18
Optimal generation scheduling in a microgrid Lucian Toma, Ion Triştiu, Constantin Bulac, Andreea Ştefana Department of Electrical Power Systems University POLITEHNICA of Bucharest 2016 ITEC ASIA, Busan, June 1-4

AF0192 Lucian Toma ITEC2016

Embed Size (px)

DESCRIPTION

optimal scheduling in a microgrid

Citation preview

Page 1: AF0192 Lucian Toma ITEC2016

Optimal generation scheduling

in a microgrid

Lucian Toma, Ion Triştiu,

Constantin Bulac, Andreea ŞtefanaDepartment of Electrical Power Systems

University POLITEHNICA of Bucharest

2016 ITEC ASIA, Busan, June 1-4

Page 2: AF0192 Lucian Toma ITEC2016

~

AMRAMR AMR

AMR AMR

~~AMR

GEN 10

GEN 1

CBUS- 8

BUS- 2

BUS- 30

BUS- 39

BUS- 1

BUS- 8

BUS- 9

CBUS- 8

BUS- 16

BUS- 12

CBUS- 12

GEN 9

CBUS- 12

GEN 3

BUS- 28

BUS- 37

CBUS- 18

BUS- 26

CBUS- 26

GEN 8

CBUS- 26

BUS- 29

BUS- 5

BUS- 25

CBUS- 25

CBUS- 25

BUS- 17

BUS- 3

CBUS- 39

CBUS- 39

BUS- 18

BUS- 4

CBUS- 3

CBUS- 4

CBUS- 3

CBUS- 16

CBUS- 18

BUS- 27

CBUS- 27

CBUS- 28

CBUS- 27

CBUS- 28

CBUS- 29

CBUS- 29

CBUS- 16

BUS- 15

CBUS- 15

CBUS- 15

BUS- 19

CBUS- 24

BUS- 38

CBUS- 24

CBUS- 21

BUS- 22

CBUS- 21

BUS- 21

GEN 4

BUS- 24

BUS- 20

BUS- 33

BUS- 23

BUS- 35

GEN 6

BUS- 14

CBUS- 7CBUS- 31

GEN 2

BUS- 6 BUS- 7

BUS- 31

CBUS- 4

CBUS- 31

CBUS- 7

BUS- 13

BUS- 11

BUS- 10

BUS- 32

BUS- 34

BUS- 36 CBUS- 23

CBUS- 20

GEN 5

GEN 7 CBUS- 23

CBUS- 20

Transmission network

Distribution network

~

AMRAMR AMR

AMR AMR

~~AMR

The future of power systems

Page 3: AF0192 Lucian Toma ITEC2016

AMI

AMI

AMI AMI

AMI

AMI AMI

Substation

Dispatching and Strategy

PV

OPTIMIZATION

& CONTROL

Gas Engine

RTU RTU

RTU

Communication

Main

electrical

network

Microgrid

Wind

The future of power systems

Battery

Page 4: AF0192 Lucian Toma ITEC2016

Microgrid

Substation

Militari

Distrib. St.

Cotroceni

Distrib. St.

Gas Engine P.P

PV power plant

Microgrid – University “Politehnica” of Bucharest

Cable 1

Cable 2

Pinst = 30 kW

CF = 20%

2 x 800 kWel

ηel = 38%

Page 5: AF0192 Lucian Toma ITEC2016

PolyGrid

Substation

Militari

Distrib. St.

Cotroceni

Distrib. St.

Gas Engine P.P

PV power plant

Microgrid – University “Politehnica” of Bucharest

Cable 1

Cable 2

0

5

10

15

20

25

02

/02

/20

07

@1

2:0

0:0

0.0

00

02

/02

/20

07

@0

1:1

0:0

0.0

00

02

/02

/20

07

@0

2:2

0:0

0.0

00

02

/02

/20

07

@0

3:3

0:0

0.0

00

02

/02

/20

07

@0

4:4

0:0

0.0

00

02

/02

/20

07

@0

5:5

0:0

0.0

00

02

/02

/20

07

@0

7:0

0:0

0.0

00

02

/02

/20

07

@0

8:1

0:0

0.0

00

02

/02

/20

07

@0

9:2

0:0

0.0

00

02

/02

/20

07

@1

0:3

0:0

0.0

00

02

/02

/20

07

@1

1:4

0:0

0.0

00

02

/02

/20

07

@1

2:5

0:0

0.0

00

02

/02

/20

07

@0

2:0

0:0

0.0

00

02

/02

/20

07

@0

3:1

0:0

0.0

00

02

/02

/20

07

@0

4:2

0:0

0.0

00

02

/02

/20

07

@0

5:3

0:0

0.0

00

02

/02

/20

07

@0

6:4

0:0

0.0

00

02

/02

/20

07

@0

7:5

0:0

0.0

00

02

/02

/20

07

@0

9:0

0:0

0.0

00

02

/02

/20

07

@1

0:1

0:0

0.0

00

02

/02

/20

07

@1

1:2

0:0

0.0

00

Page 6: AF0192 Lucian Toma ITEC2016

The optimization objective:

The mathematical model

subject to load-generation balance:

60x24

1

( )GE

t

P t

MIN

( ) ( ) ( ) ( ) ( ) ( )load pv w GE bat surplusP t P t P t P t P t P t

Ppv – power generation from PV power plantPw – power generation from wind power plantPGE – power generation from gas enginePbat – power from battery (positive = generation; negative = load)Psurplus – power unbalance

and capability limits

maxgenP P

Page 7: AF0192 Lucian Toma ITEC2016

Characteristics of the wind and solar power plants

The mathematical model

- have the highest priority and are given by generation profiles

Characteristics of the gas engine

- installed power from hundreds of kW to few MW- very fast; can change the generation within few seconds- it has the lowest priority, thus they produce power when

( ) ( ) ( ) ( )load pv w batP t P t P t P t

Page 8: AF0192 Lucian Toma ITEC2016

The mathematical model

Characteristics of the battery

- is characterized by the total installed energy Ebat,inst, in MWh, and the maximum instantaneous power Pbat,max, in MW.

- battery charges when there is a surplus of energy from the renewable energyunits only

( ) ( ) ( )pv w loadP t P t P t

- in order to increase the lifetime of the battery, a minimum and a maximum state of charge, SOCmin and SOCmax, are considered

Page 9: AF0192 Lucian Toma ITEC2016

The mathematical model

Algorithm 1 assumes that the battery’s operating mode ischanged when it completes a full charging / discharging;no charging is allowed when in discharging mode, and nodischarging is allowed when in charging mode;

Algorithm 2 assumes that the battery is charging any time thereis a surplus from renewables, and discharging when theload is greater than the available generation fromrenewables.

Two algorithms are used:

Page 10: AF0192 Lucian Toma ITEC2016

Main data gas engine installed power, PGE,inst = 1.4 MW; battery’s size is decided battery minimum state o charge, SOCmin = 25%; battery maximum state of charge, SOCmax = 75%; load, wind generation and solar generation profiles are given

Microgrid – case studies

WindPhotovoltaicGas Engine

Uncontrolled: Load, Wind, Solar

Controlled: Gas engine, Battery

Page 11: AF0192 Lucian Toma ITEC2016

Microgrid – case studies

• installed power Pbat,max = 0.6 MW;

• installed energy, Ebat,inst = 1 MWh;

• rule: full charging/discharging is required until the battery changes its operating mode: Algorithm 1 is applied

Case 1

Page 12: AF0192 Lucian Toma ITEC2016

Microgrid – case studies

0 500 1000 1500-0.5

0

0.5

1

1.5

2

2.5

Time [minutes]

Genera

tion-L

oad p

rofile

[M

W]

Ppv

Pw

Pgas

Pbat

Pload

Surplus

0 500 1000 15000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [minutes]

Batt

ery

- s

tate

of

charg

e [

-]

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [minutes]

Charg

ing m

ode

Case 1 Battery state of charge

Battery operating mode

PGE = 5.65 MWh

Psurplus = 0.523 MWh

Page 13: AF0192 Lucian Toma ITEC2016

Microgrid – case studies

• installed power Pbat,max = 0.6 MW;

• installed energy, Ebat,inst = 1 MWh;

• rule: full charging/discharging is required until the battery changes itsoperating mode: Algorithm 1 is applied

Case 2

Page 14: AF0192 Lucian Toma ITEC2016

Microgrid – case studies

Case 2

0 500 1000 1500-0.5

0

0.5

1

1.5

2

2.5

Time [minutes]

Genera

tion-L

oad p

rofile

[M

W]

Ppv

Pw

Pgas

Pbat

Pload

Surplus0 500 1000 1500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [minutes]

Batt

ery

- s

tate

of

charg

e [

-]

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [minutes]

Charg

ing m

ode

Battery state of charge

Battery operating mode

PGE = 5.37 MWh

Psurplus = 0.437 MWh

Page 15: AF0192 Lucian Toma ITEC2016

Microgrid – case studies

• installed power Pbat,max = 0.6 MW;

• installed energy, Ebat,inst = 1 MWh;

• rule: the battery charges any time there is a surplus of generation fromrenewables: Algorithm 2 is applied

Case 3

Page 16: AF0192 Lucian Toma ITEC2016

Case 3

Microgrid – case studies

0 500 1000 1500-0.5

0

0.5

1

1.5

2

2.5

Time [minutes]

Genera

tion-L

oad p

rofile

[M

W]

Ppv

Pw

Pgas

Pbat

Pload

Surplus

0 500 1000 15000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [minutes]

Batt

ery

- s

tate

of

charg

e [

-]

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [minutes]

Charg

ing m

ode

Battery state of charge

Battery operating mode

PGE = 4.98 MWh

Psurplus = 0 MWh

Page 17: AF0192 Lucian Toma ITEC2016

the first algorithm involves a smaller number ofcharging/discharging cycles

Conclusions

the microgrid allows a local generation-load balancingthus reducing the negative effects of the intermittencyshown by RES

the second algorithm achieves minimum generation fromthe gas engine unit and thus less fuel

Page 18: AF0192 Lucian Toma ITEC2016

Thank you