515 5.126 5.113 2.465 1.560 1.590

334.00 24.686 34.521 23.551 16.100 13.461 8.573 5.148 5.143 2.493 1.575 1.602

1335.00 24.728 34.625 23.601 16.126 13.479- 8.5687 5o149 5.145 2.495 1.571 1.603

1336.00 24.784 34.743 23.674 16.157 13.496 8.601 5.151 5.149 2.502 1.571 1.603

1337.00 2r,203 35.323 24.114 -16.443 13.752 8.735 5.245 5.236 2.552 1.600 1.631

1338.0" 25.806 36.002 24.655 16.851 14.048- 8.961 5;381 5.163 2.625 1.650 1.671

1339.00 25.941 36.185 24.774 -16.919 14.086 9.010 5-394 5.384 2.63b 1. 5 1.678

1340.60 25.995 36.304 24.828 16.944 14.113 9.033 5.394 5.391 2.641 1.659 1.683

1341.00 26.109 36.524 24.95C -17.I2 14152 9.065 5.407 5.406 2.654 1.668 1.691

1342.00 26.694 37.249 25.538 -17.450 14.504- 9.310 5;567 5.539 2.735 1.713 1.738

1343.00 27.395 38.025 26.190 17.943 14.50W 9.587 -.738 5.692 2833 1.774 1.786

134 .00 27.666 35.306 26.415 -18.06 14.987: 9.688 S.701 5.762 2.878 1.795 1.003

1345.00 27.720 38.420 26.484 18.116 15.004 9.711 5.784- 5.773 2.680 1.796 1.03

1346.00 27.838 36.651 26.619 19.191 15.049- 9.735 5=.00 5.799 -2.887 1.801 1.815

1347.00 25.436 39a.409 27.183 18.597 15.372 9.962 5;930 5.929 2.964 1.844 1.843

1348.00 2.970 40.047 27.679 -19.939 15.631 12.161 67C44 6,W43 3.036 1.887 i.877

1349.00 29.213 40w326 27.914 19.796 15.751 10.265 6.090 6.101 3.078 1.912 1.895

1358.80 29.259 40.434 27.968 19.130 15.76s- 10.257 6.095 6.113 3.004 1.913 1.897

1351.90 29-504 400620 28.205 19.202 15.809 10.350 6.137 6.172 3102 1.929 1.908

1352.00 29.993 410456 2$.654 19.577 16.134 1f.517 6-.32 6.256 -3.152 1.966 1.940

1353.00 33.324 41.870 28.946 19.776 16.279= 10.629 6.267 6.303 3;146 1.999 1.965

1354.06 30.611 -42.24 29.236 -19.971 16.430- 10.753 6o354 6.372 3.230 2.038 2.003

1355.00 30.749 4Z.448 29.36L 20.052 16.480 10.794 6369 6.414 3.244 2.049 2.0251356.00 31.260 43.108 29.846 20.370 16.765 11.992 6-469 6.538 34316 2.091 2.067

1357.00 31.646 43.6,7 33.198 2.6:1 16.936 11.131 6.524 6.622 3.361 2.138 2.093

1358.00 31.3) 43.080 30.374 -20.710 17.020 11.198 6.552 6.677 3.377 2.155- 2.116

1359.00 32.805 447.133 30.550 2823 17.101 11.266 6.596 6.716 3.395 2.L91 2.137

1360.00 32.270 44.521 30.771 20.964 17.208 11.353 64.629 6.749 3.419 2.219 2.150

1361.0c 32.629 45.035 3.113 21.79 17.367 11.467 6.693 6.893 3.438 2.259- 2.177

1362.00 32.779 45.275 31.271 21.294 17.4F4 11., 24 6.776 6*83' 3649 2.289 2.190

63.00 32.907 45o550 31.452 21.413 17.53S 11.597 6.71 6.78 3.465 2.321 2.199

1364.00 33.218 45-.678 31.668 21.553 17.651- 11.68n

.816 6.947 3.408 2361- 2.212

1365.00 33.425 46;191 31.864 21.673 17.749- 11.746 65851 6.985 3.515 2.396 2.228

1366.t" 33.637 46.511 32.068 21.791 17.84- 11.818 6.893 7.030 -3.538 2.419 2.234

67.00 33.727 46673 32.176 21.865 17.941 11.854 6.912 7.'55 "3.555 2.439- 2.234

1167.00 4768 32.521 22.218 18t.22437 8 7.9

1366.00 33.3a3 4G3896 32.329 2L.947 17yiW 11.905 6- '937 7.091 356 48 2,4

1369.00 34.156 47.324 32.599 22.96 18.186- 11.998 6.977 7.153 3.591 2.495 2.253

1370.0 34.260 47.521 32.720 22.159 164160 12.035 7.00 7.170 3.598 2021- 2.2551371.00 34.335 47i665 32.621 -22.214 28.203 12.158 TOOi 7.195

'1372.00 34.356 47.749 32.866 22.233 18.28' 12.061 7.021 7.209•1373:,00 34.510 47*995 33.346 22.319 16.274 12.10* 7;053 7.236

1374.00 34.673 48i271 33.724 72.426 t8.367 12.1cZ 7.099 7.203

1375.0 34.72i 48.394 33.306 22.483 16.398. 12.166 7.152 7.3n3

1376.00 34.778 460538 33.394 22.642 18.435 12.,24 7.143 7.320

1381.00 34.972 460634 33.645 22.52 18.456 12.257 7.196 7.4111376.0 34,877 48 807 33444 22.634 18 500 12 0 , 7 7,6

: 1379.00 34.941 460-952 33.629 22.681 184S543- 12.313 J74193 7.394

- 300 3. .9;0i7 33.66T 220711 16.561 12.325 't.196- 7.411

1361.00 34.972 49A216 33.694 22.722 18.561 12.325 16 7.1

1382.00 34.992 499196 33.733 22.736 18.561: 1C.325 .7196 7.411

1383.00 35.035 49310 33.782 22.758 14.561- 12.325 7.196 7.411

13$4.00 35.060 49.382 33.819 22.771 18.561= 42.325 7.196 7.412

1385.00 35.087 49 455 33.846 22.772 184561M 12.37 7.196 7.412

1306.00 35.099 49-515 33.882 22.772

1387.00 35.106 49.576 33.928 22.772

1386.00 35128 49.650 33.967 22.7721389.00 35.133 49.698 33.991 22.772

1396.00 35.140 4g740 33.991 22.772

1391.60 35.141 69;774 33.991 22.7721392.00 35.142 49.805 33.991 22.772

1393-00 35.145 47.835 33.991- 2z.?2

1394:00 3.149 49i868 33.991 22.772

1395.00 35.161 49.912 33.991 22.772

1396.00 35.163 49.-38 33.991 22.772A 1397.00 35.167 k9.968 33.991 22.772

1398.00 35.169 50.007 33.991 22.772

1399.00 35.171 50.032 33.991 22.772

1400.00 35.185 Sum056 33.391 22.772

14

Page 20: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

'KTABLE 2 -VZd O H

..20 -1 2 -1(Multiply alli integral values-by 10 -molecules cm cm)

V /~d 2 :V ,iZd-.1 -A-1 u )I - Td

(cm )(cm)1210 -0.72 1285 151.61215 3.-04 1290 167.9

)1220 6.17 1295 181.31225- -10.54 1300 207.3-12-30 14.26 1305 288.1

1235 18.23 1310 350.41240- 25.73- 1315 358.9-124$ 33.19 1320 366.0125-0 47.26 1325 3-76.81255 57.63 1330 399.1

1260 -68.58 1335 426.31265 86.30 1340 447.512-70- 104.9 1345 478.3127-5 120.8 1350 502.-81280 134.6 1355 524.-0

VI 1205-cm-

When-the-wings of the band are included in the integral, the value becomes574 + 25 x 10-20 molecules-1 cm2 am 1-, which is equal to the value of theintensity of the entire band system,

154k'Vi

Page 21: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

TABLE 3. COMPARISON OF EXPERIMENTAL VALUES OF BAND INTENSITY

{... 1/u) f4iT dv

-1 2 -14Reference -(molecules cm -cmil)

Rollefson and Havens 551 x 100

Thorndike9 558 x 1020

-10 0iWelsh and Sandiford 0 585 x 10

Armstrong and Welsh- 588 x i020

-Present Investigatidn 574 x 1020

+:8. -R. Rollefson and R. Havens, Phys. -Rev. 57, 710 -(1940)--

:9 A. M. Thorndike, J. Chem. Phys. 15, 868-(1947).

1:0. -H. L. Welsh andP. J. Sandiford, J Chem. Phys. 2o, r646 (1952).;; . R. K. Armstron_ and H. L. Welsh, Spectrochimica Acta 16, 840 (1960)i

16-

Page 22: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

SECTION 3

CONTINUUM ABSORPTION BY H2O BETWEEN 600 cm- AND 1300 cm-

The absorption by H20 in the atmospheric window between approximately800 xcit and 1200 cm-i is different from that in most regions because asignificant portion- of it is due to continuum -absorption. Although many veryweak H20 lines are centered- in this region, -the cont-ibution by these lines ina typial lower atmospheric .path is much less than that by the continuum.Some of the continuum absorption is undoubtedly due -to the extreme- wings ofstrong1120 lines centered outside of the 800 - 1200 cm-1 interval. Dimers-formed by the association of two H20 molecules (H20:H-0) may also contributeto the continuum absorption. Tor purposes of calcu-ating the attenuation byatmospheric paths it is not -important that the absorbing mechanism be under-sto0d=:ompletely as long as the absorption coefficients at different wave--numbers 'are determined for temperatures and pressures of interest. Asexplained- in Section 1, the attenuation -over a given path length varies as-:thesquare of the H20 partial pressure whether the absorption is due to dimers-orto the extreme wings of self

broadened H20 lines. -

Within the 600 - 1300 cmz-- region -there are several narrow intervals aswide as approximately I cm-1 at which the influence of lines closer than afew cm 1 is much less than that by the continuum abso ption. Throughoutiih

of th .ore- transparent part -of the window between 80Vcm-1 and 1200 cm1l,there is probably little cont-ribution by all of the lines centered -closer than[30 5 5cmi to many of these narrow intervals between very weak nearby -11-ies.

Lines centered in the edgesoof the window from 600 cm 1 to 800 cm" I and- from-11 0 cm 1 to 1300 cm" 1 are stronger than those in the center of the windOW-7Co sep tly, nearby lines c-anmake a significant contribution to -the absorptionin the-narrow, clean intervals in these edges of the window. Nevertheless,the Continuum still plays a ve-ry important role in these intervals.

2In- 1970 we published a report that included data on the -H2 0 coninuum-abso~~tion throughout the 700- 1250- cm 1 region. The continuum absorptionwas de-termined by measuring the absorption in several of the narrow, cleanintea-Is discussed in the previous paragraph. The -bsorption was measured-from spectral -curves of transmittance scanned with- a pectral slitwidth ofless than 0.5 cm--. By making a small allowance for a few nearby lines, th-econtinuum was -determined for samples at different pressures and temperatures.Values of the continuum absorption coefficient CO (see Eq. (10))- for self-broadening were determined adh pub-lished- for -three te-mperatures: 296 K, 358 -Kand 388 K. Attempts to measure the nitrogen broadening coefficient CO2 aspart of-the-same -experiment were unsuccessful because of the very weaV-

dependence of the continuum absorption on the pressure of N . -However, theresults did indicate that near roomtemperature the ratio Ci2/CO is lessthan 0.005.

Since publishing these -original data on- the 700-" 1200 cm" region, we-have -investigated the continuum absorption in other spectral regions and have

17

Page 23: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

improved some of our experimental techniques. Because of the importance of-the700 -1250 cm" region, we have fe-investigated the continuum absorption whileemploying some of our improved techniques, particularlythose related to inter-ference-by contaminants in the sample. As a result of-the more recent measure-ments, we have concluded that the previously published-values of CO wereprobabhly too high by 5% to 20%. The highest percentage error is between 1000cm I and-1 -200 cm-1 where absorption by contaminants was the most serious.This amount of discrepancy between two separate measurements is believed to bequite god in view of the difficulty of the experiment.

Figure 3 summarizes the results of the later measurements. The uncertaintyin the results is difficult to--estimate because of the ipossibility of some syse-tematic-experimental error that is not identified. However, we believe thatany of -the values represented by the 296 K curve are in error by less than +15%, and-those for the two elevated temperatures, 392Ka and 430 K, by less than+ 10%. The large decrease in-Co with increasing temperature is consistent withthe previous data.

At 392 K, C increases rapidly with increasing wavenumber above approxi-mately -1 -50 cm . The intensities of the H20 lines centered in or near the1150- cm 4 - 1300 cm" I region increase rapidly with increasing temperaturebecause the lower energy levels Involved in the transitions are excited. Thepopulati ons of these energy levels therefore increase rapidly with temperatureiThe increase in Co is a result -of the increasing cont-ibution by the linescentered above ll10 cm-1 . The :contribution by these same lines is apparentlysmal-l -for wavenumbers less thano1100 cm"1 . A large portion of the continuum-below 100 cm- is probably due to the extreme wings of the very strong linescentered be-low 600 cm" I . This-could account for the -increasing C0 withdecreasing wavenumber below 1-10"cm " I as the 'point of observation approachesthese strong lines.

Since being published, the 1970 data2 have been used widely to predictatmospheric absorption and have been compared with results of a variety ofexperiments-. The more recent data illustrated in -Figure 3 have also been mAdeavailable to a few workers interested in developing accurate transmission-models. Among these workers are Roberts, Selby and Bberman,12 who havesummarized the results of several field measurements and laboratory measure-ments designed -co provide new and better information oon the H2 0 continuumabsorpti-n. Roberts, et al., have arrived at what they believe is the bestmodel for continuum absorption-based on the variety of data they have accumu-lated. their model is in essenbiatl agreement with Fig;- 3 for 296 K.

12--R. E. Roberts J. E. A. Selby and L. M. Biberman, Appl. Opt. 15, 2085

(1976).

18

----------------------------------------N

Page 24: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

I Ike

00

0

0 co

z w a

1*U > 0,06-0

'-4

Go (

00

CQ'

P4

19

Page 25: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

SECTION 4

ABSORPTION BY H-0 BETWEEN 333 cm"I AND- 444 -cm '

2

EXPERIMENTAL

The =H2O absorption data presented- in this section -were obtained in thesame manner as the H^0 data reported:-previously by us in several:reports. Thelonger of -two multiple-pass cells in our laboratory was used for path lengthsof 123 meters or greater; a shorter multiple-pass cell served for paths up to28.84 meters. A custom-made grating -monochromator employing a--quid-helium-cooled Ge:Cu detector was used to scan spectral curves of transmittance and toisolate very narrow spectral intervais for detailed study. -Essentially allof the- optical path outside of the -sample cell was confined -to-two vacuumtanks to eliminate absorption -by atmospheric gases. The only except-ion was a-path- of a- -few cm between the globar energy source and- a window to one of thevacuum tanks. This short path was flushed with dry N2. Polyethylene windowswere used- on the sample cells and on-the vacuum tank where the energy beamentered from the globar source. The detector contained a KRS-5 window.

The grating used for the data ifn this section contains 45 lines/mm- and- isblazed at 22 im. A long-pass interference filter eliminated overlapping -ordersof higher wavenumber energy -passed by the grating monochromator Detectorsignals were processed with a- synchronous demodulator andf amplifier, and the-dc output of the amplifier -was displayed on a strip-chart recorderi Trans-mittances were determined by dividing -the signal output observed- with thesample in place -to that observed-with-the sample cell evacuated:i

All sample pressures below approximately 0.08 atm-were measured with anoil manometer-; higher -pressures were measured with an Hg manometer. Mixturesof H20- +-N2 were formed by first ad-ding the H20 -to the evacuated sample celland allowing -the gas to stabilize before measuring its pressure. The N2 wasthen added-slowly, allowing it to mix with the H 20. Table 4 summarizes theimportant parameters of the samples for which detailed spectral data arepresented. Absorption by several other samples not listed was -investigated atcertain wavenumbers of interest without scanning the spectra. The H 0 partialpressure p and the total pressure P are given in the second and thira columns;all samples were either pure H20 or y10 + N2 . The absorber thickness u shownin the fifth column is expressed- in molecules/cm2 and is related to the othersample parameters by Eq. (I). The number associated with u has been abbrevi-ated: for example, 169. +20 denotes 169 x 1020 moleculesikm 2

The final three columns of Table 4 give the resolution schedule, theregion over -which spectra- have been scanned, and the number of the -figure inwhich -the spectrum appears. Table 5 lists the spectral slitwidth- correspond-ing to the -resolution schedules given in Table 4. Spectral sl-tWidths givenin Table 5- correspond to the full width at half-maximum of a triangular slitfunction.

20

Page 26: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-ESULTS

Figures 4 through 9 shows the computer-plotted spectra- for the samplesrepresented in Table 4. The important sample parameters are repeated in eachfigure. The original recorder tracings have been smoothedsomewhat during-the-digitizing process; thus the original noise level was higher than that indicated°by the computer-plotted curves in Figures 4 through 9. The estimated errorsin the plotted-values of transmittance vary from less than -0.02 near 440 cm'

I

to 0.03 near 330 cm 1 . At points where T is near zero or -near unity, the errorsare probably lower.

Tables 6 and 7 list values of the cumulative integrated absorptance basedon the same samples as those represented by Figures 4 through 9. Each columncorresponds to the sample indicated at the top.

-21

Page 27: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

FTABLE 4. H20-SAMPLE PARAMETERS

Spectra!Sample p P L U 0 Resl. Region FigureNo. (atm) (atm) (cm) (#/cm2) (OK) Schedule (cm- ) No.

173 0.0115 0.0115 59500 169.+20 296 B 380-444 9171 0.00882 0.00882 59500 130.+20 296 B 380-444 9170 0.00553 0.00553 59500 81.6+20- 296 B 380-444- 961 0.0213 0.0213 2884 15.2+20 296 A 380-444 756 0.0158 0.0158 420 1.65+20 296 A 380-444 7

136 0.0207 1.004 2884 12.9+20 338 A 380-444 8133 0.0207 0.500 2884 12.9+20 338 A 380-444 8115 0.0208 6.0208 2884 12.9+20 338 A 380-444 8

182 0.0141 0.0141 12300 43.0+20 296 C 333-381 6180 0.00868 0.00868 12300 26.5+20- 296 C 333-381 672 0.0207 0.0207 2884 14.8+20 296 C 333--381 481 0.0211 0.0211 420 2.19+20 296 C 333-38-1 487 0.0105 0.0105 420 1.09+20 296 C 333-38-1 4

1il 0.0326 0.0326 2884 20.7+20 333 C 333-381 5147 0.0212 1.000 420 1.93+20 338 C 333-381 5141 0.0213 0.500 420 1.95+20 338 C 333-381 5104 0.0213 0.0213 420 1.95+20 338 C 333-38-1 5

TABLE 5. SPECTRAL RESOLUTION SCHEDULE

V A _ C_

380 0.23: 0.32 0.42390 0.25 0.34 0.46400 0.28 0.3-6 0.48410 0.30 0.39 0.52420 0.32 0.42 0.56430 0.35 0.45 0.60440- 0.37 0.48 0.64450 0.39 0.51 0.68

-t 22

Page 28: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

1001 8

81

72-

L i 335 34-0 34-5 350 3-5-5WAVENUMBER- On-)

--87

81

360 365 370 3-75 380T-WAVENUMBER- tm')

S ample pp u 2-No. (am-molecules/cm)

87 0.0105- 1.09 x 10281 0.021-1 2.19 x 10272 0.0207- 14.8 x 102

Figure 4. Spectral curves of transmittance of H20 from 333 to381: cmi. 8 . 296 K for all samples.

23

Page 29: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

1O0 104

4-41.

147

ll

1 3-35 340 ~ 345 350 355U)- WAVENUMBER (cM')

H0 141

36--3-65- 37--0 -375- 38-0-WAVENUMBER tm')

Figure 5. Spectral curves of txansrnittance of -H20 froii 333 to 381 cm

S anp le p Pue-No. (m)am)- (molecules/cm2 )

104 0.0213- 0.0213 1.95 x- 10- 338141: 0.0213- 0.500 1.9 02038-14-7 0.0212 1.00- L.93 x 102 338111 -0,0326 0.0326 20 .7 x 10 333

24

Page 30: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

100 - 26 ;='P I U20

180' 0. 00868 26.5 x 10--182 :0.04 43. 0 x0

180

LuJ

Z 182

100-

0-

360-- 365- 370 --375 380-WAVENUMBER em'

F~igure 6. Spectral curves of transmittance of 1120 from-333 to 381 cmPressures are atm; alisorber thicknesses u are in-molecu-les-/cm2.

25

Page 31: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

P.( 0

O CrjW

Ano

0P4~C')

IILI0Go CoU

U

00

co E

Cr14

%00

-C~4 -Af 4

Page 32: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

, 6*:

L) M p

M' 0 _4

v-4 M' 0 -c) U)- r-I N1 cu rm

o to .4

aj)a' s44

0

-00

ED ECO

0_0_04-i

44-

0

LO W

oo 0o00

3hDNVii.IV'SNV81

27

Page 33: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-4-

LOO

-- 4 1-aC

r.-a

o0 0 $14-4 02C1

[~ E 2

0 )00 C

'4.

E4 H

-1

0-

U) -0

40

282

Page 34: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

4' A4 .. - :0.

-- - ---- -- - ---

.2'

C..... ... ....W _ _C _ =* 0l _ **

'; - .. ......- ..... .~.o.. .. a .. ...

g"z -;;;

f ..- ..- ............. .

f l 4u Z xz ;;;4. .44 .- 4

- . ... . . * ~ lP . . . ..

oZ. u44" 444U 44 -R

I . .4 4..4 . 4 4 . 4 4 44444 ;4 :A4 4fl44 : 44444 44 4 4 4

°I,.. ....

. . ... .... ... . .... . ..

" "° ~ ~ t~ l ... . ...... . - .... .. .. E2

00- , 0.

... . . ... ... . . . .. . ... .. . .

.. . ..... . ..

... . - -

-a+

. . ... .. ..... ... " • "'." ". I I. . . .

sn-"r 1-t-g 4 - -+t. Sn - -

a0 0

. .2 -..... III. -

000l0 - l

* .000 -. . .. j4.90 .4-

.00... - ....p~. . P .n 4. .....

49. ~ ~ ~ ~ ~ ~ ~ ~ ~ .. ... ...................00 0 0 0

0030

* ~~~ ~ ~W * .*.0C;'. - - -*p4

Page 35: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

C.,.. PC n . ... .....lllf .. l~l

.... ... .....C b..C .f..fb4 .... *.~ k.Cf

..... ......

4:-- -: 4:4 :::..: =2* * -- !I;zjzz. =iiZ.i

.... ... .... .. ..... . .

%inti t .. . ......

444 14 :._j - *44444£

Z.04ZZ Z Z Z.-.. .. . . . .. .....C ..4 .. ... . ... 4 f

. n. ....... - s-2

. . . .. . .. . . . .. . . . . .. . ..

44444 =n rx1 9A 4

IT-= "o %Z ::z$0: -.- .0.4 0 00

Z4z ;; ; . ;Zz;.. . - . ... .. I ;;j.

.... 0 a..... ........ I... ..... .... II4444 444-44 4; i4.4z,..

w4-t

44Z Zzz 44ii j- 1; ltnninJi t: ............0 .. . . .. . ....... ............... ;

...... ...... ....... .... .4.... ..... .....l. . . . .CCzz= t=.:................... .. . . .

.. .. ....... ..... ..... ...... ....... .....

............. ..... .. .. ..n

.............................. ..... .......

=:z =2 44l14

Page 36: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

TABLE 7 dz/

Sm ., 313. 111. 310. 61. 5. 136. _333 35.

26. 292. 2* 296. 296. 3396. f3. 336.

7.tb(c.) 39500. 59500. 59500. 2564. 480. 2684. -2684. 2664.

P(_tw) 0.03145 0.0082 0.00S03- 0.0 3 0 0.030 0.0206! 0.02066 0.02019:0,* 145 0*00882 0.00553- 0*0213 0.0117 1.00395 0*50009 0*02079

¢11,06 21 ,6.4S[ 20 1.294121- I.294[ 21 1.303E 21

366.6E 2. 1.X9 6.5S=2 6. 8. 0.

386.20 6.169 6134 -0.8675 6.2 6.807 -,.131 8.96 6.i43

360.40 6.338 0.271 4.06- 1.103 I6.131 0.269 O.11z 0.006

380.61 I.S19 1.43S 6.26t IT7 1.66 6.42k 0.326 0.1S9

360.0 .716 0.02 .3614 6.279 I.04 - .597 0.48t 6.265

361.60 1.846 0.756 -6.4- 0.369 0.066 -1.760- 0.60S 4.3S2

301.20 1.059 0.491- .575 6.426 $.0$G- 0.904 0676 6.483

361.46 t.220 1.625 .652 8.461 6.691 t1.40 -0.79 6.455

31i60 1.396 1.103 6,736 6.539 $616t L.105 O.S14 OS9

391.0 L.571 1.302 6.8l- 1.57 5.168 1.309 6.967 0.563

302.00 L.741 1.437 -0.894 6.649 6.114 1445 1076 0.609

302.20 1.916 1.57Z 6.971- 6.711 6.119 1.5v 21.66 1.653

3620 0144 1.717 1.657 1.761 4.126 L.727 1.272 0.710

382;60 2.266 1.(9- 1.154 .I2zs 1.141 L.870 1.337 0.778

382.00 2.450 2.020 1.ZS1 0.890 8.156 2.038- -1.50 1.638

-3630 2.633 2.174 1.34S l.952 6.116 3.20? 1.641 1.695

3S3.20 2.822 Z.336 -1.449- 1.624 6163 13" 1*71 0:93

331.46 3.616 2.560 1.57 1.131 6*262 -*.50 -1.966 301.2383.60 3.217 2.611 1.739 1.272 0.236 2.704 2.156 1.263

383.0 3.417 2.064 1.92? L.4s 6.316 2.904 2.356 1.310

-34.00 3.617 3.662 2.1 07 1.438 0.411 3.154- 2.56 1559

304.20 1.$17- 3.22 2.293 7 1.762 0.451 3.304- 2.756 1.712

304.40 #.617 3.462 2.465 1.922 1.411 3.564 2.156 1.0s1

381460 6.21? 3.662 2.649- 2.89 1.527 $.784 -.LS6 Z.Ots

304.80 .417 3.802 2.64 2.277 6.616 3.94 -3.356 2.200

3S5.83 4.617 4.812 3.45 2.469 6.744 -4.1t 3;556 2.392

30M720 4.817 4.282 3.243- t.654 1621 4.304 -53754 2.567

365.40 5.0i 4.4.2 3.439- 2.037 6.078 Y,564 -3.951 2.736

315630 S.217 4.662 3.63F, 3.124 0.911 4.754 4.147 2.913

300.80 5.417 4.079 3.616 3.192 1654 #.964 4.339 3.071

386.00 $.6its S.067 3.96i 3.38 L.477 5.103 4.51 3.110306.20 $.Sol- 5.23 4.862 3.394 1.667 5.374 4.674 3.249

306.40 5.994 516 4.181= 0.469 1.09 z 5.553 S4i01- 3.30?

306.6O 6.174 5.049 4.272 3.53? 1.110 5.716 4936 3.358

36.50 6.340 5.692 4.15?- -3.99 -1.122- 5.872 5.034 3.415

-307.O0 6.519 5.836 4.438 3.655 1.132 6.017 5.129 3.449

307.20 6.606 5.964 4.014 I.717 1.146 6.154 Sa219 3.491

37.40 6.652 6*095 4,5t0 3.750 1.146 6.283 -5.305 3.511

307.60 7015 6:222 4.657 3.860 L.152 6.405 5.307 3.569

307.03 a ,17? 6.346 4,728- 3.458 1.161 6.522 S465 3.606

356.30 7.339 6.41 4.101- S.9o 1.171 6.635 5i543 3.642

35020 7.501 6.595 4.078' 3.959 1.186 6.746 5.620 3.676

35.40 7.663 6.720 4.941 4.01 1.189 6.056 5.695 3,710300.60 7.827 6.047 5.01?- 4.061 1.196 6.966 5.769 3.754

380$0 7.992 6.976 S,096 4.112 1.203 7.077 5,$47 3.798

389.00 5.156 7.104 S.L7 4.161 1.210 7,109 5.926 3.043

359.20 9.31& 7.228 524L-- 4.266 1.216 7.296 6.005 3.879

389.40 .460 7.148 5.315 4.253 1.222- F.402 6.601 3.911

3ng960 0.643 7.468 5.37 4.299 1.26 7 .5 11- 6.15$ 3.945

369;60 S.409 7.600 s;- 6 4.34S 1.236 7.63. 6.250 3.9

390i0o 0.977 7.742 5.531- 4.412 1.246 7.778 -6.161 4.6S1

390.20 9.143 7?.5 5.612 4.46? 1.260 7.969 -6.455 4.1i

3w0.40 9.305 7.999 5.666 4.514 1.271- - 8.024 6.533 4.14Z

390.60 .463 6.121 5W756- 4.561 1.282 - .134 6.669 4.104

39.060 9,6261 .243 9.62T 4.605- 1.291 8.243 6.685 4.225

391.00 9.776 5.366 9.896 -4.650 t.3ol 6.354 -6.759 4.264

311.20 9.930 0.498 5.967 4.69S 1.198- 8.466 6.033 4.312

-. 391.40 11.094 8.614 6O6? 4W741 1.317 6.58t -6.917 4.339

391i60 112S9 0.739 6-. 10 4.769 1.326 W.761 6.967 4.379

391.0 11.422 4.67 6,101- 4.640 1.335 8.027 7.079 4.425

- 392.S4 11.508 0.99 6.257 4.866 1.344 8.956 7.166 4.477

392.20 10.754 9.133 6.336 4.952 1.3541 ).0S 7.281 4.526

392.4i 18.923 9.267 6.413- 5.065 1.366 .235 -7.377 4.570

392.68 16193 9.462 6.489- S.56 1.377 1.381 7.479 4.616

392.0 i1.66 9.536 6.566 5.1i9 1.367 -9,S6 N,506 4.665

393.08 t1.3 9.618 6.646 5.165 1.396 0.76 T.716 4W71t

-33.26 11&.623 9:25 W73T- 5:22 1.46 9.873 7.64T 4.771

393.41 11s6 9 .963 6.836- 5*313 1.422 16.65? 18.03 4-951

393.60 11.999 10.153 2.951- 5.39t 1.436 .2*Z- 0.175 4.942

-93.60 1.198 10.335 7.095 5S56 1.45 16.447- 5.364 5.659

394.o 12.385 10.529 7.26 5.664$ 1.560 1.645 1.581 5.223

394420 12.5et 10.727 T.459 5.653 1.666 16.844 W~61 S.414I39440 1:76- 14.926 r;6-v 6.641 1.734 -1.044 t 0.959 S.683

394,60 1.9 2 16.125 7$749 6.230 1.01 11.244 9.159 5.769

394.0 13.182 11.324 6.627 6.362 1.465 -1.444 S356 5.947

o9. 13.302 11.517 8G166 6.519 1.113 I.244 9.556 6.193395.20 1,55I 1.781 S323- 6.615 t.914- 11,944 9,731 6,193

1 395.40 10.176 t1.077 6.444 6.701 1.930 1t044 9.924 6.262

195.60 13.97 0 2.*53 8;$63 6.793 1.945 1tZ.24 16.108 6.369

395.60 14.164 12.234 692 6.692 1.966 iz.444 . 1,235 6,442

8The wit. of v oreio1¢e*/€2, dbbrevIsatd here by (#/c2)

32

Page 37: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

BST klt,TABLE 7 ( cont'd)

Sm. '1.. 173: 171. 1 7O. 61- 56: 136: 133.: IITew v(1) 94g 09. NO6. 296. 296. 33. "a1 133:.

P.aI, (c.)- 51500. a900 9900 2664. 42 0.- 2664. 6684. 2664.

p ( w~ -OOIA 0.0906 0.0993 0.01132 -0.01579 0.02064 0.00066 0.02079

r - 0)0114S 0.000662 0.00553 0-02132 0- -01579 1-300395 0.90000 0~.07,

I Oe *j.6912 .012 6.158E 23 1.329121 1.6A9E- 20- 1,294C 21 1.9c2 .3031 21

396.00 ik.359 12.%22 L.3 .1 .961 12.64% 11.466 6.SYS

396.20 14 .556 266 9.6 's .1:74 :Z;6SS it.94,4 366 6713

3S6.40 14.750, 12.616 q,196 7.6 .1 691 .906

396.60 14,953 13.61 9.395 7 .57 2,243- 1 3.244 11.086 7.161

396.40 15.153 13.215 9.S94, 7.?43 .323 13.44% 11.z6, 7.259

397720 15.353 13,415 9.794 -7.930 Z.316~ 11.644 11.481 7.474

39,20 i3.553 13,615 9.194 4.123- 2Z.463- 13.644 11.680 7.606

397,40 15.153 13.615 10.194 6.326 2-.609 14.844 11.6- 7.62

397.60 16.913 14.015 16.394 5,519- Z.775- 14'.244 12.06 6.859

397.60 i6.153 14.215 10.594 6.717 2.929 1%Af 12.269 4.255

39S,00 16.353 16.F1,96 9.967 -3.629 04.644 12.460 $064

39S.20 16.553 14.615 16.977 9.075 3.673 14.6444 12.666 8,621

395.40 16i.753 14.6i5 11.167 9.224- 3.102 15.044 12.686 6.782

393.60 16.953 IS.MS 11.339 9.363 3.134 15.244 13.000 6.946

-395.60 17.153 15.215 11.529 9.566 3.262 13..44 13.266 9.131

399.10 17.353 15.415 11.726 9.761 IOU1 15.644 13,404 9.32r

399.20 0.553 15.615 11.925 9.955 3.450 15.644 L3.679 9.526

-3940 17.753 15.614 12.116 16. 126 3.566 16.044 13.816 9.786

-- 399.60 -11.95Z 16.009 12.295 11.276- 3.534 16.244 14.477 9.654

399.60 16.191 16.203 12.456 14.39Y 3 .553 16.444 14.273 9.9or

400.00 15.350 1(.399 12,623 14.454 3-.596 16,644 14.470 '0,142

910.20 15.550 16.597 12.612 16,742 3.696 16 .6.4 14.669 LO.327-

400.1.0 18.750 16.796 13.8 10.91 . 3417 11.044 14.86 16.521

400.60 11.949 16.99 13.196 11.161 3.61~0 17.244 15.066 10.761

.00.90 19.14S 17.16? 13.359 11.229 -3-9il 17.444 15.259 10.544

401.00 19.335 17.361 13,483 11.322 3.946 11.646 15.436 16.941

401.00O 11.519 17.524 13.564 11. 314 37.9s6 Ir is71 -15.602 11.015

401.40 19.697 17.676 L3.676 11.463 3.976 13.01" 15.152 11.066

401.60 19.669 17.616 13.762 11.526 3.961 16.179 15.64? 11.168

401.00- 2$.036 17. 556 13.637 11.66 -3.991- 16.332 15.997 11.19k

40Z.00 20.196 16.363 13.904 11.636 4.606 19.474 16.096- 11.233

W0.20 23.357 10.266 13.976 11.679 4.066 14.645 16.191 11.211

402.40 28.515 16.327 14.06 11.726 4P.616 16.731 16.276 11.337

4402.60 21.671 36.446 14. 161 11.172 V.622z 16.650 1C.363l 11.343

402.s0 21.626 16.564 14,167 11.617 4o.629 - 16.963 16.442 11.376

4603.00 26.960 18.661 1'..23L 11.661 -4.036 19.673 16.517 11.412

'83.26 21.132 18016 14.293 11.964 4.g43 19.173 16.569 11.465

403.0 U1.20 18.919 14.355 11.947 ..IS@- 19.279 16.656 11.476

403.60 21.434 19.022 14.416 11.990 4.057 13.376 16.726 11.511

403.90 21.564 19.134 14.476 12.032 4.665 1;.71 16.791 -11.545

-40.446 2t.734 19.246 1%.539 12.675 -1-072 13.564 16.55S 11.579

404.20 2L.855 19.359 14,600 1Q.116 4.048 - 13.65? 06.919 11.615-

.04.40 22,035 19.474 14.662 12.162 4.6050 1;.744 16.963 11,655

404.60 22.15f. 19.56S 14,724 12,205 4.891 19.636 17.044 11.693

404.60 22.333 19.701 14.766 12.Z47 4.096 19.927 11.102 11.726

405.00 22.453 19.614 14.648 12.207 -f#,165 26.015 17.166 11.757

405.20- 20,635 19.927 t4.916 1232 4.112 26.165 07.220 11.766

405:400 22.791 20.047 1496 12.376 4.126 21.Z49 17.295 11.825

4 05.68 22 .961 20.1036 15. 9 66 12.450 -4. 146 26.34-7 11.406 11.85?

405.60 23.134 20,334 15.112 12.3 -414 2656 1.539 1.6

486.00- 23.295 20.471 15.256 12,594- 4.1?? 26.626 17.637 12.016

406.21 23:,45 00.508 15.324 12. 037 16 t4 - 26.719 17.766 12,149

4640 23:1S2.9 15.312 12.678- 4i196 21.666 17.752 12.879

466.60 23.736 20.665 15.436 12, 716- 4.196 26.676 07.562 12.116

406.00 23.679 20.512- 15,493 12.759 4.21s 26.955 17,651 12.146

467.i8 2$.92* 21.017 15,547 12.799 4.216 21.929 17.69S 12.106

407.20 2f. at 21.011 15.601- 12,636 A.217Zt 21.101 07,966 12.t96

40 7.40l 21437 21.225 15.654 12. 675 4.225 U1.173 17.992 12.225

407.60 24.456 21.331 15.711 12.912 4.234 21,245 15.040 12.254

1.07. 80 2V.596 21,146 15.771 12.953 47.24S 21.316 16.091 12,286

46.0 24.746 21.549 15.836 12,95 -4,252 21.387 26.L43 12,319

4.05.20 2f.592 21.655 15.654 13.630 4,266 21.456 19.1%. 12.347

108.40 2;.823 21.756 06.937 13.671 4,267 21.525 16.242 12.174

6 06,00O 25.164 21.S02 15.996 -13.18 4.270 21.593- 18.Z69 12.401

495.60 25.306 21.965 16.044 13. 145- 4.279 21.661- 16.337 12.4z8

409.60 22.447 22.069 16.0"? 1S.182 4.244 21.726 16.304 t2.454

409.20 25.597 22.102 t6.151 13,2)4 4.21L 2L.796 18.430 t2.479

409.40 23.729 22,274 16,204 -13.247 4.29S -21.665 16.416 12.505

404,608 25.672 22,366 16,261 13.288 4,366 21.941 13.52r 12.53S

409.50 26,62t 22,494 16.325 13.335 4.316 22.626 15.594 12.576

410.00- 2S,171 22.606 16.366 13.3S0 4.32f. 22.115 16.663 12.6M3

418.25 2;.316 22.716 i.3 13.416 -4.332 22.137 16.715 12.656

41040 26.4S9 22.828 16,496 10.454 -403 2E,256 08,700 12.661.

41,66 26.601 22,922 16.549 13,491- 4,346 - 22.324 16,603 12.712

441.i0 26 .3, 23.024 160- 13.529 4.3516 22.392 16047 t2.739

411.00 26.663 23,125 16,654 13.567 4.462 22.466 16.891 t2.766

4 1~l 27,623 23.226 16:16 13 405 4.376 22.520S 1:.936 12,196

411.06 21.162 23,325 1.796 13.642- 4.316 22 595 16,962 12.626

411. 6I 732 2.2 6.106 13. 679 4.34 2t.663 19.60 12. 46

1-1100 2V.441 23,525 16,661 13.703 4:192 2U.733 t9,076 12.M7

We 110000. of ,.-Are vowuls obbreviated 0,.re by-(#/lc l

33

Page 38: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

TABLE 7 (cont d)Sm,. Mo. 173. 171. 170. 80. 536:f. 133. ]Is-T-up MK 294. 296. 296. 2196. 29. 331. 336. 336.Path (to) _59500. 09500. 59500. *864. 420. 2664. e$264. 6634.p (at.) 0.i14 a$- 1)00:62 0.-5 .23 0.17 9 0.02088 0.0708 0.02079

(at.)2 L.04 0.0. 00053 0.0 13: 0.0 579 1.00395 0000 0.02079

u(O/c-) 1.6901-12 1.30ir122 6.0120 e 1.515[1Al 1.6445120 '1.tsar21 1.1194C-21 -1.303E-21I

412.66 2? .562 2S.626 1.917Y 13.75S2 4.464 22.665 11.12'. 12,6964.12.26 2P.723 28. 72l 16.972 134791 4.1.67 21.079 19.173 12.925412.460 27.&W6 23.6SS -17.028 13.431 4.41s 22.901 -19.223 12.954412.60 26.669 -23.0461 Mots2 15.69 4.4.21 2S.634 19. 277 12.96412. 60 26.153 24.449 17. 142 13.909 4.429 2.1.115 -19.331 13.626

4t3.06 2S.294 24.156 170197 13.946 4.436 23.194 -19.312- t3.056413.20 -26. 439 -24.25 17,251 15.987 4.44.2 23.27Z A91.33 13.0641J. 40 20;502 24.362 -17.S65 14.616 4.4#49 Z3 .356 19.40 13.111I413.60 26.125- 24.1.64 17.159 14.164 4.457 23.430 19544 13.1L42413.80 26.869 24.576 17.416 14.101 4.466 23.513 19.519 13. 174

414.20 29.014 24.60- 17.475 14.139 4.473 23.599 -19.858 13. 26?414.20 23.169- -24.f791 17.530 14. 170 4.441 23,68 19.717T 1s. 241414.40 29.307 24.961 17.52 14.219 4.487 2S.7860 -19.76 -13.27A-414. 60 29.4,55- 200613 17.853 14.262 16.495 e3.866 -19.44 -13.316414.060 29.611 25. 131 17.723 14.389 4.565 21.991, -19.924- 13.348

4 10.0 21a,77? 25.267 L7.81 3 14.375 4..517 24..125 20.029- 13.416415s.20 29.956- 25.419 17.9 14.462 4.535 24.271 21.199- 13.492415.40 38.133- t5.575 18.826 14.553 4.998 24..34, 21.215 1s.066t415.60 33.299 25.715 16.169s 14.616 4.571 24.57? 20. 412- -11.838

415.60 -36.406 15.839 16.166 14.680 4.061 49 26:586 13.87

416.00 316.815 20.908 14.247 t4.712 #b.091 24.843 26.596 t3.798416.20 36317 26-076 18.314 14.7TO 4.802 24 .963 28695- 13.760416.40 36.938 26.203 16.304 U'.6M 4.813 25.131, 2070646 13.862416.60 31.105 26.335 10.413 14.669 4.826 25.286 28.917 1M.852418i.60 31,283 26.402 16.559 14.9145 4.6464- 26.As? 21.603 MI.ES

417000 31 .469 26.643 1l669 15.834 10.851 25,639 21e286 14. 665417.20 -it1.850 26.489 18.103 15.127 -4.875 26.829 _U0372 14.658417.40 31.802 26.948- %6.901 1MM1 4.892 2624 21.551 14.101417.60 32,049 ?7.162 L9.139 15.327 4.710 26.222 01.735 L4.297417.00 3t.249 27.351 19.246 15.478 4.787- 26.42t 21.930 14#.456

4L6.00 32.448 27.46 t9.39? 15.666 4.68? 26.62L m2.ss- 14.636416.20 3t.-646 27.748 15.93 15.061 4.574 - 2.821 22.332 14.929410.40 3zoahe 27.948 19,791 16.153 5.105 2P.921 ZZo032 1S0822418.6. 33.048 28.146 19.99L 16.246 5.170- 2F.221 22.712 15.2164.105 33i40 26.346 21.191 18.446 5.316- 27 04 21 22.912 10.415

419.00 33.4 44 26.546 -26.391 18.642 5.424, 27.821 23. 132 15.811419.20 33.644 20.746 26.59t 16.035 5.532 27.821 23,332 10.686419.40 33e646 26.946 28.798 17.834 S.636 26.021 23.532 1863419.60 3b .046 29.148 28,967 17.226 5.767- 26.221 -2S.732 16.196419.80 34.246 29.346 21.11s 17.422 5.626 24.121, 23.931 16,369

420.06 -3k.44#- 29.048 21.362 17.617 5.961- 28.621 24o136 16.56420.23 3t#.8644- 29.747 21.575 17.799 6.168 26,621 216.327 16.766426.40 34.64? 29,946 21.755 17.955 8.64S 25.621 24.5246 - 18.918426.'ho 36 ;668 16,141 21.919 16.691, 8.115 29i221 24.715 17.06420.80 35.243 38.336 22.168 16.286 6.138 21.426 24.969 1F.,161

421.00 35,435 36.So? 2f.1591 16. 383 6.154 29.616 25.665 17.258421.20 35.621 30.873 22.298 -18.366 8.166- 29.80? 2560 =17. 3261.21.0 35il61 38 .626 22,356 01.446 6.176 0 25,594 25.412 17,369421,80 30-.977 30.972 22.478 Molt1 $.1861 -36.17? 25,566 17.4,40421.00 38.154 31.110 22.061 16,575 8.195 36.356 25.1 26 -17.561

7422.00 36,332 31,281 22,686 16.61 6,265- P S41, 2S.659 10.567422.20 36.513 31,413 22.7TO 10.715 8..20 71439736 20.11 17.86t422.40 36.899 31.,572 22.651 16.79? . P., !2#. 26.151- 17. 719422.80 36.693 31.744. 22.961 18.569 6.1' 4, A~ 4 2 79 1F.6$33422.00 3F.891 31;932 21,144- 19.166 6.12 3t.. 76.575 17,552

423.00 3r.298 32.120 21.331 19.252 6., 3L.519 i6.773 16,178423:20 3r.1659 32.325 23:515. 19:%2P 6:;;#- 31.718 26.971 16.300423.4 0 37,867 32.5i1 21,879 19.5? 864 31S.917? 2716& 16.001

423.60 -17.601 320466 23.818 19.664 6.646- - 2.114 27.093 18.6264.23.60 364664 32.365 '23.92? 19.739 8.821 32.12 270516 16,714

4624.66 36,237 33.611 2%.619 19,796 8.831 32 .4.0 27,863 18.714',Z4: 2 0 318.404- 33:143 21%66 8 905 V IS 8.639 32,649 27.*793 1626414.46 36,.5 6 3.27 , 2181 19.96 6.64S0 3t.615 27.919 10,878424.60 13670732 33.461, 24,236 19.964 6.656 - 31,96 2.696 16.926424.66 3109#2 31.036 24.325 26.831 8,886 31.165 28.158 18,992

425.60 j9.684 33,815 114.439 26.129 8,891 33.355 26.309 19.691425.20 35M276 33.873 24.512 20.276 6.749 31,552- 26-e561 L9.23?420.46 M1044 34.063 24,786 26,447A 6,627 33.756 24.1'57 19.414425.66 39.670 34.251 24.929 26066- 8,80 33.949 26.996 19,073420.00 30455 34.422 25,649 26.6790 6,968 34,.142 29,125 19.6

426.8 41.0i39 34.577 25.149 20.747 8,.914 14,125 29.216 L9.748426.29- _4-i.2 34,734. 25.266 20.44 -.94 1- 34.566 29,43? 19.$27428.40 46o46 14.617 20.301 26.955 8.9r6 347.692 9-16 -11.92742866 4670563 35.654 25,468 21,66 6.996 31:656- *kl MI.6S

426,761 467.740 3510 25,564 21,053 7,666 3b.961 25.645 26.049

42 F.60 416i96 30.165 -25,836 21.141 ?.816 31.106 21.929 6,8424.26- 41i#6 35.4.16 25,896 2166 7.126- 3S.216- Z9.99 26,121

*427.41- 41L.149 35,525 29.745 21.228 7,612- 35,256 36.803 2. 26,10427.66 41L.328 35,824, 25.75? 21,268 ?.Is?- 35.374 10121 26.181427.61 f4L.466 35.1 21 25.647 11.303 1,642 -36.454 390116 26.287

* hLnt i. -t .lcja. abbroviated hae, by (/j)

34-

Page 39: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

TABLE 7 (cont'd)-Sam NO. 373, 21I*. 110. 1 6 36. 033. 115.

- Temp (IC) 296. 996 . 16. 9. 296, 3. 33. 26P (K) 900 590. 5 0. 264. 42. -684. 2614. 2664.

pat) 000 0.0 0662 .05,53 0.0:13; 0.01579 0 -.02066 0.02066 0.0207fP (&to) 0.01145 0.00382- 0.00553 0.02132 0.01579 -6035 0.50000 0.02079

u 01Cm. 1.690E0 It .1301E--22 4d567 21 1.5251 91 1.64s7 20 -l.994t 2112411 32072

628.66 61.S9% 25.&15 25.657 2139- 7.944 26.031, 39.23l 21.23s-626.20 414727 35.911- 25.956 2L.376 7.652 35-.649 36.266 26.261

%to.6 '..161 36.486 25.996 21.615 1.157- 35.60 30.346 20.211%a6.60 1.997 26.16Z Mo.st 21.W6 7.0864 2.7 466 2.2

46.60 62.ths 36.710 26.119 21.516 7.173 35.94 36.493 ?#.26T

629.90 62.296 36.331- 26.19C~ 21.578 7.662 16.4i7 34.656 26.621629.26 62.666 36.656 28.2,95 21.625 r.111 362.120 31673 20.66629.60 41-56Z 36i555 28.0$9 21.685 7.897 38.262 36.726 26.49S

6.29.60 4Z.71? W6.653- 26.368 Z1.725 7.143 3 64178 36.76 26.524

629.80 6t.653 %8.?$2 28.614 21.763 ?.1$? 38.356# 3633 20.551

430.00 62.992 3856 Z8.476 Z1.742 7.111 -36.638 31.66 26.503

430.20 43.135- -36.9(6 M28.9 21.023 7.1IS5-.524 34.9569 2616

638.68 63,261 $N.00 28.60 21.488 7.1t$ 36.619 31.117 2692630.60 6.3.632 37.161 28.653 0.1.5 N.122 38.731 21.617 20.861630.68 63,558 J7,067 28.?32 21.577 P.M2 U6.672 U1.286 21.72

431.00 163 .79 37.63- 2685132 20.04 -4.161 371667 3t.355 28616421.20 63.571 3Y.642 zy.c19 22.229 r.21. -F.225 21.936 28.95631.60 66.163 3T.621- 27.1.a 22.058 1.265 M7,628- 2.716 21.166431.60 44.343 37.979- 27.250 22.6 r-213 HAW55 31IMI 21.135631.60 41t.50? 30.116 27.2 22.652 P.261 -37-.736 31.96? 21.183

632.00 44.65S 3S.227 27.308 22.S6 7.246 3 r7.643 32.0666 Z211632.20 44.794 36.330 Z7&666 22.570 -. 296 3r2.933 22,166 21.264

432.40 44.931 36.429- 27.693 22.6t9 T.303 31.015 32.10 21.212432.60 45.066 20.626 27.65 22.65$ 7.319 -36.895 32.22', .1.300

632.$0 45.19C 30.-621 27.55 22.65 -7.316 20.176 32.27 21.26

422.00 66 .32 20.716 21.663 2Z.130 7.220- - 31.263 32.326 21.350633.20 66.657 38.649 -27.656 220766 7.326 39.311% 32.375 21.276

633.40 66.606 36.902 27.73 22.606 r.329 - 38.390 -32.626 U1.608

433.60 45.716 36.95 27.76 22.062 7.334 30.466 -32.46 21.427

433.50 65,667 35.0se- 07.46 2Z.60 ?.337_ 36.344 32.53t 21.655

436.00 4S.986 39.107 27.0? 22.914 7.361 $1 -658 32.51r 21.6615

434.20 46'e116 39.247- 27.9%2 22.9s6 7.344 -2.762 32e674 21.516

%34.60 46.266 29.396 28.10? 23.666 r.352 -3 904S6 32.775 21.581

636.86 46.42T 39.S29 Mi.ll1 22.069 7.276 221076 J2.916. 21.639

.3..0 46.,601 39,658 Z8.226 23.211 7.tty7 -39.276 -23.649 21.763

635.05 461.796 55,800 20.359- 23.33t 7.665_ 31e463 22.276 21.946

66. 0 46.976 40.021- 28.671 Z3.609 7.473 3M1649 33.629 21.9971635.90 67.127 60.159 20.52 23.62 7.402 -3-96 33.572 22.65763S.60 4F.291 40.279 26.617 23.509 7.4 9 391960 33.6#3 22.162

635.0 4F,662 60.395- 26.661- 23.657 7.66 1614-664 33.716 22.1'=0-

43b2.00 67.602 40.519 20.757 22.615 ?.501, - -l466 33.915 22.215636.20 6F,776 60.661- 26.666 21.716 r.924- -466425 36.067 22.294636.60 4r.9.63 60,620 2S.999 23.639 7.577=- -60.622 -06.249 22.620636 .60 60,166 61,012 M5,15 23.905 7.60 1 20;2 36.460 22.590

426.00 4S.366 61.191- 25.20? 26.108' Y,876 4L113 34662 22.716

627.00 66,526 61.262 29.301 24.188 -Y.665 611&6 26.71 22,7

6.37.20 65.677- 61,672 29.666 26,212 V.613 'it.321 34.092 22.636637.60 60.5216 61,663 251606 26,262 7.696 - 616 36.979 22,471637.60 681.966 41.666 29.56? 26e.296 7.763- 6.68S2 -25.01 2Z.902

627.00 69.859 6,1.783- 29.616 24.29 706- - %ticks 25.116 22.9233

620.69 43.236 1.8 29.668 26,2168 7.713 14 61735 26.166 22.16V

628.20 69.372 1.5.96 25.723 216.612 ?.?16 41;621 05,267 23.611436.60 69,606 62. 007 29.77- 24.65Z 7,723 -4t.962 35.365 23.232

6.060 48.643 42.184 29.029 26,669 7.727 6.1.978 36.36 2.666635.80 65.772 '2.2?6- 29.476 26,572 7,721- 42-.647 3S.663 22.66J

629.60 49.901 42.366 29.122 264.557 7342 t423119- 25,652 23.16?639.20 58.631 WA.58 259792 2658 7.7 -kl.19 35.56 219639.60 50.186 62,662Z 36.023 24-.&3&- 7.744 -26 5.6 2,.106439.60 60 .298 42.646- 50.073 = 26.679 F.750 41.361 26,636 22,286

439.#0 68,46 62,739- 06.121 26,718 -7.756- 49;435 -35.663 U222

660,00 66.656 62.629 30,1(7 26,751 7.761 -62.636 35.736 23.26

1.60.20- 60,662 62.916 36,16 2'.7?6 7,767 Wt.6*6 SS.76 232193

660.60 66,62 63,069 36,201. 26,622 r77V2 Z1666 35.62 2336

44060 58.943 6212 34.311 24666 V.77- 4t.762 35.961 22.321

4660.00 61.67 62.159 30.261 26,056 7.163 - 1a666 26.966 23.396

661,00- 61.224 63.316 36.6 26.525 ?.Tog 4638 26,062 22.lk

1,26 61,372 41413- 3H.662 26.167 7.795 46;.68 J6,126 23.46%61.60 61,525 63.5%2 36.570 25.653 Y.04 63,265 6.266 23.66661.40 St1.710 3685- 36.692 M6.15 7.032 43.637 286650 23.5!t

461.80 61,966 621606 26,667 25,362 7,60 -612 851 2.0

6162.68 !1.102 44.976. 31,029 25.675- 7.163 6436636 3S,706 23,051462.20 58.366 44. 271-- 31,216 25.656 96,66 -kiA.29- 36.503 26,022662.68 62.6998 66.662- 21,261 25,409 0.162 - 66.22# 37176 2.101l

662.60 St606 66,828 31.666 25,968 8.126 -6,64 .7350 942.4

662.64 52.667 46.709 31.615 25.575 4.12- 44.59? 27,610 26,362

443 iG 53.039 66,929 21.867 26.015 6.135- 444,69 37.636 24.366

662.26 52,209 45.6Y7 -21,772 26.092 .13 0,162 66, 27.77 24.626

6623.69 63,367 46.216 31.001 28,166 -0.166 61.122 37.961 26,616W.360 62,576 45i369- 32.021 267.1 6,205 4i329 26,126 24.692

53.03 62766 45.572 J2.119 26.671 &,260 -6.5.627 36.321 26,015

54,6 6.961 66.52: 22,221 286155 06 672 2.61 2.5

in-Thn units-of u aft mlectleC 2 - bbreviated here by (#/c. 2.

35

Page 40: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

SECTION 5

ABSORPTION BY C02 BETWEEN 500 AND 850 cmut

SAMPLING

The temperatures and total -pressures of the samples studied were variedover wide ranges representative of the -earth's atmosphere. Samples varied-inpressure from I atm=-to less than 0.03 atm and were maintained near -one ofthree different temperatures: 310 K, 274 K, and 245 K. The highest temperaturecorresponds approximately to the-maximum atmospheric temperature in the

-- tropics. The lowest temperature, 245-K, approximately-represents stratospherictemperatures. Ideally, somewhat lower temperatures should be employed to coverthe full temperature range of the atmosphere; however, the experimental diffi-culties associated with operating at lower temperatures -would greatly increasethe time involved in obtaining the data and would also -reduce the accuracy:. Asa compromise, the lower temperature of 245 K was chosen. An intermediatetemperature near 274 K was also employed in order to -provide additional dataon the temperature dependence of the absorption.

All of the samples studied were contained in a mult-iple-pass absorption-cell that has been described previously 6. The base length of the cell is Imeter, and the optical path can be varied in increments of approximately 4 m-up to a maximum of approximately 40 m. The number of passes of the monitoringbeam can be adjusted externally Without disturbing the sample in the cell.-Electrical resistance wire coiled around the outside of 'the stainless steelbody of the cell provides the heat when operating the cel above roomtemperature. The cell is well insulated so -that only approximately 30 watts ofpower are required to maintain it at 310 K. When Operating at this temperature,-the gas in the celj- is maintained uniform -to less than + 1 K. The temperature-is controlled manuaIly by adjusting-the- current througbthe heating wires-.

The main body of the absorption-cell is contained within a- stainlesssteel tub that can be filled with liquid to submerge the cell. The intermediate

-temperature, 274 K, was maintained stable to + 0.5 K by filling the tub with-ice-water. The lower temperature, approximately 245 K was attained by sub-merging the cell in a-mixture -of commercial "anti-freeze" and water that Waschilled by bubbling liquid nitrogen through it. A piece of copper tubing sub-merged in the bottom of the cub that contained the anti freeze mixture carried°the liquid nitroen- from a large commercial dewar. TenihOles located at-

different places Along the tubing alowed the nitrogen to evaporate and:bubbleT from the tubing through the liquid. The movement of the bubbles mixed theI- -liquid enough to maintain the temperature throughout the length of theabsorption cell constant to approximately ± I K. The ce-lI temperature was-controlled by adjusting the rate of flow Of the liquid nitrogen. After -thecell temperature had been reasonably well stabilized- the-temperature could -bemaintained constant to within + I K for several hours. The low-temperaturesamples varied-from approximately 243 to approximately 249 K. It was notimportant that a-7l of the samples be at exactly the s-ai -temperature is long as

P -36

- ' . -

Page 41: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

the temperature was measured- accurately. Therefore, if the cell temperature wasstabilized within this range, no-effort was made to -readjust the temperature.The stability of the optical system, and thus the accuracy of the data, arestrongly dependent on temnperature gradients and temperature changes in the cell.

A few of the data were obtained for samples of pure C02 ; most of the data-represent samples of CO2 mixed with dry air. The dry air consists of 79% N2 and21% 02 to-match the atmosphere. The mixtures of C02 plus dry air were obtained-pre-mixed from a commercial gas supplier in cylinders at total pressures ofapproximately 150 aLan. Table 8 lists the concentrations, in mole percent, ofthe- different mixtures studied-. The values of 0- concentration listed in theleft-hand-column are those determined spectroscopically-by us in the laborator.ybefore-any spectral data were obtained; these values are the ones used incalculating the absorber thickness of the samples. The-concentrations listedin the second column from the -left are those provided-by the gas supplier.Five of the eight measured concentrations agreed with- the values provided bythe gas supplier to within our measurement accuracy.

The concentration of each mixture was checked carefully by comparing its-infrared absorption to that of a laboratory-mixed sample with very nearly -thesame concentration of C02. Samples used in these concentration measurementsordinarily varied in pressure from approximately 0.3 atm to 1 atm becausepressures in this range -can be measured quite accurately. The sample cell wasat room temperature and was adjusted to either 4 -or 8 passes in order toattain good- stability. The spectrometer slits were adjusted wide to smooth-out most -of the structure in the spectrum over the sho-t spectral interval usedfor the concentration measurements. The spectral interval was chosen so thatthe absotptance was nearly constant over the interval and was between approxi-mately 0--4 and 0.7. With the absorptance in this range, the smallest fractionaldifferen ce in the C02 concentration could be detected-. Each measurement wasrepeated-several times. Two separate batches of laboratory mixtures were madefor each- concentration, and the absorption by a given -pressure of gas from

each batch was compared. If the--agreement between the-measurements for agiven concentration was not excellent, a new batch was-made and the measure-ments were repeated.

The laboratory -mixtures were made by introducing carefully measuredamounts of CO2 and dry air into a glass-lined -mix-tank. The mix-tank is suppliedwith a small mixing-blade that I-S driven from outside-th e tank by a drill1 motor.

The shaft on which the mixing-blade is mounted extends -through a rotating sealthat employs lubricated "O-rings. Partial pressures of the CO2 and the dryair introduced into the mix tank could be measured with an -accuracy of approximately Oi to 0.2%. The total pressure of the mixture -was typically 10 atm.The estimated uncertainty in the values assigned to the concentrations for eachof the laboratory mixtures varies from approximately:0,2% of the concentration-for the higher concentrations to 0.5% for the lower concentrations. Tne

- - laboratory-mixed samples were employed only to check -the concentrations of thecommercial mixtures, which were employed for all of the samples for whichspectral- data are presented.

37

--.[. .

Page 42: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

No evidence of systematic error due to selective adsorption of C02 on thewalls of the sample cell could be observed. The possibility of this phenomenonoccurring was checked carefully -for the most dilute (0.125% CO2) mixture.Errors due to adsorption would probably -be largest in the dilute samples. Dur-ing the tests for adsorption, the -infrared absorption at a fixed wavelength wasmeasured, starting immediately after a sample had been introduced into thesample cell. Approximately one minute was required for the apparent absorptiofi-to stabilize because of the changing temperature of the gas as it expanded intoa -reviously evacuated cell. After this short period- of stabilization, theabsorption by a sample remainedconstant for several days and was the same asthe absorption by a sample of -the same concentration that was flushed continu-ously through the cell.. We con cluded -that no significant errors were beingintroduced by the adsorption and desorption of C02 from the cell walls. Someevidence of adsorption and desorption could be observed under extreme conditionsthat did not apply to our sampling procedures. For example, if the cell werefilled with I atm of pure C02:,- then evacuated quickly to less than I torr ofpressure-, a slight increase in the infrared absorption could be observed for a-few minutes after the valve to the pump was closed. This increase in absorp-tion was apparently due to a small amount of C02 desorbing from the walls ofthe cell. However, we made certain that the -cell was out-gassed before intro-ducing a dilute mixture into the cell for investigation.

Three different gauges measured the sample pressures. A mercury manometerserved for pressures between 0i and 1 atm, an oil -manometer for pressuresbetween approximately 0.003 and 01 atm, and a McLeod gauge for lower pressuresThe parameters of the samples studied are summarized in Table 8. As -explained-above, the concentrations of the mixtures of C02 plus dry air used to determinesample absorber thicknesses are given -in the left-hand column. Only a few data-were obtained for samples of I00% CO2; these are summarized in the upper portion-of Table 8. The three right-hand-columns of the table correspond to the three

sample temperatures employed. For the- 100% C02 samples, the pressures listedunder a given temperature correspond to the samples for which spectral data werescanned. Not all of the samples of C02 plus dry air are represented in thetable. A series of samples at different equivalent pressures were studied foreach combination of path length- and concentration. The maximum equivalent pres-

-sure for each series was 1.00 atm; each succeeding equivalent pressure wasreduced by approximately a factor of two, giving pressures of 0.500, 0.250,0.125 atm, etc. Only the lowest pressure is listed in Table 8 for the mixturesIn some cases, particularly for-the lower pressures, the equivalent pressureswere not adjusted to exactly an integral power of 0.5 atm; the measured pres-sures were used to calculate absorber thicknesses. The exact parameters foreach sample are listed below in- tables that include detailed results.

SPECTROSCOPIC PROCEDURES

The procedures employed-in scanning the spectral data are essentially thesame as those used to obtain -the data presented in Sections 2 and 4. All ofthe optical path external to the sample cell passed either through a vacuum orthrough non-absorbing N2 to- eliminate absorption by C02 or any other atmosphericgas. The grating employedfor-the CO2 data contains 40 grooves/mm and isblazed -for maximum efficiency at 22 pm. All orders of wavelengths except forthe first order were eliminated-by a KBr prism.

38

Page 43: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

TABLE 8. SUMMARY OF SAMPLES

Minimum% % Path Equivalent PressureC02 C02 Length (atm)

(Gas(Measured) -Supplier) (cm"I) Temperature

310K 274K 245K

100* 3291 1.00* 1.00* 1.00*100 3291 0.500* 0.500*100 3291 0.250* 0.250*100 3291 0. 125*100 3291 0.00198*100 3291 0.00393*

15.3 15.3 3291 0.00198 0.00195 0.001938.09 8.09 3291 0.001973.85 3.85 3291 0.06194 0.00192 0.00386-3.85 3.85 1648 0,003861.91 1.91 1648 0.00781 0.00781 0.00781

0.977 0.977 1648 0.007790.503 0.511 1648 0.0157 0.0157 0.01570.250 0.260 1648 0.01550.125 0.128 1648 0.033 0.0313 0.03130.125 0.128 826 0.0619 0.0625 0.0625

r The pure (100%) CO2 samples are from a cylinder of commercial grade C02 with

purity reportedly greater than 99.5%. The equivalent pressures listed forpure CO2 represent all of the pure C02 samples studied. A series of -samplesat different equivalent pressures were studied for each combination Of path

length and concentration of the C02+ dry air mixtures. The equivalentjpressures for each series were 1.00 atm, 0.500 atm, 0.250 atm, etc. down to-

the equivalent pressure tabulated.

- ,39

Page 44: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

O I I-

A background- curve that corresponded -to 100% transmittance was scannedwith the sample cell evacuated, -either immediately before or after zeach samplespectrum was scanned. In order to check for possible sampling errors or changesin the signal level -corresponding to 100% -transmittance during a scan, portionsof each-sP-ectrum-were re-run and-the results were compared with the-spectrum-[ that was -to be reduced- further. Separate samples having the same parameters

were employed in the comparLsons as further checks for -possible sampling errors.Each sample spectrum and its corresponding background- spectrum were digitized-with the-data related directly to detector signal punched on computer cards.A computer then calculated values of transmittance, integrated absorptance, etc.

The -spectral slitwidth was adjusted wide enough -to smooth out most of thestructure due to individual vibration-rotation lines in the P- and- R-branchesof the bands. The -Q-branches appear as single absorption features in thespectra. Smoothing -the spectra in this manner simplifies the reduction andanalysis of the data while maintaining adequate resolution for quantitativecomparison with calculated spectra. The -physical widths of both the entranceand exit slits of the grating monochromator were fixed at 1.7 mm-. This resultedin the spectral slitwidth changing with wavenumber as given in Table 9. Thevalues tabulated represent the -full width at half-maximum of a triangular slitfunction. As can -be seen in the transmittance curves shown below in -thissection, a small amount of structure remains in some of the P- and: R-branchesbecause -of the individual lines. Slightly wider slits-would have smoothed outthis remaining structure as was -originally intended. However, further wideningthe slits beyond the -1. mm used would have produced an- irregular and unknownslit function for two reasons: The image of the Nernst glower source formedat the entrance slit was not sufficiently wide to illuminate a wider slituniformly. In addition, the image of a wider exit slit formed- on the detectorwould have overfilled the sensitive element of the detector. It -is appareplthat the outer portions of wider slits would not contribute properly to thedetector signal, thus producing an irregular slit function. Interchanging orreadjusting the optical components to overcome this problem so that wider slitscould be used was not believed--to- be justified because of the small amount ofundesired residual -structure in the spectra.

A few checks were made on -the uniformity of the sensitivity of the -instru-ment to different narrow portions of the I-7 -mm wide slits that were used. Thenon-uniformities that were observed could Lead to effective spectral slitwidthsthat differ by no more than 5 to 10% from the values listed in Table 9. Non-symmetry of the sensitivity about the center of the s1it can also lead -toslight shifts in the effective center of the spectral band passed -by the slits.This phenomenon can lead to apparent shifts in the calibration that relateswavenumber to grating position- as the slitwidth is changed. Errors in -wave-number calibration -due -to such non-uniformity in sensitivity could not belarger than 10% of -the spectral slit width.

Table 10 lists the absorption Lines used- to provide wavenumber calibration.[ Transmission spectra- of the calibration gases were scanned with the spectral

slitwidths adjusted- to about one-fourth of -the values listed -in Table 9- Thecalibration lines were well -resolved with-this improved resolution. The linepositions were determined in terms of fiducial marks that were related directly

40-

Page 45: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

TABLE 9. RESOLUTION SCHEDULE

v Spectral Slitwidth

-(cm ) (cm- I

500 1.2-550 1.5600 1.9-650 2-.3

700 2.7/50 3-.-2800 3.6850 4.2

TABLE 10. -CALIBRATION-DATA

V_ V0 0

d(ciii 1 -Gas -(cm 1 -Gas

481.5 extrapolation 633.87 CO2

494.19 H0 645.86 CO- 2

506.93 H 0 661.16- Co2

519.60 H2o 0-674.44 -CO 2

525.98 -H 20 687.-16 -CO 2

536.26 H1 0 700.06- CO2 2

547.83- H20 725.47- CO 2

554.64 __H 0 743.83 CO 22

576.14 H0775.81 -CO

584.74 -H20- 788.32 Co 2

594.96 :1H20 -806.26- CO 2

604.46 H20 826.51 CO 2

62.59 2-H0 -860-.0 extrapolatibaf

41

Page 46: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

to grating position. It was assumed that the relationship between wavenumberadd grating position remained fixed-when the slits -were widened to scan thespectral data. The errors introduced by making this assumption are--essentially those -caused by the non-uniformities in slit illuminationdiscussed in the previous paragraph. The C02 line positionsare well-known throughout most of the spectral 2region and were used fromapproximately 630 cm-1 to the -high-wavenumber side of the band. All of thewavenumbers listed- in Table 10 from 633.87 to 826.51 cm-1 correspond to the-centers of C02 lines that are not "blended" with weaker adjacent lines enough-to shift the apparent line centers significantly. The C02 line positionslisted are from-a-report by Drayson.1 3 No easily--identifiable absorption linewas available as a calibration standard near 850 -cm 1, the high wavenumber-limit of the region of interest. Therefore, the position of a "false" line at860.0 cm- I on each- spectrum was determined by extrapolation and -used as astandard. Accurate calibration it-~not critical between 826 and 850 cnr1 becauseof -the small amount of absorption and the lack of -spectral structure in this-region.

Absorption lines of H20- were employed for the low-wavenumber side of theregion. The H20 1ines used are reasonably- well isolated from other lines so-that the center positions can be located accurately- and the points of maximumabsorption are -nearly independent of the slitwidth- Many of -the -C02 lines inthe 490-625 cm- region are blended, making it difficult to deterrine -theircenter posit-ions accurately. All of the H20 line positions from 494.19 to-620.59 cm-1 are from unpublished data provided by W. S. Benedict and -R. F.CaIfee.14 The values listed for these lines agree -within a few hundredthsof a- cm-I with the -corresponding values in the AFGL listing of line parameters(Ref. 1). The "false" line at 481.5 cm was loc-ted by extrapolation inthe same manner as that used for-the 860.0 cm- line. A spectrum-of N20 wasscanned, and the -known positions of the lines wereused to confirm the positions-Of the H20 lines between 590 and-634 cm-I. The 6.3 Pm HO band was scanned in-2nd-order and its line positions -used -to confirm -the calibration f-om 670 to7,30- cm-.

Before each -recorded spectrum was digitized the positions of the cali-bration lines were marked on the recording. During the digitizing -process, thepositions of these calibration lines were also digitized in terms of theirphysical position- on the recording. Wavenumber positions between the cali-bration lines were computed- by interpolating on a linear wavenumber scale. Themaximum error introduced by the assumption of a linear wavenumber scale was

3 S. R. Drayson, "A Listing of Wavenumbers and Intensities of Carbon Dioxide

Absorption Lines Between 12 and20 pm." Technical Report 036350-4-T, NationalAeronautics and Space Administration, Contract No. NSR 23-005-376, May 1973.

W4. S. Benedict) Inst. for Molecular Physics, College -Park Maryland, 90742;

7 R. Calfee, -Wage Propogation Labs., Environental Research Labs. National OceanicAtmospheric Administration, Boulder Colorado 80302, (Private Communication)-.

42

I

Page 47: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

approximately 0.1 cm-1 . The estimated total error in wavenumber calibration is

less than 0.2-cm 1 for most of the spectrum, but it may be as large as 0.4 cm-1

in a few places.

RESULTS

The results of the 002-transmission measurements are presented: -in detailin the form of tables of integrated absorptance, JAdv, and in spectral plots

of transmittance. Tables 12 th ough 27 ontain extensive lists of -the cum-ulative value of the integral J Adv. Table 11 summarizes the samples repre-sented and the wavenumber interval covered by Tables 12 - 27. The table isdivided into three sections, one section -for each temperature. The firstletter of each sample number identifies -the temperature as follows: H, 310K;Z, 274K; L,_ 245K. The second letter identifies a group of samples for which

the corresponding spectra were processed-together. Several groups may cover-the same spectral region, and the data appear in a single table. As- examples,HB01, 2 refers to two samples: HB01 and 1B02; HCOI-3 -refers to samples HCO-3

refers to samples HC0, 102 and HC03. The two right-hand columns of eachsection of Table 11 lists the number of the table that the integral values appearand the figure number that the spectra-appear for each sample.

Each column in Tablet 1-2 - 27 corresponds to a given sample with thesample parameters listed at the top of the column. The molar concentrations ofC02 in the mixtures with dry air are listed aong with temperature, path length,

-total Dressure-, equivalent pressure Pe (see Equation (8)), and absorber thick--ness. The pressures were-originally measured in torr, and the values were sub-

mitted to the- computer with the appropriate number of significant figures.-Values of the pres3ures were -computed in atm and listed in the table without

rounding them off to the corresponding number of significant figures. For thesame reason,xmany values -of absorber are alsb listed -to mcre than thesignificant -umber of figures.

The lower- limit of integration, v',- Is lower for large samples that absorb

a measurable amount far into-the wings of the -band system that it is for small

samples. The tabulated value for a given wavenumber v -represents the value of

the integral from v' up to v. Successive values of v-differ by 2--cm£; the

maximum value of v listed depends on the amount of absorption by the sample.

Several samples absorb a small, but measurable amount -beyond the spectral limits

included -in Tables 12 - 2Z The data for these samples have been o0itted in the

wings of the band system because data for larger samples provide more accurate

checks on line parameters- When the absorptance is small, very slight errors

in placing the 100% transmittance curve can result -in large relative errors'in

the apparent line intensities.

The integrated- absorptance between any two wavenumbers listed in Tables 12 - 27

is equal to-the difference between the tabulated values of the integral. Some

deviation from the true -integrated absorptance that would be observed with-infinite resolving power Occurs because -of the finite sl-itwidth employed in

scanning the spectra. Enough significant figures are -carried in the integralvalues so -that the difference between two successive values retains- all of the

significant figures justified by the accuracy of the original data.

43

Page 48: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

oComputer plots of transmittance for the samples are shown in Figures 10-24.The spectral resolution is the same as that of the original spectra (Table 9)-that-were scanned and recorded by a strip-chart recorder. Only three of theparameters for each sample are given in the figures. The tistings appear inthe same order, top to bottom, as the spectral curves. Values-of absorberthickness v are expressed in exponential form. For example, 1.528E 18 indicates1.528-x 1018 molecules/cm2. All of the samples represented-in Figures 10 - 16were near 310K; Figures 17 - 20, near 274K; and Figures 21 - 24, near 245K.

Values of Pe and P are related by Equation (8) with B 1.30; these twovalues of pressure approach each other for very dilute mixtures of CO2 in dryair. In a few spectral -regions within the band system, a significant portionof the absorption may be due to the extreme-wings of distant Ulnes. In thesecases the value of B - 1.30 on which re is based may not be appropriate (seeReference 3). The path lengths and CO2 concentrations are not given in Figures16 - 24, but they can be found in the headings of Tables 12- 27.

44

Page 49: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-404

co 0 0 U 0s 0 00411 t, VI c S I

cli 4 N ' C'

0000000 00 00 0 0

ca u w! C ..

4 N N N N

Ca%

4 -4 C C-4 C-4 ' C4

> 0 0 0tn en c 0 0 '0 0 0 l

014 C0

t .A ' D51 444 l 1

IT 00 00n C4C~ C-4 N 45(100 'D '

00 N tl' 4 / O A . O CC4z t3 - l N~ r4

a 0 0- 0 Vc

o 0 0 % 0 0 0'0o 0>U 00 go %n en .. IUcsU's0 '0 CfWI %A '0 05 Ua, %n5'C.c

'0 5

0.0 'T5' 5"0sa% -40'co.

az 0 0 S C) 3 - 0c

45

Page 50: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

~0 0 0 0 0 4 0 4 OS 4 0 0 1 N O - * 0 0 V,..0 N o N , 4 * . . c 0. . J o .

.4 - 00000N

GC 00.

forgo.~ ~~~~~~~~~~ .0-0 .0 . 0. .* 0 .0.4. I'O .*0. 0 '. .4 0110

-Y 00N" 0000N=04

V04*0 .0 1 .000.04 .01 n.4' 4 .0. . 0 . . . . .1 0 . ~ 00 .4 0

. .4~ . . .. .. 4*.0 0 00 0 0 00. 00040 N0.4. g .N 0001N 1, NJ4

eddO.v~ .- .1 .0 0 .0.4.

00F 0 0 "4I1l0. 000*40 .4. 0.. 0 1 N0. QNJ 404 0*.00 4.

nol 0 .4 .0 0. ., o . .. .. -*-

:! ,

2 1C e- 0 0 0 0 . 0 4 . 4 . 0 0 0 0 .Yh 4 4 4 0 0 0 0 . 0 0 4 0 0 0 .

4..0. N -00 N'o11 N0 * 10

.414. 000. 01 0 44414

00.4.1~c 1 40.0 .10 0 .000 .440 .11.. .4 0 .0 * 00 .4.0. *.0 44.

01.4

00

V I 0.... 000 *000 4.10. 0* 00 0 0* 0 0 404. 44 0 .. 00 0 1 0

zfoooo~~~~~~~w .1.4 .0 0 .004 .0 0 .0 . .0 0 . 4. 001. . . * 0 .0 0 00000. . .

... ... ... .. ..... .. . . . . . . . . . .

I IN WIN. . .-C .40 . ... 04...* . .0 0 .4 0 4 0 . 00. .. . . 4 0 .0 0 .0 0 00000... . .

~~~i~ . .10 ..04 .00. 0*.0 40t0 *040 44 0 000 00000C 4 0000

I- .:2. ..10 . 0 0 .0 0p .404 .01) .0 0 .. 4 4 .0 0 It00 0 0!

00Co 0. .. 00 ... .Ol . .0 0 .0 0 .04..0 .4 4* . .01 .. 01 0..0 .. 400.

Co.

N000 1Z a ". 4 . J N z

1 0 0 0.1 - -.1 0 0 0 0 0 * 0 1 . 0 * 0 0 0 0 0 0 0 . 0 0 0 0 1 1. 0 1 0 0 1 .I1.0I

.40.00 00*0 40. .4 000 0*0* 0. 0000 000 004 0000 00.0 0 0 0

.1 00 0 *0 0 0 0 0 .1 0 0 0 10..0 4 00 0 0 0 00400 0

Page 51: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

M I0.. I0.0 I00 -O~ -o.. -o0. -.40. -400 -404 0.4N 0009 04

09 9 0O.-N00 0 0 0. .04'L0 .00 0, 0~ ,045 N.'~ 04, 0

i. oo M o o It00 It0. .. 0 0 .0 .4 .0 0 *..0 41 Z4 0 I.N:.0 10 0 o

44% ~ ~ St N .. 0 4 0 444 MON00 NO 00 N 0 0 O N * .4 55 )t .0.00 000 ' 0 0000., 0 0-t:

00000 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~; .4 4.%00.0.0 N NNN '.NNN 0 .r 040 000 000 )03 .

N0. 0 1 000 1* 0 0944 1444 *400 4 9000 ;:1044*40 410 04044 ',1:oO 04.4. 40 0 -t - 0*0 0 9 9 0 0444 0 4 00 ) . 0 0 0 4 .'0

.0.4p 00 4 &4 400 .000400 4 0 0 040 4 0 0 .00 040 0 . O 9 4 4 0

0.0.400 N~~a 0.000~ 004* 0.4" 0.00 .40. "NON 000 . . 0540 A I' *09 40. 4 191.

1: 44 0 T 4 40 4 05 40 4 NVN O: 0 .4' 0 4, .0 -. 0 0 4 0 0 ' 0 0 ( 0 0 0 0 1 0 4 0 4 00440544,4~.. .. .NN* .44444 .0440 .400 .'A ~ 00 .4 N.'4 .0~ C . 4. .4 054

Z0000 0 s .NNNOO t.0 00000 NN 0 . N 44044 @04.44 O00N

SO~tOC 000 0 '0000 00 00 0000 1 9..0 0040 00 0 00 0 00.O .o. 0 0

000.*S.4 0*0AS 0 . .4 .0 . AS 0. NJ 001 0 . *.000 0 4 9 N00 - .4' 0 9 , 0.:"o004)40,11 ill",0 1A 1140 'Y'' ,10. A0- .4 Ii A

51

0 0040 ai~'. 0044 040

PNO0.A.4.N..ON. .. . . .0 9 .00. .4.4 . .0.4 94 04 0 00 4 40. 0 ... 00 %4 0 '-. .0. .

0490 0490 4.950 SSAO 0..090 N0..4 01. 00.4 1S.0 00 C NO I4 000 0Z 0 0

V1,00 00 0 A,00 0'S)'.7 7 . .0 NA..N 1 9 040.400000 -. 444 00440. 00.21 0. 1 0NOO.0~~~~~~ .PO NA ..00 NN N .494 . 0 9 .N N. .. 00 ... .N 4 . .00..

0N 0~ O OO 0040 00 . 0 0040 90400 N 00 00 0 4940 O 00 0 00 0 .0 000000 ~ ~ ~ ~ ~ W4 g,0 vN -NO 000 00 .040NNN4044*4400004

NNNNN ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ !!4 SNO t4NN I.%N NO09 NOS . 0 0.S 0 04: 4NN N*0

0,0,,00 0.05,.SO 0,0,,0.0 .4)00. o , 00 *AA40 4050 04 . ~0M. 0AS 54 *0,4 9 0 0 000T0 0000 55500 0000 0000 0440. C0 0.'0 1NOO 00.4 0 :1 1 .50 0 . o .. '90 0

00000 ON il0l0 440 )4'50 0 0 0 0O O4 0 0 0 0 .00 - )N J,0 . - ,.N 0 0 0 0 0 0 4 0 . . n "4 . N O N A 4V N 0 M O 0 0 0 9 9 * 9

'0,,,0 00,0 000 00..0 '0000, N OC 0 0 0 000 O ,WI0*4 00, 54.04- N1

00000 000,0 0000 00000 0,0O0.5.0 0000,0,00.00 NOOJO I.N.0 00,00 N

rON~~~~~~~~~~ .. .00. .00. .00. .OO. .O 00 .40N 0.40 . N 0. .5 40 .00 . .. 440. 0 -0.00 N-4 N2:O 00000z 00000 N00 t:40' N*NN tS00'0.0 t *0* t.:9 t 04 t

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .

0.504 0 004 0'4 "I00 Z044 Z05 , N-0 4 40OO N J0. 0 .0 0. 4 0 0 59 . 0 0AS.4440AS": NNOS44AA NN,,40 ZZ,0 NO tM 0..4 5... .0.0 0,0 4440 N..5

- - - - - - - - -- - - - - - - 000 6.400 .0500 9.00 .4 00 *00* 0474

Page 52: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

0W ,NOO 424o. I NhwO 0.04 0 . N0 N4.40

02 ' owOMS NO.4, *P20 WO .ON NO 0.00 .0-4

. . . . . . . .. . . . . . . . . . . . . . . . .ON. . .o.. .0.0

*000

00

00..bf : OU% N l lCJ. N0 . 2 N0024

0 *11*R W.4,0 ..- N 0 .00hC .0* "4 W4N.. =Oz9n

8 -- 4, 0- .4 I INN24

o..0

0

.2.O00.2 2..4w. "940 0= M"0 N0.70 00*00 N..U0000..0N ~ 9,0fl~% 0"MO

024240. 12.0 002400N M 1

. ... ... ... . .. .2* NN404 4'0000 W00ON 004. N*49 *0. N

0 0 0 0 0 4 . 2 2 4 0 . 0 9 0 1 1 0 0 ' 0 4 0 4 0 4 O . N

C..M.r - I~ ",0, 02*2. I4 0 -"OO 24.4, 0.02,0 M 0.1 0N

onM4. N4241 6. .424, 0 %MO N O N 0024 0 00 0022 ION, N0M0 *N000

-m, ... 0 0.0 . 4.4. 000.2 C4 o ItNo: 1: t4 .1: 0 . .0' 00. , V000 404

00.40.2.2. ... . .. ..0..* .200 N09 02402. 000.4N SOOOZ I,*O 92-0 CN

00 0

ON ~ ~ ~ ~ ~ ~ ' 00.0 0..0 .4.22 .040 0.0 0 0 24J0 .4000', 004

.20142444 00000 0000.0 00000 . . .4.N2" 242242 9 0 0 .0 0 .00 .044 500.

M2..00 .0". . .. "noU 024. NN44.2 0,1024.424N "200 .4 0. Og'000 0.2.20 0

.200024024 c0'.0, 0'*.2.coco 000044 .420 00,00 C o a 0000 c..,oo 002000

00000:000 00 0 0042 O2WM 0 9 0 Z,0400. O00.42 vv0*. 049vv 0.001.0

448

Page 53: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

00.4 000 . ~40 .0 0 .0*0 .400 .00. .4 0 .0 0 .

100. 044 00 0 00000 1040 S 0 00 * 00009 00N- 0 N

000M -0 00 N 0 0 V000 N0 0 M0 0 000N 00 0. Np4 - M

0000'M~~~~~~~~ M4400 M)44. -44 000 .440 00. 04a4 0%

N M 10 M 0.4004 000% 4 4IA0 00004 I40 M4 44*0.0 010. 0.00 4 344 0 0t

.. 0..OC I0 0 00400 I0.0 O000- V.00 00.00 MOO *0 0000 a

000.00 00.44 0 0M 0 444. N.44. 00 0 0*40 .... "4 00040 0.N0..OI.~ 000 4 0') 4 00 0. 00.0 0 00 4 0.4 * 00 9 .4 0

.0 * 0 .0.4 M 0010. 0400 40.4 0 00 .44 0 0 00 O *N00000N OO O 0 Mtz9.0 * 00 4 0 04 0 w Oz 04.

000M%% 00*044 44000 004400 0009 000.0 4400 00 00.04

00000 00 00 0 44 0*0 I 00000 0044. 0.0..0. g0.044 M44. M.0OW

00000w 00m.0 .40 0 00.0 004. 0 0 0 M.0 00.. 0 044 .

.4 oo.0 4400.46 004*00 mon. n00.4044. 44)"M iv0000 44N4 0.400 00

0 .00 0400 *4 0: 0:0C 0.0 .100 0 .00.. ,:.0 '.0 0 It 00. 00.l!. 0tn

I4.4 00 .N40 O .NI0 0~ N44 NM."N 0 0000 - 0.0.4 000*0 0

0000 *00 0 04 0 00mo 00c 0000. . .. 00 0.0.. 000 . 0

900400 Co o 0000 04 00 004 0 0000 0 00 0 0 000 00 00000 0 044. 0 0 .0800 *0.0000,00.01. 77V?40 . 440 0000?0T00. 0007T7 00 4 000001 V Ti 00.0 .01.00 I 0 0.4 OM O 0 7i

0.404 .0 0. 044 00400 0.0.44 0 00 004:: .01.00 00000. 0.00.00 0.0000 0000000000 04~MM 0000 p 000 0 000 00 00 000 0 0000 0000 00 .40 0 44 4

00400 ~ IW sM 0 tN o 000.4 00.00. 4 90 004 00t0o0 4 440 044 0 0

00004 0 0.4 00 00 .44444 04 00 40.49 400 0.0 004 0 0 0.0 0 00

Page 54: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

MINI0 . . . .. 0 0 0 10 0 0 0 .N4f 00'0. 0,-a.,0

I0 0 0 0 oo o c 0 0

004

V:014 0.... 40 . 0 .. * 0 ..... .. 0... 0 0.... ..... .. ~ .o.oo. N-2.0000A

...0 ..... ..... 00. . 4 0 o 4 0 * 0*

'00

0-.

00

44 - 4 Z 0... ..... 0 * . 4 00

-,..2 I

.. 0C - - - - - - 00Z~ 400 i I S I

.... N70.00

00

0 ~ ~ ~ ~ 9: .l = .0.0 N~0 0000 0000 ;!00 50*0 002: ..0000 .0- 004 000 000 .. ..... * ..... .0 0 00

!,-0000 1 1 1 1 100 - - - e0.0 0.1*4 000 1.140 00000

O . .o,-044004 *. .0000 4.~ -14f. 000. 044

0000'~V ..oO ..4.0. . . . .0*.. . . .

.. 1 . ... . .0 0.. N. 0 0'.. 0 0 0

coco0 ou0 o 0.00..0 00004 caca040* . 000000

0-v-co~~ 00 .00A, 00O 00 00 0 0 0 44 0 0 00 04 0

10.00050

Page 55: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-M00.01f . * 0 .999 .. 0...0 0 ...... ,....9 0..... . . A.

.*... ..... . *... ..... .. . . .. ... *.. . .. ***oo .

.99*1 11. At:,:0 0099 -24i.499 0 0.0

..... ..... ..... ..... 0 . **, * .0 .

9..90 o* 9., .. ... 0. .. 0. * .. ..... .,.. , .o0... .. 9 , •

***** ***** °**o. * *~00 , * .. .0 .... ..... .

S.r o 9 o,0. *. . . .o.. . . .*.* .o .o.. .,. . , . •

o.,04. , **.N9 ***4 .N **1.0f .0 .,09 ****o o***o9~0 00o*** ,o00.

o9(.0 o , , * . , 9 9*o.. ,***. 0.901 oo ,o *o , .*

.0.0 0.0 o09 NOO0 . 94,,19 0,09 0 "000, C~.90. 01.90 190.90

r"4 Z

M!79010 090'. '9.9 ;94 ;T100 7 z9 9 . 9 : Z

'ooo09000° 0900o o o ooO9oooo ooogoo°0°°° 09 ooooo .99°00° ooo 0 9oo° ° ooooo°° ° o0o00

oNv v

0 74;0 N

001 0..940 .0100099-4.999.~.9909 0.00 l...51l...

Page 56: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

.. ..... ~O~i ... O~ *

*tiidz t 4S::: :=i z4 tt O c~ .: *0l **NNN v%0 11

1 tl: . 7711%JSJ SJS ttOT S;t t v: 1

. .... .... *~i~ iO o.N ~ ,ii i ' 0 0

. .....o .. . .,*- ~ .o,. ~

V: it 71*tN1 0Nti4 It -V: 1 ct1: 11

..0.0 .... N .: z

--O -- --- - - - - - -

*040* i ~. Nfl NONO .t

- Z. . .. - .::- :: ! :!:t

0 NOO tttthtt

tl! itliOZ .z 11; 4 4 'N; . -- - - -

V ~ ~ ~ ~ ~ ~ ~ -- -----_ -----__ __ _ __ _ _ __ _ _

1:71:: 0I:02: : .. . .... .... . ... . -... ..... ... .t...

0..C.7,iZ 4. N4 N ... " . .. . ... N ...- tAi 0 440 i

_j~~ Z% T TtoT.1 1::- V! It1.*1N1t :

's..2 I ..-

4 . - ~ ~ ~ ~ ~ ~ g'- i!Z t '0 4t- c *i. N.i 5' N .iN 044' ttf t iJ t. L

..., : ~i t % ... .....C ... i Nt5 N.A NN5Vs0 it

.i= t!c! x..?t =4t -

lt.400 Z- 0 - 0 0 0 0 .,. 0

Nc t

.cVv .i* tO? ... NO.4J0 T00 S N iilt Si.OCNi

-y ~~~ ~ ~ 2.- 0..N4-4.ii ...b it ... - --.I..o0 0

52 i~J i~i* hii

Page 57: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

. . ...- ... ." . -. .

oo

°.

00*

* *.fl4C C S. .....04

;-o! ... .....

* 4*,444*. .

0*04

"- |S a ". .... *

Cog

to Zo:::. . .-. 0.4* a..... a... %nt-i -iit7 iiitt titt% t o g

.. . .. . .. .. . .. . . . .. . .. .. .

0*.

00

o .... ..... .0 -

-oi - :. ' - T. . .. . . .. .

Co.

. . .. .... .n ... ... -. a

-. ..... -. .. ........... . . a N.. e

-0*** .00*0 NO

%, o

; 53;

.... ..... ..... ..... .. . . . 4 ..... ..... .

00~~~~.. . .....b.S........ ... -- - --44.4

.. .. ..... J ...aJ . .. a... ..... .5.... o..... c..... ..... 4 4N 0 0C

.. . . . . . . .... ... ........ C....a .ec.4 .a..- -Z V: :t

-O~~ 000 O0'0CC~O- - - - - -~eVt~ *44 444N. 'Nap53a

Page 58: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

a, - 0 c.-cok ;U m 40% =4 m.. 44 M N u , )4

- 0clC CDr~I @C: *OQ Me4~ mP U,4 O N~Q im . #A .ON

- . .O0

00 .o , 0 u - F, %u4I . *4 P. It N %D T N " m N L Dw.4.4t.N N a* -0t 4r N

CL CP, cl) - a oD c a a C C a C3 .4 .4 .414 N N N N ) ON 40 o~o 0 a .4x N ~t.t W * . .* * * . . . . . . . . .* . 0 * * * 4 *** * .

0a a CDaa aa2o aaaa CDca C30C 2a3C 3C C 2C *42 =CM0M l=C .4 .4

a0

0- OD*tr. C2 .- 14 %A 0N* 0 W) * 0%N M %) D 0 3 -P. 0 ~D 0 o mNUinOD4 N1

V)CYC 0a a aa o. .44.N 0N D 0I. o 009-4 trt-cu o L% 0 % f ' -N t N 4 N P~~.P. " Lf %D ' 4* .4 *O'%.4 10 % ON a, .4 0

00 fl 3 C3 W W) t- 4 U% 4 . PU %DT ) n LU LM %D P. %0 1) %D %0t go .0%P. Um L

C 0O' qCDC C . m 2C 9 C =a a aaa a aa 2a cmcm.4 .4.4 .4 4 .4N N rn Fa P" m

N nr ,w. *. . . . . .'Ot . 4 '~. .474~ .%SA'

V) t 0 - DC2C C C * D m C2C =C C 5 *CDC cm4.N c2.~t U 4o 4'C. tg%'OP. 4 .4

or.

C3 .1 U Oi C 14 N %D 0% pe4CP..1 % -N.mSn .0 4. U W O w 0 atCD-CD CD 0C) 1 ooa 004..4 .4 .4 NriPI) T* U U rW~' W%. UCM

I 18 c-OrOqN4 C oC oC 40 0 in00 oaa 4o m 0000 V4a0.4 %D.NNm N

OMON ~ ~ t c..1O2N C .'0 N 0 W N mto %D4 U~% t C 0 rL .40 40 "fO N %a" W%o - OD- U N U .O n f C v N .M40 - t.DN 0ujt r- c M0.4m4 3N N %0 Fn o~r N0C ,

0- C^ .. 00 -o C2 N Pr)tf W) N~ 4 .taI-a.0% 4 P) a C f) U s..2 IV

* *0( ww *N 0 N UN C'J t .O D fle)g Ul% n 0mNNitmMLA . -0 4Wo0-~ NU.. ara W M.4AUmN rl U Nw N0'-P. U% in .N D . 3N 0 P - P,

000m cm 2 C c CDC3CD D -. U4'ON W 0 IV) 4 .t DD NP W M Y.a 4 .

03 C3 *3 -DC 20 2

~ O-1 0000 0000. I4.4.N N* 4 cz * C**UC: O C Z o4 C;0 tu ca 0 41. 92.4 - ""W n tni N %

-42 9CI '"Cu U 110- A LnU AEH k0 -* ALL A UNU nU% L AC U A i AU %m U

'54

Page 59: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

o 0 0 r'D N W n * t.4 N9,4 " Na'I4."- CI -4 0M4 0 PMO.f U%D caon D 1%a I -0 W IAN4D0 W)M q ql~ W %0.4N4C) W) TLAW 10-w N w a- . 4 4N N~ 4WP .tJ*.tV 4 It-IU%

-C*~Il' aa3 a e*c C .4 .4 4 .4 4 4-4 .4 4 .4 .4 N C W % cj C N4UNNN N WN ( N N

oo* - N 0, 0 % rt*N~ .0 " C'N-*.D .*N N~ *,7 t N.cr= 0N40,. "1N nU% N %D~0 Q I. a C .4 C 0 % r4U'.4 P - .. 4 InN tI$o .4 0% N In M N Nt~ 0 MN4 W C2 0Nt W0 .4

3-0,0 0 ..4 NN W -4 N 4 - U% U% %D NC 0 Y 044 " WJ ) 4 4 ~t.1 1 L UN U.1% %a

r 0co 0' oao3a2 2a aC.4 'I 4 .4 .44 .f 4.14N cy v 'JNNty N N N t ciJMN N JiN (Y e N

U, *n U.U-~ t.' 40 F.11 a NJPP* 010a .444* tClN go.4* .4.UU0' NvC0m0 C2D0a. O L .7 f U 4 IC.1"4 I

4W) C w " In f% a n 4 0

m o C C 4= = .4 .4 .4N M 0 o 4 -S - . 4 m U% U LIA U% A$ inA ttI AII UU # AA L' %

00

E''441 N ~ ~ 0 N=N 4 m 6 % y thM.401 W) m.4% C.D%..%l 40 .4*U.% 0' .0'oI0j .4UP. tgN mr .2 U%N4to.N %D P % W)N.O N U% a N't DUCUfUtn 40 40 r N

'0 . .n0 . D %0 o'

* r r' t-fu . IL4dI4J% C:%NO C!N. 0 .4 '~ ItI aUP .. 0a41es C2 ~% C C' o 4.t r P~. N e NC NP.LP. Q4W) P 4N O F*... onA on o w n F

CD 0% N .,r-aN 4 1 toN Naot- *aP40 W .N4)*o4040 aw . % Na 12 pon4 N O0% 40 m m . 4 1 nlC3-t C % 1 M O 4CDD U U004. M44 M Q$** mI 4.040 M000 4 .0 MUnN#o*

00*

o,

UU400.4 .t44 M& . U%' LMA a .0.D ~ ..D.%4 N 40a0'f.q a,%a, 0 0

'0 010 NCDm .7 m N N D.N0 U. N N 0 . W)e4O W ) P.4 14 14 toA.. 0 % OD tJM %x j r% C.1 . .P .h -5 N ID N -. 01 *r IV a %D , ' 4 a A ". n N4 4 :C

fl) tr.0 O0 4N C3 C2 1 . PC4 c nw o 0%4 -t -t 41*% U% 0-)0- %Dowoo 00%0N0N0P,0N 4.

0-

'0 4. " M A W g = . N 1 40 00

- 10N0 0 0 40 m .4, U-.) '- a,0a ? tC :

r; 9o~ Cy.1cf.4.4c 4 of ,aoao . .4,o v40 do n 4e,04 004n4 alC% " W(V

ol -A 0 N0 n 20 0n C) 4 01 -M= a0 C n=m0 0 C = , 0 C3UJ.D CD = al 1-4. DC3 CDZ -444 41a 0 C3 C34 0 '0'3'4J'0%20= 0 .442.. cucx1 =41~p1 cl IA01 2 2=a CPC 204C.31114 ~ N4-~-. ~- '. 00 0 0 00 0 0 0 00 00

55

Page 60: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-. ' --.- ,

oo. .0 0 0 . . '. . * o .0 .0 0 .. n 0 c NO 0

*oo .0 0 .lec . .. .NC. . .. .0" .... 0 0 c

004

0..0~~0 .Octa 00000 _ 0

w04.I01_ 1.nv l 10. 0 cc "0C.g cg... 110 N 1.ICN0 flN - 0 N;l

00000 ~~ .o o a -. .0-4 .4 ' . .0 . . . . ..

00*0

C13'

04 -Oft .- e .0 00 .Ot' .to .'~ .. t . ... O.J.

Ar? co a .Cv onO 1~4 O-co... 0-01. congo.

0_4,

.00Zz 000 00'0

n-Nfl-~ ~~~~~ at cc ca:c cele 0 - C OO - 44 g .4 0 :I!,!0 00

000.

ow _O4m4'~ 40 0 0 0.''fl 1.40 J~g C neo .. 400 00 0* eeC.. 0. nO4NOt

00

9400 .. . .coc a coc ac o .... o no,,, 00.0 0c.. *0 Wc 00C 00.

0140 0000 nnn6

Page 61: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

4000 2 00(. 00.0. n0*00 0.- 1'.. 00.4 000 .0 A0I.4oP. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~!, A0.4 00.0 P00. 40. 00. 000.0.0* 4.0

so. 0.40 44440'' .0 40 N.44P.. 004,.. 0*0. g ggo .40040 000 0

.444140 . 0'00 4041*1 0..040.4..000 000 0' 0~ 00404~~~N N4444 4400 4.*44 00000 0 0 040 01.

000A'~~~~~~~~~~~~ .1 ..00 .404 ...040.. .. ..0 .0... .0 ..0 .0 0 . *. .

040.0 .0 N P LOA00.) -.. 4.3 70 0 4 g04. 4 44 04 0. 00 00 00 4 o o o. 0 ~

4..P4 0404 040I00 010 000.1 .44400 Z0..1 0

. 0.. .4 . 4. .0. .. 444 . 0 4. .0 44 .. 404 .040 .. 0 0 .4.40

4.000-o0 o.. 0 0 0 . 0 . . 0 0 - Z 0. P ; C; 0 0 A 00 0 0 4 0 0. 0 0 0

... S. . .0 0 . ... 0.4 * ..... 0..... 0... 0 001 4 0- 0 0 44440 44...41 44 0 .

o0 0 0 4 4 4o 4 0 0 4, I go404 0 4to040440o

'00.)- -- - - - - - - 00 40104. :0.0 040 04 00 40 00)04 00 . 4 4 00 0 0

.4 00 00 0 .0 00 .0 0 4 004000.00 4 40 0 4 40.000 x0 0 04^0 0 04Z -04 00000I 0

44 4 00.4 .0004 .... 44 .0 0 .,.0 .0 0 .404 00 0 .0 0 00 0 00 0 .0

... .... ..... .. ... . . . . . . .. . . . . . .

00400 *040. 0.0004 04000 00 00 40004 .000 0400 N".40. *0 0 40 4 1 04

00.~0 04000 00.0. 4 400 40..0 0.04 .04.) .4 0 0 40 900 40 0 4.*INN. 0 000,. 10*00 0444 *4 0 .. 0 0. 0040 404* to04 *4 .04, "C)40 0 0. 4. 4* 0r

. . . . . . . . . . .. . . . . . . . ... . . !.. . . . . . . . . .0.4 .00 000 -. 4,0 .40400 00004 440404 1.,0 044 44.1 4 4 4 0 0 0

.'0.'04 ~ ~ ~ ~ ~ ~ ::: 4444 0004 n00044 40..444....000.t. 0t0 0400 00! 0 t0000 t

. . . . . . . . . . .. . . . 0 00 4 004. o 4o 14 0 00 04 4 1. 04. N 0.1 . .I-,04 404N 004 IN".0 4004 140*4 4010 4I04 I, 4 0400 0.00 0.04 94040 4 0 1 4 4 p04 ,.4- 0 44 4 4 . 0 0 4 0 0 0.0400 0 0 * 0 . 00 0..0. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . .

T400 1 4000 4400 4 0 * 0 . . 0 4 00 400 .1) .04 400.. P....00

44400 4044040 4440.0. 9.00.0 00 00 0000 000 0 0 000 000 0 00 00 000 00 00

00000 ~ ~ ~ ~ ~ ~ ~ I 00 0 0 0 0 0 040 410 400 040 0.0 0<. 4004 0.00 0

0..00 0 00 0 40 0 00 0. .4 040400 1.4 4 .440 4004570.4

Page 62: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

0. ~ ~ ~ ~ ~ n ! *0.00 00*9 040 .94T: 0.4.40 09.940

..70w 0... ..... .. 00... -. 4 4 -04

0-44

si

.... 4 ..... 4 001 ... 1. . .000 M 4 4 .40.

* * 400:4 04.00 900.w .40000 Z4.7 004. 9400.49- N N""4 004 .49 40 *044 1*

*1000h 0000 000 44 0:1 ::10-9 -N:A0

... .. ..

0oft

0 0 Qs ... ......... 0 0 ~ . .... * 4 4

04

.000. ON09 0000.4 04.000 0 =.91.4 90g440*7.4.4 000 "400:0 *7--'4 'M .0 . 0!=

*AC - : . ' 0. . . .4 44 4. - 0041 :440 .404

0A0 4 0 7 09,0 400 9'40 cat'

00j

N " 4' -N 7 i: M

00C R! .. 4* 00 .. .*..4 .:. .. .0 0 9 00 . .:" . 0....*0 4. . . . . .N N -. -.

=047 Z.

000 ,Vo ~*o - 0 IN'04 0 0..000 7oSOS 00C*a0000 000-0 ... 0 000.00 44.000 .4090 04 14N *7409

*100400... .00 0 00 00 00........0.0..*7....

004,

4704400 coo .40.40. ooo - - - - - 1404.4 .90 4.4. .

OON-

z ?0

!!-w .. .. 0..-.. -- N 00* 0*944.00 04.9 *0000

004

0

-4 40 00444,07 04. 0 . * 0 0 7 0 7 0 90 .0 .0 . . . . .0 . .00 . .

N .49. ONSOO0 ON-0444 VN4.44. 0000,0 00049 0,044.*104000 0M4 "I.. 000~00~ 0 000 00- - - 0000 o*00 Wo0o0 o10 loo04

058

Page 63: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

*04)0.0~~~~ .44* .444 .4 C * .0 . . .. . .404

....4 .00. .... 0 .44..4. . 0 .

00,4,4 0.00. 400... 0400. 'L4O.@ 00.4 )00

0.0044 4 004 4)0000 0004 4) 40 ,40.0*4 .00

0044)) )41.0. 4.CC 0 .0 *0 00 0004. .0

@40 ~ ~ ~ ~ ~ I 000 0004 14*040 10). 1144 C oa. .4

0 0.0. ~ ~ ~ t 41* 4.00 4t*4 4114,OCI 0 0

0 . .. .... ... .t4~ .0.44 0.04. 00040n ' 4. 40 .4 0

0400 -; .04 0114.40 0 00 4 4 0 00 0 0

.4 'IV 040 00 @4*00* Ts=0

.40000 = 9zN' 00000 00 0 00 00 00 0 00 -0 -

400. 0 00 0)0 0 00 0 00004 .4491.59.4

Page 64: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

.... .

gr 77: :1 :!7e.14 t 1.. .V.- - I^. - .- -"zZz

0*6

.. . .. . ..... .. . A. . .... .... .. .. .~.,...o.. 4444z -4

oo.

001

E . .... - - - - . .. . . . . . . . . . . . .

*00

ZOO

Ooczr

Gain: ztC' O*00zzl 9 z~z !1 1=cI - -

..... ..... ..... .. . . ... .. .... ... .... .. .... . .... . ..... ..5*o - ... .. ..... ..... .. .... .b5. Co .. CS.... . . .

('.1 1~ t

COo..... ..... . .o . o ..... .. . .. . .. o ! ... .. .. .

"I.° 'C.5 NNN '. ,~~... . . . .... .... . ..... ... . ... . ..... .. .. ....

-4 ;j .... 0.q .... ~ N -. 4 .4J-0- 4.UO dC' /C

.m-

.0 -- 0, . - - --** ,,,, ,* , . 0 , , . 0 , , 000 0 o , 0 . .

+ ...5.. .A 5005

+ .,0+++iI +++-4044 ACt+ AA.... -' - A.C +CAA+ ",'o ...... A ASS : .C AAA ... + ° ".. .+".;.+

+ m + * ° *".. . * *. * ** . + • ** * ° °° 60

-- ,'Si. ',,o+ + - ++,+a z, oo o o + ++ +

Page 65: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

@0.0

*Omm M.44 N 444.. N4NN NNNNNPJJPNNJ

.o . .

00.

~mmo N..44c 4.94I 0 AN N ,~ O..994 0U0%*. gome

;:M: f~~- .4 0 .~4P. .e . .0-.. .D4SP .0P~V a *.~ .0:1 .% 9 . ,t .DU% 01. m. l. *~.0Af 4P1. 0 0.*~4 Zama C.. 4.d4 "dNNNN. PJAIJ#.N NNNNN. NAJPJU N

-1 tPO. *. , " ' V49N~ AUVP 1..00 .10.0 M '71 .

.4U& "No. o.99.9..9 @N A.0 Of. "1. .00'i : 4.4Ng

No- ; W.W.,t . 1.%Mi ... I 4AUtv 0 . .W.! 0 .. 2 0 *.tP.

Nu "N. a@ N"N .&1

NN 6, - 'AOWP P%- 0 .6 ,1. 0c.., N~~pp . t9'I U)N* 0 n

o . .

IA :N N ON..O .I.i. N N .. Owe.90C .44). . N 0

WP~~N.4W "1 10. .4.0)9 040 0)J 12U1 1 W. a).9 .OU).4

ft a0 W .0000)A .01.09 00000d. WO.. .N N N NN)9 1

0-..

.. mm 4ccc .*~ .c . .~c .c.. . aa

q 000--.0 N. *0 .N.0 a N. N. 49 0 N

1.P.F*Nl.~~~~~~ N...14 .0 0 00. 0 00 0 0001

W) a: W . *,)9 *a.rU W 4NP4.vf*t1.MWa Uv

00*

N~0 U 01c. ". cc..O ..c . . I I N I o e.M 0.9*af a m m a o ww .

0. :i " 40 a4 N404. 10 1)..14 w in 01 a-F%~~~~~~~~ "r mg"491 91..0 .4 I)0' *0U 1 0

-1: =maf... .mm S emeft WNt c P..m "m.0 m .0 a 4..

w .0

~ 9 . ~R94 9 1 .0.14.4 04U% .4~d.* 0.~c 144..J. 4'

A.A.9 144940 .4)041 &-A09 V.)11. NP.1... v.9- M - - f iA k- - -

~) LI9~IAI' 000cc .4.4611 )p... )O~4D 4.04

Page 66: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

N . *O pC~ .4 .....' %.. .. .. 0... Nl...4. a..... .4 1i... a a . 4.I ... NN w. at' g.op

0a

i.;812 OW ..01I *.INON flm"09 n0 14w 4t'aN. aI.:..,a 04:.;: WS417 m~in NJ.fVi11 Vt-* i11C It4 It OC eat. 4 ... N. N

J* 4e N 1117 140 1~.O 1#1 10141-

...1 . .-14 .410 N.N~ .740 .~ ~ ~ I4*.. Na ..

01..NN

00.D ~ oj~~~j~~~sf:.4 -41-40 m1- - - ,a C~I ---

0..4 ON .I O 141- N N

cj sox!! a17*f*b . .Oa .. . .. ..4N1 .N I 0 . .01. . 40 0I.ea. .4.41Nf . 01- I.l*# I.4 Is~ I INN "-40 0, 70J 4 *NN M 1401

aaoo a0a f l 111* 744 04- 0~ 74

00

ha ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 o e .11-70-11 .0101070 *C 07.10l.A1N NNNN N

aaaaa . ..... aa l... 4NNN17 17174* 44.p~ 01 .o.: t -IOtaAo. 41

11111

2n01 .0.cp 11 0 001* 4-a. a141 aNNN" ""4al1 404 I 0* .4 4 o00o

.,an a.. . O . a.a ... 44 .1)14 C.t .0.1 .7~b .476 .470"2 -00Wn. 1 1:.. .No . . w . . 4 So o* .J -. * 0 1 0 ON N N O 1 4 . - a . O . . f 0 ONa 0 4 * O . 4 m11 7 11 1 * 1

a- *111* 14101* *a - - - -aSO 0I.~fO% l)4..a N1NP. n-1 n"

w3 a . :9 70-% N O a .0-* 11. 04 .*1 77771 11111

t 1141 q441 *O.4 z*I 914 dlwa a aIIllg ZI. T 1- 0 111114161 oo,711 4*44

a-

a * m 1-01, *40-4 *4. a ffl.144 0 000 41104 11-1.1 1.00 *.N.04 44440a ;e~~a1140 .401.1 a~IN a.,N 14.41- *1a~t' 4.44ce -447.4 l.0117 004

. . . . . . . .. . . . . . . . . . . . . . . . . . . . .......

a.

;44s-044 NA .. a. IIaN4 .Na Nt04N 171-111 4o N :t I w 74 4144 Q444

as neq- ... .~.147 01-17 .4111 c1.4 441- 0..... ..... C. a. a o

17~ . *4...1.4 . ....c .1 ... ..- - 0.. C .... - 1 . ca . . . .

accac aa a .. 1 I174 0.0 1*1 Oa.-414 n11. Oca=a g~ 34 :!a

.1.........................................................o.. N ... .. N.....45*.4llJ 1111171 .111 14 0 1 00044oo

a. ~ ~ ~ ~ ~ ~ ~ ~ N~ .oaa.. 0.40j c. . a.4 -174 N4.0 .a 0 .O - - - . . .0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ w o~10 o a' a a, 77474 01. 4110 174 40- 11111- 11111 N-.

-. 14 1 01 O 441a -. N... 0411 0 0 7.. 1 04S 44 4* 4*62*4

Page 67: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

N0CN~~~~~ ~~~ .4C ..V5 .MW .0e. .4.U DNM .CO OC.

.. N4 '& .OIC"v ... n i et '. ee Z g.. nct .e. n 0a

9::eP2 =S047 zgV.5N 0400 0..N t40 wt!. tNNJN .4NC4 ONN:: 4

C.*. .444. MO . .00

V4 4 NN.44n j44n *450 9000*j j~ * *0000 04s0 4wr C;0. ; .

*4NN0C NNC0 4444 000 1444.D N,4&04 .0MCN 44NmN 400NL.

rmCf N.*N0 0 ; 4:.4. --. - - .044~. ~ ~ ~ ~ ~ ~ ~ -.- ....... ... N. .. . . . . . .

A 14n nNonnn M O oll nN. oS4 1.0 00S4NM 9 a x.z0. N N M N

NN.h. .NN .0.0. V"1 .1. N. S IN golM .04 0 "1.O k..0 oN O No

Ab.0. 4h40 1.04 ...4 .... . N ,fl. N..m oMM*. ~ ~ ~ ~ ~ ~ & : No"*00 004044, ',Pl .No e e e . d . . * ro

000b"b. .fC Z n.. 4CCN1 1Od~ HOe ON N1 en. C.04A no o0 0.0 0

neON.4 5000 o.... C~o.4 .e.. Dowser 0.na. m = 9 .1 0 .r0.0 0 0. .A..t0.004.41.~~~~~ .M. . .0m .0 J .44 e v% ... .... ..... 1 1.Cd 5.05. 04400 . . G: .0..,.

e NNU .. ly4M CNNe 04M0.0 4 .. ro e .4.44 N04-0n nn;Ns K5.". N.N5 00/0

04NN . nn M ** *. so oo o* 5510 00040 vwsu~ 00I.0 W 010 v o o Om000M.o 0

OMV..4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ H 0M. 41N O.0 0(04W1. .04.40.. 4..00.0l* ... 0 .40z0CCOUSC~~~ .M40 .00 . . 0 0 .C SC .00C .44.* .. 0 0 . . 0 Q A * 4 . 0 ' ' n ~ M0.4ON 0*4 N04040 NO 4a No NN..4 I. N40NP MO9:9 v000 000*..0,. ...&*oinnn no , w a0s0 a&00 ..0.0 .44.. .444.. .44404 .N N N N N. NN 4 .44

.OJo= ONNvm .4.044. .dCKNn *40 04 OSN4: 05400 .0.05 NO 0NNg0*$ 00

n4s#4 400,00 040000 N044. NOCC eCCO 0r.. 000orror...rro 0o

cone.. 00.4.40. ~ ~ . .040 .C'. . . . :C 04. 4 0 4C .4.84 .C C .4 0 .O t V:*.0vrw.~~~~~~~~~~~ ~~~~~~~ ..... .rci IMN .44M .4444 I40N I ..C, I00C I.40 I..., 5040

N1 0 V04 W .0.0 Nr ~~. .. C oe. SNn ~.. 4584 e.. 0000.400510 ob..0..4454 0 4n00 N~e .440040 000.4 .1.00 err e C e . *.4.. . 4... 4

M~#4l 0 *0 001 O~ .0.4. 4 N.N NhNPN .44N4 .. 44* 00 C COta C CC

0 . 0 0 0 0 0 . 0 @ a . 1 N 4 V . C OM . . * e -d C . 0 0 4 0 0 4 4 0 0 4 5

000:0 =io00 5,0000 o.0CC. 140-40 *.n4044. 0444.M*A000 40 0,*

.0.*0. .00.00.0 .000.00 . .. . 4 . . N004M0 O.40.0 0N.; M0 ... . 00011 n . 4 4000000 *C 0C COCOS 00000 00 . I e ~ .. r N440 .. ,00 0..00 e a . 444 M 0

400*00 ~ ~ ~ .NOmC N"0C Q4.0'. zS~ V4.A* 2 .lN 5401.4 00400 C~~a 000NI 0

.000., 4,.00. .0000, .00 :.. IT0.0.0. . .5 .n . . .0 . % e n.... .000 .00M . enIrto! ' ! .. .

... ... .. ... ... .. ... .. .... ... . .... .. ..

O tllli i I i 0N.d I I il4M .t. .n It.040 10 . 0 .4 . 40 0 .. mb NNO0O .000 T00i.4.4

000.N4 1.o 00.0 0 0 - - -44 ..... ~ M M * 5 4 4 0. r v .0

. . . . . . . .. . . . . .4 . . . . . . . 4 . . .

~. . .. . . . . . . . . . . . . . . . . . . . .- . . . . . . . . . . . .

- - - - - - - - -- - - - - - - - - 0 Z0.. . 0 0 4 .4 0

N4 440 00

NN NO NN.. 4.44N N 0.. ... 44. OM O .4 0 C .C nO.0. ef C., M 056344.

Page 68: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

a,4~~~A4~ ~ N , .*,. ,wooaI

-a.'': 0 4

zzl jO ... 4m 4* S ... l a444.

2.S

004;

*.O ~ V a.On a' . 4 -SA M-:4P:-. V .i .. .~f4 .4 i .n . 1: . :1

flfi 0500 ~ fi. .. 44 .4JWNN

4N0N y -00. ~. . .Y rW' - g

-en., - N 0 -

A.08*. 40 a a .. 0.0 aeiv we.. .4.Ji . - N N *0 04

U *r~fU% QNbC *N~f 0c'.0 * 4A ow O I No N: .4 uaOl 0 0 4* .P0.W4.Mi 6p.:.x0 5 0 5 0 0005 4 .4 4 . . N * S i " MN

C .

N .. ifOUo .f a N . 0 .. *n% n 14.,,. 91 0 % WM a 0M

j 0: 500 WO.0 0.US5, c*"O:I l. ttlt

W 0 00 *4.44 COO.a .... NV~N 4C O E4Ot

ED ..... . :

0.0 N;. -N

- ~ ~ NSOOM :M.4. =ftwo~' M. MN N44 0'~.:4j 1W D O i : 1: 1: .. * 4m S 4t.

n-o .e o % 5f:5 I lo. 4....4 W N

9.6N. .:-. NNO:4OW G4 10, 9:000004=la

'-m a:.0

sIave wo .. ... e n e4

.. .4.4 .4 M=:= ff14 4 *CU

140

464

Page 69: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

NN.414 NNN.P WO44 V, Ow N .4 CM N m W CCm NKNN N 4

= 4 4 .N 7 N N N NI 4 N 4 W W O tN t A . t . * x . 4 0 : * C U CC W O W

VJ" M WW 100.0 CO. C N K NP. . . .C C 0.0 .. 0 M 0O a-a, 44CC a

M4.10 .4040-4 0* MOCCN N.4CCC C":fC NN.0 n4=9NIA*M CNN N.4=0 WC.44 _0 .4CC C0" N* A " . U, I

i Vt .4.... I: 4.4V44I It .4.44.1 . 4.... 1 .4..N

Wk.400 SJCOnO 2nnnt CCC ,*C*o ....5 ....C0 .... *

0 04 05,50 NNC amCo 4 04. . .40 -1*N o.00 ONC N.554 N.4N4 a,*0545M MMN .. NN4 W C..% 54 .

.fl4.4~NWN W444., 44 54444 N NN NNNNN NNWNN N4.

00445 n4 N:5 O:.4CN *0055 .4O 55 MW60 00040 re

540.40 .t4NC CUO4

NCN5 . . ...N ..... ..... 4 .g0

0544CC .544 . C~..4 A04C "*04 5.4 o445 $,t

.4.44.4 0 N N "44: 04 N N: WI*4.5 WO44 m4*59 :N7 4 NOON

W. MN 4.CoC Z4400 N * N o.4.04ww 0 04.0 1 *5.O- NC54 CNCN

5454 NCCC. 4.40 .... 4 045004 5C4@. 04 1 * o .ooo*

N~~~... .444.. N .N0.4.4w.4.4M . W 4 O

ob M44 4 W 0 150 0: N N e . O fSN O M cp0.t0 a4 . M fl, C NCOO5 0000 0 59*4 5

ONN O (P44* M 405* NN5. .4N**4 10.05 0 *U4CMCN 0 0 4.5.4 V0"4 C Cn

54~~ ~~ c0CN ** 4N 4 -N*. N C.5CN C 0 .4'D N 0 0 4 N " g.4 NM . O

0', I-N4M* ;0 0N" 04.4 4504. *4 0 N 4 *5* WO4N ig mCNCU10104 .0 . 50 *4.W05D0 0 '

WN O. 540054* "o4.C m5CO 0C. m0~,5 ;544. OD "44.0 g

*CNO . PCIC:-t. . .NCCt It n*4. C1405 *44045 0I~nl . ., C4.

OnN** 0. N. W440 P"4.N. NCC0 NN**45 -NN*.00 m40 omC.C:0.4544* CCC 0.5454 .044C 5.... C C 0 040C 0 0

N.50. 0044 C O)M04 C*C.C .5.54 . N4000i NCOC4 .4~.4. .*i.4

NNSJ I444*5 C.0 C4MN A *"4M 44 40044 COCCto 4WO44 0 NO44

N

"NON54. W40.5 M C**4*40 05W40 924.0 (1,: C m N * 0Cm ON V4C5. 0

1%45 CC.C IN.404 1% . 454*. m O O *"40 NmCCU :-.NN ON.C4

..... .... ..... .... .... .. -. .. ........ %pow

k5C.5 4005 N 4a006.nn o4 54.CC.WC 1 5054 540444 '.0 4ZN . N N N f. o4 Z 9 t.N545N54 00555* S** C CO OC CCC CCC C C CCC CCCC 44 44

WW= ":V1 "go m" c

*000 ~ ~ ~ ~ ~ ~ 00 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0

(pW m4"N N - N I a "

Page 70: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

isa. V .. .. .. . . . . •Coo.

04 00 0* 00.*°*40

0000 ... ... ..... .* 444.4.4

°4*

" ° @.0

cc,

iN-I

.0.4

Jq~~ 0*00 -NN:0 0l - 14 -

ii430 @Gib1 -: t l 1 ..... ...

..... ..... .. . . ..0.0.. .. . .... . . ..4

-00:

.) 9 4

200000 - 444 4 @4

..... ~ .... * ...... 0 .. .0 ~t* 0 4; 4 4 0..0 !.

0 4 0 z z z

0..

-. ~v .01. . .00~. .404. .0

-- ....0

... .0

00.

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ W S M.00 t00 1.4 :04.. I400 0446 :6400 460.04 0 ".40 .. 00 6 0"O4z* -00~ 40 0 0 4 .. 0 0..... . ..0 .... ..... o ... 44.0 4.0 .0.. 0 .0

00000~... N-.4 @007 0 0 0 0 * 4 0 9.... ... .. 0 0

-0;

vtt-.. .. .. .

004Z

Coi

-~~~~~ . .0 0 .40 .4* 0 . 400 [email protected] .040 .. 00 .4 0 ., 0 .4 0 .00* .0 0 .4 4 .0.....

000ozz00.0444*0 000i00 00 400 00.0 0440 00* 0400 40. 40

000.4~ ~~~~~ .0 0 .000 .04 0 *0 0. 4 4 4 0 .0 0 .0 00 .* 4 .I* 4 4 @ 0 0 0 4 0 4 @

J ~ oo.................................44 00 "O'.0 0. . 00 00NN.0* .,** 000 ,000. . ...

00*44~ol N00N04 0 0 00 4 0 000 0 0 0 0 000 040 0 00 004 @00

i- 0. 02. 400 00404 0.444400. 000 0400 000 00* 000 00.4 040.44.06060

Page 71: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

27/

TABLE 27 AdSam. No. LPO! Sam. No. LOW

Temp (K) 249. Temp- (K) 249.Path (cm) 3291 Path (cm) 3291.Conc. V*00000 Conc. 1.00000P (atm) 0.769737 P (atm) 0.769737P (atmi I.000658 Pe (atm 1.000658ue(*/cm 7-4711E 22 u (#/cm)* 7,471E 22

v Il v I]

(cm") (cm")

500.00 I7 T-0.0' 9G502.00 a0 a.5 782.00 0e552504*00 0.*049 734,00 1.056506. 00 190071 736.00 1 .495508*00 0 *114 78.*00 . 884

510*00 0-163 790,00 2.230512.00 0.19? 7920 2.85951a 4.00 9-230 794.0 0 5 .971516. 00 0:,2 69 796.00 4.66951.*00 8-6328 798.00 5 .091

520.00 G.402 800.00 5.532522* 00 0.485 502.-00 $,997524 .00 0.58 4 304.00 6.470

526.00 1t.706 806.00 6,940

528.00 0,862 308.00 7.332

530*00 1.012 810,00 7'.796532.00 1.i7 812.00 S.U7534,00 1,334 14.,0 0- S,507536.00 L.500 816.00. a .799538.00 1.,665 Si.s, 00 3*051

540.00 1.798 820.00 3.257

542.00 1.914 822.00 9.4315446--D 0 2 ,089 824*00 9,530546.0 0 3.256 326.00- 9.708548.00 3.756 828*00 d-33

550.00 3.960 530.00 9,966552.00 #*1-83 83*00 10.066554.00 4.426 834.O0 10,140556.O0 .,709 936.00 10. 222555.00 5.019 838.00 10. 292

. 560.00 5.356 340.00 10 .368

342*00 10 *446

• The units of u are molecules/cm2 34400 10521m 846. Ou 10 590

abbreviated here by m 848.00 10,644

850.00 10.703

67

Page 72: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-w~wwuww

ooovq. coo-C

J0

-acQJ~U C0.

;; V2 KLI-

m. '0 N > CA

-C0

4-

-~ 00C - 000

0

"-0 0

)

0~ 00

30~iLINNV. /6

S .NA.68

Page 73: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-~\J -- - -n

I 10)

0 0

rU,

0Co. 00 0 0 0 C', NY~ r',N''~ 0

1 W,4 a.- ELa-l".

000~ 00 00

4.

coo o0:0 00000

coo 4-1oe cc0 4

-a, 0~

*0 0 -

0

r-4

(0 0JJ~v.iIV4SV~i

69j

Page 74: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

t-4

nce U)

OIO

ro 00C,- w ' :1

o000 0

4~ C)

o 0

0

54 S

(Dm

0 :

700

VM!-I

Page 75: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

wJ

31 K0 N. (t. (t%

mot0 0..000 0..000 9.819; 19

1071

Page 76: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

C02

6-310 K

Sample P P U

No. (atm) (atm) mluea

4(04 0:.0625 0.0625 1 ME7 19HK03 0.125 0.125 t 920E 19

402 0..250o 0.250 12O0E 194(01 0.500 0.500 1-223E 19

0

0-0

sample P PuN. (atm) (atm) [olula

4310 0.00199 0.00198 2.260E 194109 io 0.00

7781 0.00390 2 330F 19Z 409 0.00778. 0.00395 2.3307E 19

4307 0.0153 0.0155 2.31AE 194306 0.0310 0.031P 2.315E 19

310-

(atm) (atm) L----

W305 0.0623 0.0625 2.3799 19KJOA 0.195 0-125 2.455E 194303 0. 250 0.250 2.440E 19

4302 0.500 0.500 9-44OE I

4301 1.00n 1.00 2;446E 19,

625 650 675 ~ 700 725WAVENUMBERtfm'

4 Figure 14. Spectral plots of transmittance of several CO samples near 310 K.2

72

Page 77: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

100y

8-310 K

sample p pe Umi~1ao. (atm) (atm) L7 -2 J

4.08 0.00199 o).fl01A 5.766E I18

ILOS 0.0155 0.0155 h.9221~ h1

Li

8-310 K

F-Sample P P,__No. (atm) (atm) rmlcl

U) HLOA 0.0313 0.0313 '6.I50E 15

z 14.0! 0.250 0.250 6.115 IS1

1100

4(0 0.09 .0I0l2~

625~ 65 670 72SamEplBE P m')

Figre15. Spctrl lot o trnsittnc ofseera 02 smpes ea 31 K

Page 78: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

W Cli ~~- -* U l)

410 0u@ 1

ax COn

41. aUI 0 00~e4 0 0

W_-.

000

00 41 004

000

1N W 0UO 4-1

0

CI4J

ww FU, Z

411 ~ ~41I

le WW!.IO

41 rQ g.C) \.

0 0

00

0 00

30-i0VSN' %1

11-4eC.

Page 79: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

tc)

IC)N

oc

ot

t~~2 4~~OO-44

N r,

tiCel P t*~~1 4JtQ 4 ..

* ~ ~0* . ~ 1

0

S4J

If)IINN-

o 00 0000 0 0

3NVilIV4SNV81 %

75

Page 80: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

if li

000)

too

0)

9 cl 4

00

-00

$4

I' EA. Z OW0

* w q* U..,

0a(

30VIWNV %

76 4

Page 81: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

LO r-

C-.n Coco NN NN

- Wwwtj www w(j.

MN..Er

N. o oI o

Loogo.l o9 . .1?9- coo- o IZ C\joooo-

ow.2x;.Iocoo-v o, o 2o

1?9 Cfqcooo- coco 0cooowo2

t-4w..NMR 0

44

E 0

LO4J4J

4J

440

to410

r4

Cli

-4

00 00

30NVIIIINSNVdi %

Y77

Page 82: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

7"W- m 1111 Ji I

0

aa

-. ~ww - U

- qq'o -k 0Q,0

0-0

N3 N N -0

o cN

U--0 C' q I 4C

q a0 a ol

0 10 .-7-

U' 1-'-4

0-00 0 00 C

~ g 0 0 0

33p.N ilIV4SMt.J

- (C 78

Page 83: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

Q))

~ -0

vv vttv I'-I- 00-0w

4

(I)

41

fI

0

4-I

000000

,0. 0*00

0 00 00000 0

3Z0NViIISNV8I± %

79

Page 84: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

-nowu- cc~l

x 00 O

'IV c -0 4 .J.JJj i

.It

*00

z* a I0 .nf4

000 04

tN ar-

> 0

-~ *5-0 Cl* -Sr-

.. S. Orf

* 000 a

cc-~5

'

00 00> 0

441i

000

0

Page 85: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

LC

LL

U')

0#1,,

wwwwq

WNOI

0*4

g000 000

*000 0s

0

00 00

ILI

4 1

0

r-4

0 00

J~NVLWJNW.f

81NIIVSN8

Page 86: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

100

Sample p P ULii11o. ((am) * mo1.cules1 l )

Z LOOI 0.769 1.00 7.471E 22 249

<0..H800 82585

z<

Sample P P eU

(atm) (atm) FmL 1) 1s

r LPOI 0.769 1.00 7-471E 22 249

. . . . - I

500 525 550WAVENUMBER tMn'

Figure 26. Spectral plots of transmittance of several

CO 02 samples near 245 K.

82

Page 87: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

SECTION 6

REFERENCES

1. R.A. McClatchey, W.S. Benedict, S.A. Clough, D.E. Burch, R.F. Calfee,K. Fox, L.S. Rothman, and J.S. Garing; "ARCRL Atmospheric AbsorptionLine Parameters Compilation", AFCRL-TR-73-0096, 26 January 1973.(Associated with this report is a magnetic tape listing the lineparameters.)

2. D.E. Burch, "Investigation of the Absorption of Infrared Radiationby Atmospheric Gases", Semi-Annual Technical Report, ContractF19628-69-C-0263, 31 January 1970.

3. D.E. Burch, D.A. Gryvank, R.R. Patty, and C.E. Bartky; J. Opt. Soc.Am. 59, 267 (1969). Also Publication No. U-3203, Phiico-FordCorporation, Aeronutronic Division, Contract NOnr 3560(00),31 August 1968.

4. B.H. Winters, S. Silverman, and W.S. Benedict; Journal of QuantitativeSpectroscopy and Radiative Transfer 4, 527 (1964).

5. D.E. Burch, D.A. Gryvnak, and J.D. Pembrook; "The Absorption by H2 0

Between 1630 and 2245 cm", Philco-Ford Report U-5090, ContractF19628-73-C-0011, January 1973.

6. D.E. Burch, D.A. Gryvnak, and R.R. Patty; J. Opt. Soc. Am. 57, 885

(1967).

7. NBS Monograph No. 16 (1959).

SC. R. Rollefson and R. Havens; Phys. Rev. 57, 710 (1940).

9. A.M. Thorndike; J. Chem. Phys. 15, 868 (1947).

10. H.L. Welsh, and P.J. Sandiford; J. Chem. Phys. 20, 1646 (1952).

11. R.L. Armstrong, and H.L. Welsh; Spectrochimica Acta 16, 840 (1960).

12. R.E. Roberts, J.E.A. Selby, and L.M. Biberman; Appl. Opt. 15, 2085 (1976).

S.R. Drayson, "A Listing of Wavenumbers and Intensities of Carbon DioxideAbsorption Lines Between 12 and 20 pm". Techr., Report 036350-4-T,National Aeronautics and Space Administration, Contract No. NSR 23-005-376,May 1973.

83

&A

Page 88: AFGL- TR-76-0246 INFRARED ABSORPTION BY 4 2 TR-76-0246 INFRARED ABSORPTION BY CH4, H20 AND CO2 David A. Gryvnak Darrell E. Burch Robert L. Alt-Dorianne K: Zgonc Aeronutronic Fofd Corporation

14. W. S. Benedict, Inst. for Molecular Physics, College Park Maryland, 90742;R. Calfee, Wave Propogation Labs., E~nvironmental Research Labs. NationalOceanic Atmo3pheric Administration, Boulder Colorado 80302, (PrivateCommunication).

84