6
763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * * (2001 12 20 , 2002 8 19 ) Advanced Wastewater Treatment of Low Concentration Ammonia Using the Immobilized Nitrifier Consortium Jung-Hoon Lee, Byong-Jin Kim*, Yong-Ha Kim, Gyeong-Beom Yi, Jun-Heok Lim, Jae-Kee Cheon and Kuen-Hack Suh Department of Chemical Engineering, Pukyong National University, Busan 608-739, Korea *Busan Bio-Industry Support Center(BiSC), Busan 608-737, Korea (Received 20 December 2001; accepted 19 August 2002) polyvinyl alcohol (total ammonia nitrogen, TAN) . 0.83 cm/sec 316.6 7.2 g/m 3 day, 92.8 2.2% . 0.5 0.05 , 0.35 . 30 o C 95.5 1.5% 10 o C 79% , pH 7-9 310 10 g/m 3 day 94 3% . Abstract - This study was performed in the airlift bioreactor using the nitrifier consortium entrapped in polyvinyl alco- hol(PVA) for removing low concentration total ammonia nitrogen(TAN). At the superficial air velocity of 0.83 cm/sec, TAN removal rate and removal efficiency was 316.6±7.2 g/m 3 · day and 92.8±2.2% respectively. Removal rate was continuously increased with decreasing hydraulic residence time(HRT) from 0.5 hr to 0.05 hr, whereas removal efficiency decreased with decreasing HRT. The optimum temperature for nitrification was 30 o C at which removal efficiency was 95.5±1.5%. Nitrifica- tion was effectively performed at low temperature, 10 o C. In the pH range from 7 to 9 in the bioreactor, removal rate and removal efficiency was 310±10 g/m 3 · day and 94±3% respectively. Key words: Nitrification, Entrapped Nitrifier Consortium, Airlift Bioreactor, PVA 1. , , , , . , , . , , , 2 . , [1-3]. Nitrosomonas sp. NH 4 + + 1.5O 2 > NO 2 - +2H + +H 2 O+58-84 kacl/mol (1) Nitrobacter sp. NO 2 - +0.5O 2 > NO 3 - + 15.4-20.9 kcal/mol (2) Nitrosomonas sp. 10-20 o C, pH 6.5-7.5 0.1-0.61 day -1 Nitrobacter sp. To whom correspondence should be addressed. E-mail: [email protected]

Advanced Wastewater Treatment of Low Concentration · PDF file763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * † * (2001 12 20 , 2002 8 19 ) Advanced Wastewater

Embed Size (px)

Citation preview

Page 1: Advanced Wastewater Treatment of Low Concentration · PDF file763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * † * (2001 12 20 , 2002 8 19 ) Advanced Wastewater

HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768

��� ����� � �� ���� ��� � ��

�������*�������� ���������†

����� �����*��� � ����

(2001� 12� 20� ��, 2002� 8� 19� ��)

Advanced Wastewater Treatment of Low Concentration Ammonia Using the Immobilized Nitrifier Consortium

Jung-Hoon Lee, Byong-Jin Kim*, Yong-Ha Kim, Gyeong-Beom Yi, Jun-Heok Lim,Jae-Kee Cheon and Kuen-Hack Suh†

Department of Chemical Engineering, Pukyong National University, Busan 608-739, Korea*Busan Bio-Industry Support Center(BiSC), Busan 608-737, Korea

(Received 20 December 2001; accepted 19 August 2002)

� �

� ��� polyvinyl alcohol� ��� �� ����� ����� ������ ���� � !" #$%&' �

((total ammonia nitrogen, TAN)) *+�,-. �. �� /0 0.83 cm/sec�1 *+0!2 316.637.2 g/m34day, *+5

6� 92.832.2%7-. 89:; <=�>� 0.5�>�1 0.05�>?@ A(B� CD *+0!2 EE FG�7?H, *+5

6� <=�>� FGB� CD FG�7 <=�> 0.35�> ���1 IJ *+56� KLM-. �N�" I; O!2

30 oC7?H *+56� 95.531.5%7 10oC" �O�1! 79%" *+56� PQ?@R �O�1" �N�G GS�

H, ��� T pH 7-9�1 *+0!U *+56� VV 310310 g/m34dayU 9433%) /WX-.

Abstract − This study was performed in the airlift bioreactor using the nitrifier consortium entrapped in polyvinyl alco-

hol(PVA) for removing low concentration total ammonia nitrogen(TAN). At the superficial air velocity of 0.83 cm/sec, TAN

removal rate and removal efficiency was 316.6±7.2 g/m3 · day and 92.8±2.2% respectively. Removal rate was continuously

increased with decreasing hydraulic residence time(HRT) from 0.5 hr to 0.05 hr, whereas removal efficiency decreased with

decreasing HRT. The optimum temperature for nitrification was 30oC at which removal efficiency was 95.5±1.5%. Nitrifica-

tion was effectively performed at low temperature, 10oC. In the pH range from 7 to 9 in the bioreactor, removal rate and

removal efficiency was 310±10 g/m3 · day and 94±3% respectively.

Key words: Nitrification, Entrapped Nitrifier Consortium, Airlift Bioreactor, PVA

1. � �

���� ��� � �� � �� ����, ����, ���

�� �����, �� � ��� !�� "#!� $%� &' !�

() *+� ,- ��. /0!�1 123 4��5 �� 67� 8

9$:) *5 09; ��67 $<=> ?@�) *� !�� *�

@A�� B�), !�$<=A CD'�) *E. ����� ����

� &3 FGHI J"K LM NO -PQR� ST�) UV9� W

V91 X��Y Z�!�� *� [\� ,+] � *+�, �^_&

`a b c& d�, eI�f& ��g'h& Yi jk� X�$lE.

��� m nopqJ HI5 nopq rGs, tMu vIwxs,

Ayz{s h& _�|R}? 8s& !�~�A �qf �A A@(

) *�+� F�, 6��1 �A I�() 2� {4�v_HA �G5

�uA *� ���5 4k?A) {4 �R?L �_}? !�8s>

A@�) *E.

��?L ��_� &3 ZRG2> ��$l �_}? nopq k

78sK nopqJ HI� ��_� &'f �I� I��Y qH�

J HI, H�J HI� �R$:5 8s+� E�M �A � ��� A

���E[1-3].

Nitrosomonas sp.NH4

+ +1.5O2 ������> NO2− +2H++H2O+58-84 kacl/mol (1)

Nitrobacter sp.NO2

− +0.5O2 ������> NO3− +15.4-20.9 kcal/mol (2)

HR��& Nitrosomonas sp.5 10-20oC, pH 6.5-7.5L V��f

0.1-0.61 day−1& ��;��� 1�� Nitrobacter sp.5 �K V��f†To whom correspondence should be addressed.E-mail: [email protected]

763

Page 2: Advanced Wastewater Treatment of Low Concentration · PDF file763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * † * (2001 12 20 , 2002 8 19 ) Advanced Wastewater

764 ��������������� ���������

9

0.1-0.45 day−1& ��;��� 1�E[3]. �i� A5 ,� ��_�

�' �� �K �;��� A5 �+� A� L' ��_> ��

� -�$  ¡@�5 �ZA w� A@(� �K �¢}? -��

£'f5 ��_& r�1 X��Y �Z& ~�A d�(5 �uA

*E[4, 5]. ¤¥ )ZR ��_> A@�� !��. ��_& "�

1 @A�), �¦G §-& ��_ ¨�� )¨�� F�© � *G

ªj� Fx(5 ��� «K $¬ ­� !�© � *E. ®3 y�

� pH �K {4V�A ¯°± ²R�7� ³J_HA Fx(��

)ZR ��_ �& ´µ¶@� &' �JA �� ²�� ·5 [

u> 1�E. ¤¥)ZRs� ¡@(5 ¸�5 ¹�)"�L k-

carrageenan, alginate hM 0J)"�L PEG(polyethylene glycol),

PVA(polyvinyl alcohol), PEI(poly ethyleneimine) hA *E. Tanaka

h[6]K PEG� A@�Y HR��> )ZR�º+� Matsumura h

[7]K PEI ̧ � 1zs� &' )ZR�º) Rostron h[8]K PVA

¸� A@�Y )¨� nopqJ HIk7� �»�ºE. ®3 ¹

�)"�. 0J)"�� /0�Y PVA-SbQ/Alginate gel�¼ )Z

R�Y ����& H�R� �»3 Vogelsang h[9]A *E. A. �

A Yi ¸� A@�Y )ZR�Y H�R� �½�) *+� Am

PVA5 1°A d¾�) )ZR$ ¿�1 ¿�) [G¬& ¡@� £

3 §»JA �� ��_� £3 ³JA À5 [uA *5 �+� Á

ÂÃ *E[10, 11].

Ä ÅÆ�f5 ���& )�!�� *�f d¨� nopqJ HI

& k7� Ç�Y HR��> ¤¥)ZR3 PVA bead� �G-�; �

_�¦G� µ�$ , µ��� � �G FxÈ& ²R1 nopq

k7� �É5 P�M �¢}? 9$¬(hydraulic residence time, HRT),

Fx�& nopqJ HI& ¨� ²R, y�, pH1 nopqJ HI&

H�R�¦� �É5 P�� £�Y �»�Y �? ÊË V�> �

� �ºE.

2. � �

2-1. ����

Ä ÅÆ�f ¡@3 HR��K Ì- {4� £3 ?¦JA �), H

R��> )¨�� F�© � *�Í PVA-boric acids[11]� &' )

ZR$ÎE.

�JÏi�� ÐQ�Y 3,000 rpm�f 10"¬ ÑÒ"�$  ÓK ¨�

HR��Ô> 4.5%(D.W./V)� ÕÖ�), 30%(W/V) PVA-HC(saponification:

100%; degree of polymerization: 2000) @×M ØÈ& -g� /0�Y

PVA 15%(D.W./V)-HR��Ô 2.25%(D.W./V)& /0@×> 8 oC� Ù

Ú3 ¤R boric acid @×� Û�Ü 3 mm »Ý& )ZR HR��

Ô> kV�Y ÅÆ� ¡@�ºE[12].

ÅÆ[É5 �G-�; �_�¦G� µ�(�� HR�� )ZRÞ

PVA bead& FØJ> �AG Ç�Y �¦G §-� baffle> %É3

split-cylinder �G-�; �_�¦G Ýß� k¶�º+�[13], �G-

�; �_�¦G b ÅÆ[É& o;�5 Fig. 1M �E. �G-�; �

_�¦G5 §4 6 cm, �A 20 cm& q�à 6> A@�Y k¶�º

+� Aª �¦G ?K 500 ml A�E.

HR�� )ZRÞ bead� FØ$:), H�R� á�3 �I� �¯

�G Ç�Y �Gâã� A@�º) �¦G §-� �G"�G� %É

�º+�, rotameter� &' �GÈ> Vä�ºE. VkÞ 0J ��5

ZÈâã� A@�Y ,Z3 FÈ+� �¦G& �å- �-� %ÉÞ

Fx»� æ�Y �¯�º+�, FxÞ 0J ��1 HR�� )ZRÞ

bead. µ"± çè é �¦G ê+� �(�Í F»� �¿- �

-� %É�º), �¦G �-�5 bead& F> ëG Ç�Y F»

qT� ��ì> %É�ºE[12].

2-2. ����

0J ��5 Table 1& �� J" ¨��� Ñ�5 ¨�& nopq

J HI(total ammona nitrogen, TAN)> Vk�Y ÅÆ� ¡@�ºE.

0J ��& J"K nopqJ HIÑ+� NH4Cl, H�R� Io(5

Áí��� µ�G Ç' NaHCO3 ��) LJ"+� Na2HPO4A�

+� �^_> ¡@�Y @'$ÎE.

HR�� )ZRÞ PVA bead5 �¦G ?� £�Y 10, 15, 20%(V/V)

� µ��Y ÅÆ> �½�º), �G-�; �_�¦G §-& y��

,Z�� F��G Ç�Y �¦G� îy�V� ï� ÅÆ> �½�ºE.

�G FxÈ& ²R� � nopqJ HI& k7 P�> Áq G

Ç�Y �ð �G F�> 0.28, 0.33, 0.39, 0.44, 0.55, 0.66, 0.83, 0.9

b 1.22 cm/sec� ²R� w� nopq k7~�> 6ñ�º) qH�

J HI. H�J HI& ¨� ²R� Áq òE.

�¢}? 9$¬A nopq k7� �É5 P�> Áq G Ç�

Y �¢}? 9$¬> 0.05$¬�f 0.5$¬+� u� ²R$  no

pqJ HI& k7�� b k7~�> »�º+� qH�J HI. H

�J HI& ¨� ²R� Áq ò), Fx nopq ¨�& ²R1 n

opq k7� �É5 P�> Áq G Ç�Y Fx�& TAN ¨��

2.5, 5, 7.5 b 10 g/m3+� ²R$  nopq k7�� b k7~�>

»�ºE. HR�� )ZRÞ bead& pH b y� ²R� � nop

qJ HI& k7 P�> Áq G Ç�Y pH� 5.6�f 9.0+�, y�

� 10�f 35oC� ²R$  nopq k7� £3 pH b y�& P�

> 6ñ�º) qH�J HI. H�J HI& ̈ � ²R� Áq òE.

HIJ"& "ÖK standard method[14]� �� nopqJ HI ¨

�5 Ay óôJ Ëõ(ORION-9512BN)> ¡@�Y öZ�º), qH

�J HI. H�J HI& ¨�5 Ion chromatography(DX-120)� ¡

@�Y öZ�ºE. @÷�I5 @÷�I öZG(YSI-55)� ¡@�Y

öZ�º+�, pH5 pH meter(ORION-290A)� ¡@�Y öZ�ºE.

Fig. 1. Schematic diagram for airlift bioreactor.1. Airlift bioreactor 17. Liquid outlet port2. Water bath 18. Air inlet port3. Baffle 19. Feeding tank4. Screen 10. Peristaltic pump5. Air distributor 11. Air pump6. Liquid inlet port 12. Rotameter

Table 1. Synthetic feedstock solution

Component Concentration(g/m3)

NH4Cl(NH3-N) 19.39(5.0) NaHCO3 138.44 Na2HPO4 6.20

���� �40� �6� 2002� 12�

Page 3: Advanced Wastewater Treatment of Low Concentration · PDF file763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * † * (2001 12 20 , 2002 8 19 ) Advanced Wastewater

��� ����� ���� �� ! 765

3. �� �

3-1. �� �� � ����� �� ����

�G -�; �_�¦G5 �,3 /0M �K Ë�¢, �K _HË

øM ùËø úJ> û5 [uA *E[15]. A� L�Y �G� E G

& FxÈA m�3 �I� ¶@�� (�, H�R� Ç3 Ä ÅÆ�

f5 H�R MZ m á�3 �I� �¯3E5 u�f �G FxÈ�

üý 6Ò> 1�� ÞE.

Fig. 25 bead µ�� 10, 15, 20%(V/V)� Fx� nopq ¨�1 5

g/m3, �¢}? 9$¬A 0.35$¬ , ª �G FxÈ ²R� � n

opq k7~� ²R� �þÿ �AE. Aª HR�� )ZRÞ PVA

bead� FØ�G Ç3 �I �GÈK 0.28 cm/secºE.

�G FxÈ b µ��A �1N� �� k7~� b k7��5 �

1�º+�, �ð �G F�A 0.83 cm/sec A��f5 Ú µ��� £

3 nopqJ HI& k7~� b k7��5 7& ,Z�ºE. ®3

�ð �G F� 0.83 cm/sec�f Ú µ��� �� k7��5 316.6�

7.2 g/m3|day, k7~�K 92.8�2.2%� ºE.

Fig. 3K �G FxÈ� �� �¦G §& DO ²R. 25oC�f& ¤

R �I� £3 ��> �þÿ �AE. �G FxÈ& �1� �� DO

1 5.5 g/m3�f 6.8 g/m3� �1�º+� 0.83 cm/sec A��f5 ­Z

?L �> Y Yw�) �£ 82.7%& ¤R�> 1�E. Garrido h

[16]� &�� nopq& H�R5 �I& _H Ëø 3�� L' P

�> �+�, Rostron h[8]K DO1 5�f 10 g/m3+� �1$Î> ª

H�R1 �13E) �ºE. ��) Matsumura h[7]K DO1 6-7 g/m3�

f �£ nopq k7��� LE) �º5� Ä ÅÆ& �M. �

,É�ºE.

Ä ÅÆ�f� �G FxÈ& �1� �� k7��, k7~�, ��

) DO1 �1�E1 0.83 cm/sec Aé�5 Ø,3 �> F��º) ®

3 �¦G §& ¤R�� *�f� ­Z?L �> F��5 �+�

q H�R� *�f �I �¯� � 3�� �ø3 �+� ��(�

�� 0.83 cm/sec A�& �G FxÈK ÊË�& �1� ST��

�+� ÄE.

A� L�Y Ä ÅÆ�f H�R� á�3 �I� �¯�), Ø$�

�£& k7��. k7~�> ÓG Ç3 �? �ð �G F�K 0.83

cm/sec� ��(� Aé& ÅÆ�f5 �G FxÈ> 0.83 cm/sec� Å

Æ> �½�ºE.

3-2. ���� ��� � � ����� �� ����

�¢}? 9$¬K �¦G §�f HR�� )ZRÞ PVA bead.

nopqJ HI& çè$¬M& 6�� *�f P�> w5 �IAE.

,�?+� 9$¬A I©�Í �¦ $¬A IN� �� �¦~

�K �q�� (�� �¦��� *�f5 �q�� ÞE. A� L�

Y 9$¬� � ÅÆ> æ�Y �¦G § nopqJ HI ¨� ²

R� � k7�� ²R� Áq ) �£ k7��� »© � *> �

� qp�, ?Z ~�> ÓG Ç3 9$¬> q �?& ÊËV�>

æ3 ÊË� ä> 1Ã� � *E.

Fig. 45 Fx� nopqJ HI ¨�1 5 g/m3 , ª �G-�; �

_�¦G� HR�� )ZRÞ bead� 10, 15, 20%� µ�$ , �¢

}? 9$¬> 0.05, 0.1, 0.175, 0.25, 0.35 b 0.5$¬+� ²R$Î

> ª nopqJ HI& k7�� b k7~�& ²R� �þÿ �AE.

�¢}? 9$¬A 0.5$¬�f 0.05$¬+� IN� �� µ�

� 10, 15, 20%(V/V)& nopqJ HI& k7��5 uu �1�º

+�, �¢}? 9$¬ 0.05$¬�f µ�� 10%(V/V)5 1,007 g/m3|

day, 15%5 1,199 g/m3|day, 20%5 1,352 g/m3|day& k7��� �

þ§�E. A5 Tanaka h[6]A PEG� ¡@�Y ÅÆ3 �ML 540 g/m3|

day. �z�Y nopqJ HI& k7��1 �K �+� �þ�),

Ø,3 PVA )ZR� ÅÆ> 3 Rostron h[8]& 700 g/m3|day. �

z�Y� �K k7 ��� Yw) *E. A5 Ø, PVA )ZR� ©

��� bead& �G1 Ä ÅÆ& 3 mm E �G ªj� _HËø�

*� �� dîA ü �� �þW+�¼ �M& �A� A5 �+�

��(� �E. ®3 d¨��f& trickling filter� ÅÆ3 Timmons.

Greiner[17]& H�R ��� �'f� �K k7 ��� Y �+�¼

Fig. 2. The effect of superficial air velocity on total ammonia nitrogenremoval rate and total ammonia nitrogen removal efficiency.

Fig. 3. The effect of superficial air velocity on dissolved oxygen concen-tration at DO saturation.

Fig. 4. The effect of hydraulic residence time on total ammonia nitro-gen removal rate and removal efficiency.

HWAHAK KONGHAK Vol. 40, No. 6, December, 2002

Page 4: Advanced Wastewater Treatment of Low Concentration · PDF file763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * † * (2001 12 20 , 2002 8 19 ) Advanced Wastewater

766 ��������������� ���������

Ä ÅÆ& H�R�A )ZRÞ PVA bead� &3 d¨� nopq& )

�!�� *�f ~M?+� �½© �+� ��(� �E.

nopqJ HI& k7~�K 9$¬A �1N� �� uu �1

�º+� 9$¬ 0.35$¬�f µ�� 10, 15, 20%(V/V)& nopq

J HI& k7~�K o� 90% A�+� �þ�), 9$¬A 0.5$

¬�f5 �£ k7~�A Ú µ��� £'f ÚÚ 93.1%, 94.1%,

96.3%� �þ�E.

9$¬A IN� �� k7~� ®3 I�Y µ�� 10%(V/V)

5 42.1%, µ�� 15%(V/V)5 50.2%, µ�� 20%(V/V)5 56.6%& �

K k7~�> �þ§) *E. A5 9$¬A «> 4� )ZRÞ H

R��M Fx nopqJ HI.& çèG�1 �£�) �¦G §&

nopqJ HI ¨�1 �+�� GH& _H ËøA @A�Y k7

��5 �1�5 ��, H�R� Ç3 µ"3 çè$¬A � (� B

N+� k7~�K �K �+� )() *E[12].

Fig. 55 Fx� nopqJ HI ¨�1 5 g/m3 , ª �G-�; �

_�¦G� HR�� )ZRÞ PVA bead� 10, 15, 20%(V/V)� µ�

$:) �¢}? 9$¬> 0.05, 0.1, 0.175, 0.25, 0.35, 0.5$¬+�

²R$Î> ª nopqJ HI, H�J HI, qH�J HI ¨�& ²

R. � �GHI& ¨�� �þ§�E.

�¢}? 9$¬A 0.05$¬�f 0.5$¬+� �1N� �� o�

µ���f �¦G§ nopqJ HI& ¨�5 I�º) qH�J

HI& ¨�5 0.05$¬�f 0.1$¬ ¡A�f5 �1�E1 0.1$¬�

f 0.5$¬ ¡A�f5 uu I�º+� �£u> û5 0.1$¬�f

H�J HI& �1�A 1[ � �> � � *E. H�J HI5 �¢

}? 9$¬A �1N� �� �1�º+�, µ��A �H �Í �

�GHI& Q� ç��5 �> � � *E. F�& � �GHI ¨

�5 Fx�& nopqJ HI ¨�. �K QA ��5 �+� q

Ä ÅÆ V� ��f ¡@3 �G-�; �_�¦G§ HR�� )Z

RÞ PVA bead�f H�R �¦� ,��) rH�¦K ,��� ·

K �+� ��ÞE. A5 �ð �G F�A 0.83 cm/sec� Ú µ���

£�Y µ"�� �I� Ëø© � *5 �? �GÈ> �¯�G ªj

L �+� ��(��E.

3-3. � ���� !" #$� � ����� �� ����

���& )�!�� *�f �[�f& nopqJ HI& Fx ¨

�1 ²��� A� £3 �G -�; �_�¦G�f& HR�� )

ZRÞ PVA bead& H�R úJ> Áq òE.

Fig. 6K �¢}? 9$¬A 0.35$¬A) HR�� )ZRÞ PVA

bead� 10, 15, 20%(V/V)� µ�$ , Fx 0J��& nopqJ H

I ¨�� 2.5, 5, 7.5 b 10 g/m3+� ²R$Î> ª nopqJ HI

& k7�� b k7~�> �þÿ �AE.

µ�� ²R� � nopqJ HI& k7�� �5 �� ·ò)

2.5 g/m3�f5 155 g/m3|day, 10 g/m3�f5 630 g/m3|day� �þ§

�E. ®3 Fx� nopqJ HI& ¨�²R� � k7��1 �

óJ> �þ§5 �K k7 ~�A o� µ���f 90% A�> �þ

`+�¼ ´Ë /0Ý �¦G� ) F�& nopqJ HI& ¨

�1 Fig. 7�f Yw�A 1 g/m3 A�& d¨�� F�ÞE) ò

> ª �� � k7��5 o� µ��� *�f 1�& �óJ>

Y�+�¼, Timmons. Greiner[17]1 2.5 g/m3 A��f k7��;�

1�;+� Ä �M �K �M� Yw) *E.

��) Suh h[18]K 25 g/m3 A�+� Fx�& nopqJ HI ¨

�1 �q�� �� nopqJ HI& k7��1 �13E) �º)

A5 HR�� )ZRÞ bead Ì-. §-¡A� nopqJ HI& ̈

��1 �à _HËø ��& �1� L�Y nopq k7��1 �

13 �+� )�º) k7 ~�K I3E) �ºE. Rostron h[8]

� �K � > §�) *E.

�i� Ä ÅÆ& Fx� ¨�1 10 g/m3 A�& d¨�A) )ZR

(5 HR��K bead& !�� oAG "E5 �[2, 9]+� q no

pqJ HI& -�ÈA �1�Y� HR�� )ZRÞ bead §& H

R��� &' µ"± k71 12��� k$Þ o� Fx nopq

Fig. 5. The effect of hydraulic residence time on effluent total ammonianitrogen, nitrite nitrogen, nitrate nitrogen and total inorganicammonia concentration.

Fig. 6. The effect of influent total ammonia nitrogen concentration ontotal ammonia nitrogen removal rate and removal efficiency.

���� �40� �6� 2002� 12�

Page 5: Advanced Wastewater Treatment of Low Concentration · PDF file763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * † * (2001 12 20 , 2002 8 19 ) Advanced Wastewater

��� ����� ���� �� ! 767

J HI ¨�V��f k7~�A 90% A�& ~�> Yw) *+

� k7(5 £-"& nopqJ HI5 bead §-� ��(G AË

� bead !�� #$(� *5 HR��� &' k7%+� bead §-

�& GH��A ?> �+� ��(��E. A. �A ¤¥ )ZRs

K HR��> )¨�� F�©� *5 [u> �p�� d¨� no

pqJ HI k7 $ HR��> µ"± F© � *+�� �K k7

~�> 1H � *+� Rostron h[8]A� Suh h[18]�f!& )¨�

nopqJ HI k7 $�5 GH ��dîA ÷'��� k7~�&

I� , �� *E.

3-4. %" #$� � ����� �� ����

nopq& �_}? !�� *�f y�5 ��_ �;M #ç3 6

�1 *+� Strotmann. Windecker[3]K HR��& )ZR1 �K J

[(� £3 jk� '��5 8s+� A@ 12�E) �º) ú±

¡�äA )*3 ����& �ä? úJ� �� HR�� )ZRÞ

PVA bead� &3 nopqJ HI k7� £3 y�& P�> ÅÆ�

ºE.

Fig. 8K �¢}? 9$¬A 0.35$¬A) HR�� )ZRÞ PVA

bead� 10, 15, 20%(V/V)� µ�$ , �G-�; �_�¦G§ y�

� 10, 15, 20, 25, 30, ��) 35oC� ²R$Î> ª nopqJ HI

& k7�� b k7~�& ²R� �þÿ �AE.

y�1 �q�� �� nopq k7��5 Ú µ��� *�f �

²R1 À�+� y�� � k7�� ®3 �A� A� ·+� 25oC

�f 323�8 g/m3|day& k7��� A) *+�, 10oC�f 15,

20%(V/V)& µ���f5 295�5 g/m3|day& k7���, 10%(V/V)

& µ��K 270 g/m3|day& EI �K �> �þ`+�¼ 25oC�f

10oC� y�1 �q�� �� nopq k7��5 8.7-16.4%& I

� Yw) *E.

k7~�K 30oC�f o� µ��� *�f 95�2%& ~�> Yw)

*+� 35oC�f� � �A1 ÀE. A5 HR��& �[K 8-30oC

+Ç& y��f A����, HR��& �? �[ y�5 , 30oCL

�[19]+� )(� *5 �M �K �M� Yw) *E. �i� µ

�� 10%(V/V)5 10oC� y�1 IN� �� k7~�A 79.8%�

I�ºE. Pano. Middlebrooks[20]K Rotating Biological Contactor� &

3 y� P� ÅÆ�f y�1 20oC& 99% k7~��f 15oC, ª

5 k7 ~�A 87%� I�º+�, 5 oC�f5 nopqJ HI& k

71 ,��� ·5E) )�) *+�, Nishio h[21]& ÅÆ�f

15-35oC�f5 k7~�� �� P�> �� B�) 15oC A��f

I-A ��E) �ºE. ��) Vogelsang h[9]K PVA-SbQ/alginate

gel bead� &3 H�R ÅÆ� *�f 10-30oC& y� ²R� £'

25%& �J ²R1 �þ� �z? y� ²R� £' . /�E) �

ºE. A5 Ä ÅÆ& �M. �03 �M� Yw) *E. �i�

Randall. Buth[22]& activated sludge� &3 H�R $ 30oC, 14-17oC,

��) 10oC& y� V��f nopqJ HI k7~�A ÚÚ 99%,

96-97%, ��) 28%� �þ`+�¼ 10oC�f& k7~� I1 �

1± �E5 �> Yw) *E.

A5 )ZR ̧ � ¡@Þ PVA5 )ZRÞ HR��A H�R MZ

�f X��5 ù> bead §� ÷© �� qp� Fx(5 ��& y

�²R� £�Y H�R�> e' �+�¼ 10oC& �K y��f

� µ��A 15, 20%(V/V)�f k7~�A ÚÚ 85.7%. 88.7%� F

�© � *5 AF�) ��(���, A5 ���� ���& 2� �

yA 10-15oCA) A� � )�!�� *�f y�� £3 H�R�

� P� ÀA k7~�> F� © � *5 �+� ��(� �E.

3-5. pH #$� � ����� �� ����

HR��� &3 H�R5 y�. NO pH& P�> �� ÞE. A�

�� )ZRÞ HR��A pH& ²R� �� �3 úJ> 1�5 1�

Áq òE.

Fig. 95 �¢}? 9$¬A 0.35$¬A) HR�� )ZRÞ PVA

bead� 10, 15, 20%(V/V)� µ�$ , Fx 0J ��& pH� 6-9.6+

� ²R$  �¦G §& pH ²R� � nopqJ HI& k7 �

Fig. 7. The effect of the reactor TAN concentration on total ammonianitrogen removal rate.

Fig. 8. The effect of temperature on total ammonia nitrogen removalrate and removal efficiency.

Fig. 9. The effect of pH on total ammonia nitrogen removal rate andremoval efficiency.

HWAHAK KONGHAK Vol. 40, No. 6, December, 2002

Page 6: Advanced Wastewater Treatment of Low Concentration · PDF file763 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 763-768 * † * (2001 12 20 , 2002 8 19 ) Advanced Wastewater

768 ��������������� ���������

ma,

a-

J.

of

nd

� b k7 ~�& ²R� �þÿ �AE.

Fx 0J ��& pH E �¦G §& pH1 0.84� I�5 �K

HR��� &3 H�R MZ� &3 �A�, µ�� 10, 15, 20%(V/V)

o� �¦G § pH 7-9�f k7��. k7~�A ÚÚ 310�10 g/m3|

day. 94�3%� F�N+�¼ Sharma and Ahlert[23]� &' )Þ

H�R� *�f& �? pH V�L 7-8.5& +� �5 �> �

� *E. �i� pH1 6.1 A�� I��f k7��. k7~� o

� ¯°± I�º) A5 Lahav h[24]A )3 pH 6.2 A��f �

£ k7 ��& 50% A� I3E5 �M. �03 4�> A) *E.

�i� Ä ÅÆ�f5 µ�� 10%(V/V) , ª �? pHV��f �

£ 305 g/m3|day& k7���f pH 6+� �5�> ª 223 g/m3|

day� 26.9%& I� Yw) *+�, A5 Stuckey h[2]A PVA�

HR��> )ZR�Y pH P�� £3 ÅÆ�f pH& I� ��

22.8%& k7�� I� Y6 �M �K �M� Yw) *E.

A. �A PVA� &' )ZRÞ HR��K Fx nopqJ HI

��. �ç ç�� (5 �_ës� �' PVA� ¤¥ )Z(� *+

�� pH ²R� . /�� �¦�5 �+� ��(��E. A5 ¤

¥ )ZRs& [uL pH, y� ²R ��) ³J_H& Fx� £3

´µ~M� Y�E.

4. � �

HR��> PVA� &' )ZR$  �G-�; �_�¦G� d¨

�& nopqJ HI k7 ÅÆ> �½�ºE.

µ��A 10, 15%(V/V)�f5 �G FxÈA �1© �Í k7��

. k7~� o� �1�º+�, 0.83 cm/sec�f o� µ��� £'

k7��5 316.6�7.2 g/m3|day, k7~�K 92.8�2.2%& �M�

ºE.

�¢}? 9$¬A 0.5$¬�f 0.05$¬+� IN� �� µ�

� 10, 15, 20%(V/V)& nopqJ HI& k7��5 uu �1�º

+�, �¢}? 9$¬ 0.05$¬�f µ�� 10%(V/V)5 1,007 g/m3|

day, 15%5 1,199 g/m3|day, 20%(V/V)5 1,352 g/m3|day& k7�

�� �þ§�), k7~�K 9$¬A �1N� �� �1�º+�

9$¬ 0.35$¬A��f µ�� 10, 15, 20%(V/V)� £' ÚÚ

93.1%, 94.1%, 96.3%& �£ k7~�> �þ�E. ®3 �¢}?

9$¬A 0.05$¬�f 0.5$¬+� �1N� �� nopqJ HI&

¨�5 I�º) qH�J HI& ¨�5 0.05$¬�f 0.1$¬ ¡A

�f5 �1�E1 0.1$¬�f 0.5$¬ ¡A�f5 uu I�º+�

H�J HI5 �1�º+�, µ��A �H �Í � �GHI& Q�

ç��ºE.

nopq k7��5 Fx� nopqJ HI& ¨� ²R� �7?

+� �1�º+� k7~�K Ú µ��� �� 93�2%� Yw�E.

y�²R& P�� *�f 30oC�f 10oC� �5�> ª k7��

5 �£ 323�8 g/m3|day�f �I 270 g/m3|day� 18.4%& I�

Yw) *E. k7~�K 30oC�f5 o� µ��A 95.5�1.5%&

~�> º), 10oC� �5�> ª µ�� 10%(V/V)1 79.8%� 1

[ �ò+� �K y��f� nopqJ HI k7� ~M?A�) �

� *E.

Fx 0J ��& pH ²R� � P�K �¦G § pH 7-9�f �

£ k7��. k7~�K ÚÚ 310�10 g/m3|day. 94�3%� F�

�ºE.

� ?+�, nopq& )�!�� *�f �G FxÈM �¢}?

9$¬M �K ÊË� £3 �? V�> »�) Fx� ¨�, y�,

pH. �K {4? P�� £' k7��. k7~�> ÁqÄ �M �

G -�; �_�¦G� HR�� )ZRÞ PVA bead> A@3 d¨

� nopqJ HIk7� *�f& ~M?8> Á � *�E.

Ä �»5 39M}'�& �:£}��M}��Ñ¡�(Mk;e:

2000-1-30700-005-1)� &�Y �½Þ �M& ,-A�, �Ñ� ¡<

=pE.

���

1. Campos, J. L., Garrido-Fernández, J. M., Méndez, R. and Le

J. M.: Biore. Technol., 68, 141(1999).

2. Stuckey, D. C. and Barber, W. P.: Wat. Res., 31, 2423(2000).

3. Strotmann, U. J. and Windecker, G.: Chemosphere, 35, 2939(1997).

4. Green, M., Ruskol, Y., Lahav, O. and Tarre, S.: Wat. Res., 35, 284(2001).

5. Ng, W. J., Kho, K., Ong, D. L., Sim, T. S. and Ho, J. M.: Aquacul.

Eng., 139, 55(1996).

6. Tanaka, K., Nakao, M., Mori, N., Emori, H., Sumino, T. and Nak

mura, Y.: Wat. Sci. Tech., 29, 241(1994).

7. Matsumura, M., Yamamoto, T. and Wang, P. C.: Wat. Res., 31, 1027

(1997).

8. Rostron, W. M., Stuckey, D. C. and Young, A. A.: Wat. Res., 35, 1169

(2001).

9. Vogelsang, C., Husby, A. and Østgaard, K.: Wat. Res., 31, 1659(1997).

10. Ariga, O., Yamakawa, T., Fujimatsu, H. and Sano, Y.: J. Ferment.

Bioeng., 68, 293(1989).

11. Hashimoto, S. and Furukawa, K.: Biotechnol. Bioeng., 30, 52(1987).

12. Suh, K. H., Kim, Y. H., Cho, J. K., Kim, B. J., Sae, J. K., Park, E.

and Kim, S. K.: J. Korean Environ. Sci. Soc., 8, 479(1999).

13. Chisti, M. Y.: “Airlift Bioreactors, Elsevier Applied Science,” Lon-

don and New York, 1(1989).

14. APHA, AWWA and WEF: Standard Methods for the Examination

Water and Wastewater, 20th ed., EPS Group, 4-106(1998).

15. Kim, C. W.: J. Environ. Hi-Tech., 5, 2(1998).

16. Garrido, J. M., van Benthum, W. A. J., van Loosdrecht, M. C. M. a

Heijnen, J. J.: Biotechnol. Bioeng., 53, 168(1997).

17. Timmons, M. B. and Greiner, A. D.: Aquacul. Eng., 18, 189(1998).

18. Suh, K. H., Cho, J. K. and Kim, B. J.: Theories and Application Chem.

Eng., 5, 1077(1999).

19. Liu, Y. and Capdevelle, B.: Environ. Technol., 15, 1001(1994).

20. Pano, A. and Middlebrooks, E. J.: J. WPCF, 55, 956(1983).

21. Nishio, T., Yoshikura, T., Mishima, H., Inouye, Z. and Itoh, H.: J. Fer-

ment. Bioeng., 86, 351(1998).

22. Randall, C. W. and Buth, D.: J. WPCF, 56, 1045(1984).

23. Sharma, B. and Ahlert, R. C.: Wat. Res., 11, 897(1977).

24. Lahav, O., Artzi, E., Tarre, S. and Green, M.: Wat. Res., 35, 397(2001).

���� �40� �6� 2002� 12�