23
Adapting the technology of zero liquid discharge by willow bed for leachates treatment

Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Adapting the technology of zero liquid discharge by willow bed

for leachates treatment

Page 2: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

The context

• Wastewater treatment never reaches 100% efficiency at all time

• Sometimes, presence of residual contamination is not acceptable

Evapotranspirative constructed wetlands with zero liquid discharge

1

Page 3: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Evapotranspirative wetlands

• First zero discharge CW’s designed mainly for domestic wastewater treatment

• Typically planted of willow clones, known for high transpiration rates

Mean ET rates ~ 5 mm/d

Some studies report rates > 15 mm/d

(Frédette & Brisson, 2017) 2

Page 4: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

ET wetlands for leachate treatment

Contaminated leachate can be phytotoxic and low in nutrients

Water input is entirely dependent on rainfall (variable volume) received over a surface larger than the ET wetland (large volume)

Boreal climate with very cold winter reduces the time of the operation season

3

Page 5: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling - Evaluate the performance in different weather conditions and with

different conception designs - Propose guidelines for sizing and managing the system

Adapting the technology

Pilot scale - Monitor plant condition in

situ and measure ET capacity of the system

Experimentation scale

- Teste specific questions like what is the relative effect of contamination level and substrate type on evapotranspiration rate

4

Page 6: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Pilot leachate treatment system

1. Open storage tank

2. Primary treatment 3. Polishing treatment

5

Page 7: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Willow bed conception

• Horizontal subsurface flow

• Sand and peat substrate

• Mean loading rate of 3 m³/d

• Salix miyabeana (SX67)

• Roots of 6 years old, stems of 3 years old

• 2.3 plants/m², fertilized in 2013, 2014 and 2017

6

Page 8: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Water characteristics

0

200

400

600

800

As (μg/L)

Cr (μg/L)

Cu (μg/L)

D/F(TEQ/L)

N(mg/L)

0

200

400

600

800

As (μg/L)

Cr (μg/L)

Cu (μg/L)

D/F(TEQ/L)

N(mg/L)

0

200

400

600

800

As (μg/L)

Cr (μg/L)

Cu (μg/L)

D/F(TEQ/L)

N(mg/L)

As: Arsenic Cr: Chromium Cu: Copper D/F: Dioxins and furans TEQ: toxic equivalent 7

Page 9: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Plant conditions in situ

After 5 years of operation…

• Small concentration of metals in substrate (~10 and 15 mg/kg of Cr and Cu)

• Dioxins and furans in willow root zone (0.6 pg/g in substrate and 0.2 pg/g in roots), but no clear phytotoxic effect

• Signs of nutrient deficiency, early degenerescence of the leaf cover

8

Page 10: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

0

2

4

6

8

10

12

14

16

May June July Aug. Sept. Oct.

Plant conditions in situ

• Very high leaf area index (mean of 9 for the season)

• Individual leaf area show significant differences

LAI (

leaf

/m²

soil)

Theoretical surface

Actual surface 9

LAI (

leaf

/m²

soil

)

Page 11: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Evapotranspiration components

From May 27th to October 17th (2016)

• Open tank evaporation : 3.4 mm/d (pan evaporation)

• CW’s evapotranspiration : 3.8 mm/d (reference ET)

• Willow bed evapotranspiration : 28 mm/d (water balance) 3.1 mm d¯¹ m¯² of leaf

Constant and high

water availability

Very important oasis

effect

10

Page 12: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling the system

11

Page 13: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling evapotranspiration

• Open tank : open water evaporation calculation method

• CW’s : Penman-Monteith reference ET with crop coefficient

• Willow bed evapotranspiration : leaf parameter based equation Represents the few evapotranspiration constrains in wetlands

Requires minimal data to calculate

Parameters can be used for modelling

T = Ḡs · activeLAI · Kυ

12

Page 14: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling evapotranspiration

• Willow bed evapotranspiration : compute activeLAI Considering adaxial transpiration -> activeLAI = LAI * 1,2

0

2

4

6

8

10

12

14

16

May June July Aug. Sept. Oct.

R² = 0.91

13

LAI (

leaf

/m²

soil)

Page 15: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling evapotranspiration

• Willow bed evapotranspiration : predict Ḡs

According to solar radiation, temperature and relative humidity

Mean measured = 414 mmol s¯¹ m¯² vs mean modelled = 412 mmol s¯¹ m¯²

300

350

400

450

500

100 200 300 400 500 600 700

Mo

de

lled

Ḡs

(m

mo

l s¯¹

m¯²

)

Measured Ḡs (mmol s¯¹ m¯²)

R² = 0.45

0

500

1000

0 200 400

Mean radiation flux (W m¯²)

0

500

1000

0 10 20 30

Mean temperature (°C)

0

500

1000

0 50 100

Relative humidity (%)

Me

asu

red

Ḡs

(mm

ol s

¯¹ m

¯²)

14

Page 16: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling evapotranspiration

• Willow bed evapotranspiration : compute seasonal T

From May 27th to October 17th (2016)

T = 26.7 mm/d

0

1

2

0 5 10 15

T/ET

LAI

R² = 0.75

15

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150

ET (

mm

/d)

Days of operation

Transpiration Water balance

Reference ET

Page 17: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling 2016 operation season

• Initial levels Open storage tank : 95% full

CW’s and WB : 70% full

• Willow bed size : 48 m²

16

Open storage tank 2240 m²

Constructed wetlands 125 m²

Willow bed

48 m²

Rain 1480 m³

E 1051 m³

ET

ET 251 m³

Rain

Outflow 342 m³

Rain

Page 18: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling 2016 operation season

Measured Modelled

CW’s influent (m³) 601 618

WB influent (m³) 565 575

WB effluent (m³) 313 342

WB ET (m³) 273 251

• Initial levels Open storage tank : 95% full

CW’s and WB : 70% full

• Willow bed size : 48 m²

0

10

20

30

40

50

60

0 50 100 150 200

Days of operation

Constructed wetlands Willow bed

17

Page 19: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling system operation: Zero discharge

18

Open storage tank 2240 m²

Constructed wetlands 125 m²

Willow bed

48 m²

Rain 1480 m³

E 1051 m³

ET

ET 251 m³

Rain

Storage tank

141 m³

Rain

• Initial levels Open storage tank : 95% full

CW’s and WB : 70% full

Storage tank : 50 m³

• Willow bed size : 48 m²

Page 20: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Modelling system operation: Sizing

19

Open storage tank 2240 m²

Constructed wetlands 125 m²

Willow bed 100 m²

Rain 1480 m³

E 1051 m³

ET

ET 392 m³

Rain

Storage tank

113m³

Rain

• Initial levels Open storage tank : 95% full

CW’s and WB : 70% full

Storage tank : 80 m³

• Willow bed size : 100 m²

Page 21: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Willow bed 75 m²

Modelling system operation: Optimizing ET

20

Open storage tank 2240 m²

Constructed wetlands 125 m²

Rain 1480 m³

E 1051 m³

ET

ET 421 m³

Rain

Storage tank

115 m³

Rain

• Initial levels Open storage tank : 95% full

CW’s and WB : 70% full

Storage tank : 80 m³

• Willow bed size : 75 m²

Page 22: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Conclusions and perspectives

Willow ET in situ can be considerably higher than mean rates found in literature (high «oasis effect» and water availability)

Cumulative ET can exceed rainfalls in boreal climate, if waterflow is to be properly managed

Zero liquid discharge system using willow bed can be modelized for other climatic conditions with minimal data

ET volume can be optimized to reduce the size of the willow bed

Effect of factors like contamination and fertilization on ET rates still has to be addressed

21

Page 23: Adapting the technology of zero liquid discharge by willow ...wems.dk/wp-content/...the-technology-of-zero-liquid-discharge-by-will… · Zero liquid discharge system using willow

Thank you!