25
Technical Report Philadelphia, PA Prem Patel Jose Arguelles Shaun Sebastian Sarah Larkin Jacob Joseph Paula Klichinsky Arjun Pillai Jay Dave Andy Huang Adam Schiavone Adam Feldscher Louie Feldman Nate Albuck Jordan Singer Chief Executive Officer Chief Operating Officer Chief Financial Officer Financial/Data Department Marketing Design Lead Lead Electrical Engineer Electrical Department Electrical Department Electrical Department Lead Software Engineer Software Department Lead Mechanical Engineer Mechanical Department Mechanical Department Mentors: Stephanie Delaney and Kyle Juretus A.D.A.M. ROV D . A . R . T . DREXEL AQUATIC ROBOTIC TECHNOLOGIES AQUATIC DIAGNOSTIC ACQUISITION MEASUREMENT

A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Technical Report

Philadelphia, PA

Prem PatelJose ArguellesShaun SebastianSarah LarkinJacob JosephPaula KlichinskyArjun PillaiJay DaveAndy HuangAdam SchiavoneAdam FeldscherLouie FeldmanNate AlbuckJordan Singer

Chief Executive OfficerChief Operating OfficerChief Financial OfficerFinancial/Data DepartmentMarketing Design LeadLead Electrical EngineerElectrical DepartmentElectrical DepartmentElectrical DepartmentLead Software EngineerSoftware DepartmentLead Mechanical EngineerMechanical DepartmentMechanical Department

Mentors: Stephanie Delaney and Kyle Juretus

A.D.A.M.ROV

D.A.R.T.DREXEL AQUATIC ROBOTIC TECHNOLOGIES

AQUATIC DIAGNOSTIC ACQUISITION MEASUREMENT

Page 2: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

TABLE OF CONTENTSI. ABSTRACTII. DESIGN RATIONALE A. System Interconnection Diagrams B. Vehicle Core System 1. Mechanical 2. Electronics 3. Software C.MissionSpecificFeatures 1. Manipulator 2. AcousticDopplerVelocimeter(ADV) 3. WreckageZone/MaximumPowerGenerationGUI 4. Lift Bag 5. OceanBottomSeismometer(OBS)III. SAFETY A. SafetyPhilosophy B. VehicleSafetyFeatures C. TestingProtocol D. TestingandTroubleshootingTechnique E. WorkEnvironmentSafetyPracticesIV.PROJECTMANAGEMENT A. Organization,StructurePlanning,Procedures B. BudgetandCostProjectionV. CHALLENGES A. Non-Technical challenges B. Technical challengesVI. LESSONS LEARNEDVII.FUTUREIMPROVEMENTSVIII. REFLECTIONSIX. ACKNOWLEDGEMENTSX. REFERENCESXI.APPENDICES A. Gantt Chart B. Operational Checklist C. Budget D. CostProjection

Tech

nic

al R

epor

t

2

3445579

13131314141515151616161717171819191920212122232323242525

Page 3: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

I. ABSTRACT

DrexelAquaticRoboticTechnologies(DART)consistsoffourteenemployeesfrombusiness,math,andengineeringbackgroundswhoarepassionateindevelopingthenextgenerationofinnovativeandcosteffectiveremotelyoperatedvehicles(ROVs).ThecompanyhasdevelopedasolutiontosatisfytherequestofTheAppliedPhysicsLaboratory(APL)attheUniversityofWashingtonforproposals(REP)ofanROV thatcanconduct tasks in saltwaterand freshwaterenvironments in thePacificNorthwest. DART has spent over eight months in research and development to create the ADAM (Aquatic,Diagnostic,Acquisition,andMeasurement)ROV.ADAMROVcanperformsurveysofvintage aircraft wreckage, recover the aircraft’s engine, install and recover a seismometer, install a tidalturbine,andinstallinstrumentationtomonitortheenvironment. ThisisDART’sfirstyearinoperation,andsoADAMROVisbuiltuponthecomprehensiveresearchandpastexperiencesofemployees.DARTcreatedanonboardcontrolsystemtoreducetetherweightandincreasemodularityoftheelectronicstube.Thecompanyusedin-housedevelopmentofcom-ponentsvia3Dprintingforrapidprototypingandcostreduction.Cross-disciplinarycollaborationbetween themechanical and softwaredivisionsyieldedacompactand sophisticatedROVwithahighdegreeofdurabilityandfunctionality.Theelectricaldivisionexperimentedwithvarioussystemintegrateddiagramstoimproveefficiencyofthepowerdistributionsystemofthegivenpowersupplytoensureminimalvoltageirregularities. ThroughthecollectiveeffortofDART’semployees,ADAMROVisthemostsuitableROVtofulfillTheAPLattheUniversityofWashington’sREP.

Figure 1: Back Row (Left to Right): Prem Patel, Jay Dave, Louie Feldman, Adam Schiavone, Arjun Pillai, Jacob Joseph, and Nate Albuck;

Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

3

Page 4: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

II. DESIGN RATIONALE

A.SystemInterconnectionDiagram(SID)

Thefollowingaresysteminterconnectiondiagramsoftheaircompressorlines/fittingsandelectronicsystemsusedinADAMROV(Figure2).

Figure 2: System Interconnection Diagram (SID) of ADAM ROV

Tech

nic

al R

epor

t

4

Page 5: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

B. Vehicle Core System

1)Mechanical

Frame

ADAM ROV’s frame implements a non-traditional design utilizingacylindricalenclosurefortheframeandbuoyancyratherthanemployingarectangulardesignfortheframeandfoamforbuoyancy.SimplifyingthedesignenabledtheROVtobenimblerwhenoperating,smallerinsize,andreducedthenumberofpossibleerrorsources.ThewatertightenclosurewaspurchasedfromBlueRoboticsbecauseofthereliabilityanddurabilityoftheproduct,whichiscriticaltothesuccessofthedesignsinceitwillbehousingtheROV’sonboardcontrolandcommunicationelectronics.TheenclosurehasasphericaldomeinthefrontandconnectstoacastedacrylictubewhichallowsthewatertobeeasilydisplacedaboveorbelowthedometoflowthewaterflatacrossthecylindricaltubecausingthereductionofthefrictionaldragontheROV(Figure3).ThereductionofthefrictionaldragwilldecreasetheloadonthethrusterstopropeltheROVinwhichwouldreducecurrentdrawandincreasebatterylifeinthefield.Throughtheuseofacost-benefitanalysis,theframedesignwasjustifiedinincorporatingPolylacticacid(PLA)3-Dprintedelementstoreduceboththecostandtheweightofmountedcom-ponents compared toothermaterials such as aluminumandPolyvinyl chloride (PVC),whilenotcompromising the integrity of the frame.

PLAwasselectedoverotherplasticssuchasnylonduetoitslowerprice,rigiditythatmountingele-mentsrequire,andrapidprototypingability.Bendingandfractureanalysiswereperformedoneachmountingcomponentparttofinditsyieldandtensilestrengthensuringandincreasingthereliabilityofthemounts.Testingwasalsoperformedinregardtothefilldensityofeach3-Dprintedpartfrom10-30%inordertoidentifytheoptimalfillofmaterial.Theoptimalfillwasdeterminedtobe15%becauseitminimizedthevolumeandmettherequirementsofthegeneratedforces.The3-DprintedclampsandmountsweredesignedwithM8holesforincreasingserviceabilityaspayloadscanbemountedandrepairedeasilyduetotheintegrationof3-Dprintingandoptimalattachmentpointlo-cations.

ThecastedacrylicenclosureoftheROV’sbodyrequiredcircularclampstobefabricatedservingasamountinginterfacetothetubefromanyoftheattachments.TheclampsaroundtheROVprovideanchorpointsformountingbracketsthroughthethreadedM8holesthatwereprintedinsideoftheclamps(Figure4).Theclampsand

Figure 3: Flow Analysis of Frame Design

Figure 4: Rendering of ADAM ROV’s Frame with Clamps

5

Page 6: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

bracketsweredesignedtominimizethevolumetricfootprintandadditionaldragwhichwasconduct-edthroughbendingmomentanalysisandcurvingalledgestopermiteaseofwaterflowaroundtheclamporbracket.DuetolowfrictionofthePLAandacrylicenclosure,thetwosurfacesarecoatedwithalayerofrubbertoincreasefrictionandkeepthe3Dprintedcomponentsfromslidingonthelowfrictionsurfaceoftheenclosure.

Buoyancy

Tocompensatefortheweightoftheframe,manipulator,andelectroniccomponents,ADAMROV’sdesignsignificantlyconsideredthevarioussizeenclosuresavailable.Thesizeoftheenclosurewasselectedaroundthreemainfactors:netbuoyancyforcegenerated(Archimedes’Principle),dimen-sionrequirementsoftheelectronicsconfiguration,andneutrallybuoyancy.ThetheoreticalbuoyancyforceincludesthevolumeofalltheexternalcomponentsoftheROV,whichwerecalculatedbythe3Dmodelingsoftware.Theotherconstantssuchasspecificweightofwater,massofROV,andgravi-tywerecollectedandresearchedtofindthenetbuoyancyforcegenerated.Theoptimalenclosuresizeisa101.6mmdiametertubebecauseitgeneratedanetbuoyancyforceclosesttozero.Thecontrol-labilityandmaneuverabilitygreatlyincreaseasneutralbuoyancyisachievedduetotheequilibriumofforcesontheROVallowingthethrusterstobethesingularappliedforceincreatingamovement.

Propulsion

ADAMROVispoweredbysix1250GallonperHour(GPH)BilgepumpsfromSPX.Insteadofconfiguringthethrustersinatraditionallineardirectiontoachievefullthrust,anOMNIdrivewasimplemented.TheOMNIdriveinvolvesfourthrustersrotatedwitha45°offsetfromthehorizontalaxisand10°fromtheverticalaxistoproduceaforceintwodimensions.Originally,thesefourthrusterswerenotverticallyoffset.Theoffsetangle from the horizontal and vertical axis was optimizedthroughvectoranalysistoensuremaximumsway,surge,yaw,andpitchthrustwithoutgreatlydecreasingoneanother.Throughtestingandpractice,wefoundthattheseangleswerenecessaryforprecisemovementsunderwater.Two thrustersfixed in theverticalaxisallowedforheaveandrollmove-ments,whichare locatedat thecenterofgravityof theROVto take full advantageof the thrust(Figure5).Animportantdesignconsiderationwasplacedonmaximizingpropulsionbydevelopingprotectiveshroudsthatnotonlyprotectthemarinelifeenvironmentbutalsominimizetheobstructionofwaterflow.Itwasdesiredtopreventobstructingwaterflowsincethiscouldcausethethrusterstobeineffectiveandincreasethecurrentdraw.ThisOMNIconfigurationwiththepropermeshguardsequipsADAMROVwithsixdegreesoffreedom,allowingtostrafeinanydirection.

Figure 5: ADAM ROV’s Six Degrees of Freedom

6

Page 7: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

2)Electronics

ADAMROV’selectricalsystemprovidespowerandcommunicationamongallservosandsensors.Inaddition,thesystemincludesthreedualchannelbrushedthrusterdriversthatutilizeasixteenchan-nelpulsewidthmodulation(PWM)controllerandaRaspberryPi3ModelB.Thismicrocontrollerwaspreferredoverotherconventionalsingleboardcomputers(SBC)duetoitsrobustness,lowpricepoint,andcompactdesign.Theconfigurationoftheelectroniccomponentswasselectedaftercarefuldeliberationofthecustomelectronicplatedimensionsandringterminalconnectionswithintheenclosure.Theelectronicplatehousedintheenclosurecreatesacentralizedarchitecturefortheelectricalsystem(Figure6),whichenablesasingularlocationformaintenance,troubleshooting,andanypotentialissues.

ADAMROV’sstablepowerdistributionallowsforuptofourthrusterstobesimultaneouslycontrolledviathethrusterdrivers.Theon-boardsensorsandlightingareintegratedintotheROV’ssystemthroughtheRaspberryPi,whichpermitstheabilitytoautomateandassistthepilotwhenoperatingthevehi-cle.Asaresultofintegratingmanyofthesystemsintoacentralprocessingunit,thecommunicationandpowerdistributionlinesareminimal,creatingalightweightandcost-effectivetether.

PowerDistribution

ADAMROV’sprimarysourceofpowerisa12VDCbatterythat is transmittedfromthesurfacethroughthetethertothefirstdualbusbar.Theringterminalbusbarinputstheinitialpowerfromthesurfaceanddistributestheoutputpowertothethree-dualchannelbrushedthrusterdrivers.Thefourthoutputringterminalsetfromthe12VDCbusbarissuppliedtoa12V-5Vconverterwhichinputsthe5Vtoaseconddualbusbar(Figure7).Thefouroutputsofthe5Vbusbarpowersthefeedbackandcontroldevicessuchasthemicrocontroller,sensors,andservos.Thebusbarscreateaparallelsystemthatreducestheprobabilityofvoltagespikesandresistancealongalltheelectricalcomponents.Thisensuresequaldistributionofpowerunderanyloadingsettingandpreventsanyovercurrentcausingthesystemtofail.Acommercialbusbarwasutilizedduetotheexpandedfeaturesetandlowermon-etaryandtimecostthananproducingacustomin-housebusbardesign.Asanextrasafetymeasure,aself-recoveryfusewasimplementedonthe12V-5Vconvertersoifitistripped,theROVwillclosethecircuittominimizedamagewithinthesystem.

Figure 6: Centralized Electronics Housing

Figure 7: Power Distribution from the Source to Both Buses

7

Page 8: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

Cameras

DuetothedesignofADAMROV’sframeandpropulsion,adualcamerasystemwasincorporatedtoensuremaximumfieldofvision(FOV)andenvironmentsafety.TheRaspberryPiV2camerawasinstalled inside the dome on a tilt and pan servo system allowing the primary camera to tilt and pan inanydirectionneededupto180°fromtheinitialaxis.RaspberryPiV2cameraisequippedwithan8megapixels(MP)lensand1080pvideocapabilitiesbuta130°FOV.Originally,thecamerahadaverylimited42°FOV,andwerealizedwhenpracticinginthewaterthatthiswasnotenough.WethenintroducedalensthatincreasedourFOVwhilealsofittinginsideourdomewithoutmakinganycontactwhentiltingorpanning.TheutilizationoftiltandpansystemimprovedtheoverallcontroloftheROVbyprovidingmultiplevideoanglestothepilotwithoutmovingtheROV.Byutilizingthissystem,thebatteryandtimetrade-offwouldleadtobetterexecutionbyreducingtheamountofROVmovementcausinglesscurrentdrawandincreasethetimeforoperationaltasks.ThesmallsizeandeasyintegrationoftheRaspberryPiV2cameraandtheRaspberryPiwasthejustifyingfactorinchoosingthisdeviceoverotherbrandsofUSB/ribboncablevideocameras.ThesecondarycamerawasfixedunderneaththeROVtoallowthepilottonavigatesafelyaroundthemarineenvironment.ThesafetyfactorofthesecondaryUSBcamerawasthedrivingforcebehindthedecisioninguar-anteeingtheROVcansurveytheenvironmentbefore,during,andafterallmissionsarecompletedwithoutanydamagetotheenvironmentororganisms.ThehighdefinitionandautofocusfeaturesoftheLogitechUSBC920gavethebestcost-over-qualitytrade-off,greatlyaidingthepilotwithclearand consistent video at all times. Tether

ADAMROV’stetherconsistsofmultiplecablesshieldedbyaPolyethyleneTerephthalate(PET)braidedsleevingtocreateasingleflexibleprotectivecasingwithadiameterof10.16mmwhichweighsatotalof2.2kg(Figure8).Thecasingofthetetherallowsforeasierhandlingandstoragewhichwillreducewearandtearonthecables.Thetetherhastwo14AWGpowercables,oneCategory6Ethernet(CAT6)cable,oneairpipe,andaclosedcellneoprenefoam.Theone12-5VDC-DCstepdownregu-latoronADAMROVhasanoperatinginputof6Vto40V.Toestablishasafetymargin,a25%to30%voltagedrop(Vdrop)undermaximumloadof25Amps(A)wasconsideredacceptableforthepowersystem.Withthetetherlengthbeing20m,a25%Vdropcorrespondstoaresistanceperlengthvalueof3.3mΩ/meterand30%Vdropcorrespondsto3.6mΩ/meter.ThesematchtheresistanceAWGvalueofaround10to11respectivelyinwhichthe10AWGwaschosenforthelowestpossibleVdropwithoutcompromisingflexibility.ThesingleCAT6cableisusedtoestablishanEthernetconnectionbetweentheonboardRaspberryPiandacomputerinsidetheon-shorecomputer.Theairpipeisusedtosupplyandexhausttheairtoandfromtheliftbagusinganon-shoreaircompressor.Additionally,theclosedcellneoprenefoamisutilizedforachievingneutralbuoyancyofthetetherinanydepthduetotheairpocketsinthefoamnotbeingabletocollapsetocreatepositivebuoyancy.Apartfrom

Figure 8: Cross Sectional View of ADAM ROV’s Tether

8

Page 9: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

thefirstversionofthetether,whichhad10AWGpowercablesandamuchlargerairtube,thecurrentversionallowsformoreflexibilitytominimizehinderancingthemaneuverabilityofADAMROV.

Control Box

ThedesignrationalebehindthecontrolboxwastocreatethesimplisticandcompactcommandcenterforADAMROV’soperation.Thecontrolboxhaslimitedwiringandelectroniccomponentssuchasmotorcontrollers,powerbusses,andlogicboardsduetotheADAMROVdesignofhousingmajorityoftheelectronicsdevicewithinitsframe.Thecontrolboxcontainsthecomputer,ROVpowercable,voltage/amperagesensor,andasinglepolesinglethrow(SPST)“killswitch”.The“killswitch”isplacedonthecontrolbox’sbottomplatetoallowforquickdisconnectofpowertoROVifanysafetyconcernsarise.Thefourmaincomponentsofthecontrolboxarethetopplate,bottomplate,excesswireholder,andcomputerbracket.Thetopandbottomplateswerecutfromsheetsofhighdensitypolyethylene(HDPE)whichareutilizedtomountthecomputerandjoysticks.Theexcesswirehold-erisawoodenboxthatactsasacontainertoholdtheROVpowercablethatisextendedfromthecontrolboxtotheDCpowersupply.TheHDPEwaschoosingforthebuildingmaterialduetotheeaseofmanufacturingandtensilestrengthwhichwouldbeneededincreatingacustompanelandwithstandingtheweightofthecomputersystem.Thewoodintheboxactedasmountsforthepanelstoattachtowhichwouldmakeforbetterandlightersupportthanaluminumorsteel.

3)Software ADAMROV’scontrol systemutilizesa surface laptopcomputerandanonboardRaspberryPi3ModelBSBCforcommunication,datacollection,andROVcontrol(Figure9).TheRaspberryPiwasselectedoverothercompetingSBCsduetotheoverallcomputingpowerprovidedbytheQuadCortexA53CPUandavailabilityofestablishedsoftwaredrivers.Thecommunicationbetweenthesurfacecommandcenter’s computer and theROVoccursusingaCAT6Ethernet connectionandInternetProtocol(IP).BydevelopingtheonsurfacecentersoftwareinaLinuxoperatingsystem,itallowedforimprovedcollaborationinsoftwaredevelopmentandeaseofcomponentintegrationinthesystem.ADAMROV’sonboardcomputeroperatesinPythonsoftwarewhichenablesvastonlineresourcessuchaslibrariesanddriverstoproviderapidprototypingabilities.DARTusedonlinecloudserverapplicationssuchasGitHubforonlinecollaboration,softwarevalidation,anddatastorage.

Figure 9: Interconnection of Raspberry Pi with ROV System

9

Page 10: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

NetworkProtocol

DART’ssoftwaresystemwasdevelopedthroughseveralstages,buttheinitialstagewastodesignthenetworkprotocol(thecommunicationbetweenthesurfacecommandcenterandADAMROV).Thenetworkprotocolessentiallybreakdownsintotwomaincomponents:responseandrequest.Theresponsecomponententailsvariouscommandsbutthemostpertinentisthe“Do”commandwhichcontrolstheROV’smovements,servos,andcameras.WhereastherequestcomponentscapturethedataspecifiedbythesoftwarefromthesensorsandthrusterstoreceivefeedbackoftheROV’sstatus.

Modules

DARThasarchitecteditssoftwareforADAMROVinsuchawaythatitallowstheprogramtobedividedupintomodules.Thisallowsforeasilydebuggable,organizedcodewithfewdependencies.Theprogramissplitintonetworking,business,andcontrollermodules.Usingaclient-servermodel,thenetworkingmodulereceivesinstructionsfromthedashboard,andsendsmessagestolettheoper-atorknowthestatusofthesystem(Figure10).Thismodulethenunpacksthesemessagesandsendsthemtothebusinessmodule.Thebusinessmoduletakesthecommanditreceivedandsendsittothecontrollermodulewhereitwillbecarriedout.Anyinformationreturnedbythesecommandsiscol-lectedbythebusinessmodule,whereitcanthenbepackagedupandsetontothenetworkingmodule.Thecontrollermoduleisasetofclassesthatexecutecommands.Whenacertaincommandfromthebusinessmodule isexecuted, thecorrespondingcontrollerwillbeactivatedtohandle therequest.Thiscontrollerthencallsupontheappropriatedriverswhichwillinteractdirectlywiththehardware.Eachmoduleinthisarchitectureisableextendtheirfeatures,suchasaddingmorecontrollersandcommands,withoutaffectinganothermodule.

Figure 10: ADAM ROV’s Software Architecture

10

Page 11: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

CommandPattern

DARThastakenadvantageofcommonindustrylevelsoftwaredesignpatternsandincorporateditintothesoftwaresystemforstreamlinedcommunicationandbettersolutionsforcommonlyoccur-ringissuessuchasparametrizationandoptimization.Softwaredesignpatternisageneralsolutiontoacommonlyoccurringprobleminwhichthedevelopercanapplyvariousoptionstosolveanissue.Forexample,DARTleveragedonepatterntoenableabstractdefinedinstructionsfortheROVasacommand(Figure11).Eachcommandhas itsowncorrespondingcontrollerwhichknowshowtocarryouttherequestmeaningthebusinessmodulewon’tneedtoknowhowtointeractwithspeedcontrollersorservos,butrelyonthefactthatthereisacontrollerwhoisresponsibleforthis.Duringrun-time,commandsareplacedinaqueuesothatactionsarecarriedoutchronologically.Thishelpstosynchronizetheflowofmessagesbetweenmodulesandensuresthattwoconflictingcommandsarenotexecutedatthesametime.Theflexibilityofthecommandpatternalsoenablestheabilitytoimplementlongrunningcommands.TheselettheROVcarryoutlongrunningtasks,suchasslowlyclosingtheclaw,orfadingtheLEDsoveraperiodoftime.Thesecommandsareexecutedontheirownthread,toisolatethemfromthestandardcommandexecution.

Figure 11: Execution Procedure of Each Component on the ROV

11

Page 12: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

Semi-AutonomousFunctionality

ADAMROVemploysaninertialmeasurementunit(IMU)sensorandapressuresensortoenablesemi-autonomousfunctions.AsoneofthetoughesttasksinpilotinganROVistomaintainahead-ingordirectionduetoexternalfactorssuchasdragforceandtidalcurrents.TheIMUconsistsofagyroscope, accelerometer, and a magnetometer which integrated into the software system can allow theROVassistandholdpositionfeatures.Thesoftwareforthesefeaturesaredesignedinacom-manddrivefashionwhichmaintainitscurrent“state”orpositionuntilacommandisreceivedthatinstructsittodootherwise.Tomaintainposition,currentorientationandvelocityfeedbackisgivenbythegyroscopeinthemeansofangularacceleration.Thedatafromthegyroscopecanbeintegratedovertimetofindoutourangularvelocityandheadingindegrees.Byusingtheangularvelocityandheadingindegrees,ADAMROVcandetectminutechangesinthethreeaxisorientationsinwhichtheROVwillautomaticallyadjusttothedesiredheadingordirectionandeliminateanydriftinanyotherdirection.Thepressuresensorcanconvertthechangeinpressurefromasetpointtochangeindepthinmetersinwhichwillallowforsetdivedepth.ADAMROVcanbesettodiveaspecificdepthbyusingthedatafromthesensorwhichwillgreatlyhelptoreducetheroleofthepilotwhendiving.

Dashboard

DART’ssoftwaredivisiondevelopedauserfriendlygraphicaluserinterface(GUI),ordashboard,thatisresponsibleforprocessinginputfromboththepilotandco-pilotanddistributingtheoutputtotheROVthrusters,sensors,andservos(Figure12).TheGUIdisplays the systems diagnostic and sensor data while presenting telemetry data and videofeed.ThedashboardiswritteninMicrosoftC#runningon.Net4.6.TohandletheactualdisplayofdataandvideofromtheROV,MonoGame(aportofMicrosoftXNA)softwarewasimplementedtogivevariousmethodsofinterfacingwiththeXboxgamepadsandawaytodrawtothescreen,aswellasmanyutilitiestoperformvectorcalculus.ToensureADAMROVdoesnotgoabovethemaximumallowedcurrent,acurrentandampsensorisinstalledwithinthecontrolboxwhichisreadbyanArduinoandsenttothedashboard.Thisallowstheabilitytomonitorthepowerconsumptionanddetectanyun-usualpowerspikesthatcouldindicateaproblemorblowtheinlinefuse.

Figure 12: ADAM ROV Dashboard with Control and Vector Feedback

12

Page 13: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

C.MissionSpecificFeatures

Manipulator ADAMROVisequippedwithamanipulatormechanismdesignedanddevelopedin-house.Itisori-entedverticallytoaccomplishseveraltaskssuchasliftingthedebris/engine,disconnectingtheOBScableconnector,installingtidalturbine,collectingsamplesofeelgrass,andtransportingI-AMP.Thedesignofthemanipulatorrevolvedaroundtwomainconcepts:taskachievabilityandmodularity.Thecomponentsofthemanipulatorwere3DprintedfromPLA,whichallowedforeasyintegrationofamodulardesignintothemountingclamps(Figure13).AnarrayofM3holesweredesignedformod-ularitythroughtheabilitytorotatepositionsandadjustthemaximumopeningofthemanipulator.Byintroducingathree-componentpincher,itallowedforimprovedcollectionmethodscomparedtoa single pivot point creating more load on the micro-servo. Additionally, one of the two pinchers is fixedatapointtodecreaseloadontheservoandpermitmoreweighttobeappliedtothemanipula-tor.Anarmwasdevelopedtoconnecttothemanipulatorwhichwouldenablethepilottohavedirectlineofsightofthetargetortask.Themanipulatoradoptsaverticallyclampingmechanismwhereamicro-servomovingapinchersectionopensagainstthefixedsectionupto3.175cm.Thisisanabundantamountofspaceforthepilottopickuplargeobjectseasily.

Figure 13: Initial Concept to Final 3-D Rending of the Manipulator

AcousticDopplerVelocimeter(ADV) TheAcousticDopplerVelocimeter(ADV)wasdesigned to attach to the mooring device at a given height from the lowest point. The design encompassed a hook into the ADV which will allow ADAM ROV to attachtotheU-boltonthemooringline(Figure14).Thehookwas3DprintedinPLAandconnectedtoaminienclosedballastfilledwithairallowingtheADVtofloatwhenattachedtothemooringdevice.AU-boltwasincorporatedintothedesignallowingtheROVtoeasilyattachandhandletheADVintransportation and completion of the task.

13

Figure 14: ADV Consist of Ballast, U Bolt, and Hook

Page 14: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

WreckageZone/MaximumPowerGenerationGUI For the two tasks of searching for the wreckage zone and calculatingthemaximumpowergenerationforatidalturbine,agraphicaluserinterface(GUI)wasdevelopedtoallowforquickanderrorfreecalculations(Figure15).TheGUIwasdevelopedinPythonusingtheTkinterlibrarytocreateaninterfacethatwouldenabletheusertoinputthegivendatatogetanoutputofthedirectionvectorsandthemaximumgeneratedpower.BehindtheGUI,theinputteddataisinsertedintopredeterminedsinglefunctionequationsinwhichwillreturntheappropriateresultstotheGUI. Lift Bag

Toremovethedebrisandreturntheenginetothesurface,themechanicaldivisionresearchedanddesignedaclosedbuoyancyassistedliftbag.Theliftbagconsistedof0.45mdiameterlatexballoonattachedtoaNPTandbarrelconnector,allowingair tubingtobeconnected, inflatingtheliftbag(Figure16).Thespecificdiameteroftheballoonwaschoseninrespecttotheliftforceneededtoliftthedebrisandengine.Theliftbagisinstalledwithadouble-sidedhookdevicethatenablesaU-boltgrabbingpointfortheROVwhenattachingtheliftbagtothedebrisorengine.Theairtubingissup-pliedonthesurfacethroughanaircompressorwithathree-wayballvalvetoreleasetheairintheliftbagwhenmovingtoanothertask.ThetubingwasintegratedintheROV’stetherthroughadisconnectpointwhereupontaskcompetitiontheliftbagwillbedetachedandthetubetobecapped.

Figure 15: GUI Interface for Vector/Power Calculations

Figure 16: Lift Bag with U-Bolt Attachment for ROV Control

14

Page 15: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

OceanBottomSeismometer(OBS) TheOceanBottomSeismometer(OBS)systemconsistsofathree-tiersystem:OBSunit(cablecon-nectorcradle),releasemechanism,andanchor.Thecableconnectorcradleisa36.75cmlengthby26cmwidthby25cminheightrectangularboxwithanopentopfacefortheplacementofthecableconnector.Thecradledimensionsalloweaseofplacementofthecableconnectorandprovidesufficientbuoyancytofloattothesurfacewhenreleasedbytheacousticreleasemechanism.Thecableconnectorcradleisconnectedtothereleasemechanismviaa3DprintedU-boltplatewithanintegratedferrite/neodymiummagnetwhichattachestotheelectromagnetoutsideofthereleasemechanismhousing.Thereleasemechanismishousedinawaterproofdivercase,andontopofboxaretwo10mmBlueRoboticspenetratorsforelectricalpowerandacousticdatacollection via a microphone senor. To trigger the OBS, a3000HzpulsedtoneproducedbyapiezobuzzerontheROVmustbeacquiredbythemicrophone.Theon-boardArduinoUnowillapproximatetheprincipalfrequencyofthesoundataparticularinstantusingtheFourierTransform,whichisvalidforthree1.5secondperiodsinarowofthesignalplayedcontinuouslytotriggerthereleaseoftheOBS(Figure17).Oncetriggered,thetworelayswillfliptoinduceanoppositeelectromagnetfieldbyinvertingthepolarityofanelectromagnet.Thus,releasingtheferrite/neodymiummagnetfromthereleasemechanismwillcausethecableconnectorcradletofloattothesurface.Thereleasemecha-nismhasa3DprintedU-boltplateattachedtothebottomofthediver’scaseandconnectedtothe1.7kganchorholdingtheentireOBSsysteminplaceunderwater. III. SAFETY

A.SafetyPhilosophy DART’shighestpriorityissafety.Webelieveaccidentscanbepreventedwiththeuseofpropersafetytrainingandmeasures.Numeroussafetyprotocolsareenforcedduringeveryteammeeting,guaran-teeingthesafetyoftheemployees,ROV,andtheenvironment.Duringeachteammeeting,asafetyreviewisheldtoaddressanewtopicofpossibleinjuryorharmthatcanbecausedeitherinsidetheworkenvironmentoroutsideinthefield.

Figure 17: OBS Release Mechanism Internal Schematic

15

Page 16: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

B.VehicleSafetyFeatures SafetyisintegratedtothevehicledesignandconsideredthroughoutADAMROV’sdevelopment(Figure18).ThemechanicalengineeringdivisionensuredtheabsenceofsharpedgesonADAMROVbyroundinginthe3DmodelandcoatingeachelementontheROVwitharubbercoating.ThebodyoftheframehasopenspaceforcrewmemberstosafelytransporttheROVusingrubbercoatgloves.DARTincorporatesacustomIP-20meshguardtoencapsulatethethrustersprotectingagainstanytypeofmarinelifeandhumanharm.Theelectricalengineeringdivisioninstalledakillswitchbetweenthe12VpowersupplyandthetetherandaninlinefuseonthepositiveleadofthepowersupplytoensuretheROVcanbeshutdowninthecaseofanemergency.Moreover,theinteriorbodyofADAMROVhasLEDstatusindicatorstovisuallychecktheprogressorissuesbefore,during,andafteroperation.AlltheelectroniccomponentswithintheROVareinsulatedconnectorsfromringterminalstoferruletoensureproperconnectionsandreducethepossibilityofashortcircuit.ThesoftwaredivisionprogrammedthevoltageandamperagesensortodetectanyspikesandabnormalitiestoalertthepilotofanyissueswiththeROV. C.TestingProtocol DARThasestablishedastricttestingprotocoltoensureoperationalandenvironmentalsafety.BeforetestingADAMROVunderwater,theon-deckstaffmustperformasystematicdrytestsinceunantici-patedproblemsareeasiertoresolveinairthanunderwater.Asafetychecklistwasestablishedbythecompanytobefollowedbyallemployeesinlaunching,operating,andretrievingprocess(AppendixB).Forexample,theon-deckstaffarenotallowedtotouchADAMROVunlesstheROVisidleaftercompletingthelaunchingprotocol.Followingthisprocess,injuriescanbepreventedbynotallowingaccidentalactivationofthethrustersandmanipulator.Inanemergencysituation,anyoftheon-deckstaffclosesttothepowersupplymustimmediatelycutoffthepowertoavoidinjurytothestaffandthe operating environment. D.TestingandTroubleshootingTechniques DARTrunsweeklytestsoftheADAMROVinwatertoassessitsperformanceandstabilityforpos-sibleimprovements.ThevehicleunderwentitsfirstwatertestinlateJanuary2018andwasinitiallytestedina4mdeeppoolforvehiclecorefunctionssuchasmovement,cameras,andbuoyancy.Af-terthecorefunctionswereestablished,thecompanyproceededtoatwo-hourpooltesttoevaluateADAMROV’sperformance in completingmissions.Anyunforeseen shortcomings in thedesignphasearediscoveredandwebrainstormideastoaddresstheissue.Throughoutthetestingperiods,the3-Dprintedpartsfilldensitywasconstantlychangedtounderstandtheoptimalfillforstructuralsupportandweight.Forexample,theROVwasincreasinginnegativebuoyancyasmoretimewas

Figure 18: SPX 1250 GPH Bilge Pump with Safety Sticker

16

Page 17: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

spent operating the vehicle in a single test. It was discovered that the 3D printed parts were holding waterbetweenthelayersofthe3Dprintedmaterialcausingaslowleakageofwatertofillthecompo-nents.Henceforth,each3Dprintedmaterialwascoatedinasyntheticrubbercoatingtosealthepartsandnotallowinganywaterfillintothepieces. DART’sapproachtotroubleshootingistoapplyarootcauseanalysis(RCA)method,anindustrystandardprocessthatinvolvesisolating,diagnosing,andpreventingtheproblem.Problemsareusu-allydiscoveredduringorafterawatertestandengineerswillbegintoisolatetheprobleminthelabo-ratoryforvalidity.Eachcomponentisdiagnosedfortheproblemandthoroughlytestedbeforebeingeliminatedasapossiblesourceoferror.Oncetheproblemisrecognized,theproblematicmodulewillbeeitherresolvedbyredesigningormonitoredduringoperationtoavoidtriggeringtheissue.

E.WorkEnvironmentSafetyPractices AllemployeesofDARTare required to receivesafety trainingandfollowsafetyprotocolswhileworkinginthelaboratory.Toensurecooperationwithallemployees,waiversaresignedtoensureallsafetyrequirementsarefollowed.Personalprotectiveequipment(PPE)ismadeavailableatallmachiningandsolderingstationsincludingsafetygoggles,earplugs,andrespiratorymasks.AspartofthePPE,allemployeesinthelaboratoryorthefieldarerequiredtowearrubbergripgloves,longpants,andclosedtoedshoes.DARTrequiresabuddysysteminthelaboratoryspaceforthesafetyandprotectionoftheemployeesoanydangerscanbereducedorhelpcanbeprovidedquicklyifissuesoccur.Eachmachineandtooldesignatedaspotentiallyharmful,suchasdrillpress,bandsaw,andorsolderingstations,haveachecklistprotocolthatmustbecompletedandsignedoffaftereachusetoensuresafetypracticesarefollowed.AtDART,everyemployeeisencouragedtohelpeachotherwhenunsafepracticesarenoticedtoguaranteethesafetyofall.Theemployeesareencouragedtoproactivelyupdatethesafetyprotocolwhenbetterpracticesoradangeroussituationarisestopre-ventthesameinjuryinthefuture.

IV.PROJECTMANAGEMENT A.Organization,Structure,Planning,andProcedures DARTpromotescross-disciplinarycollaborationandopenmindednessasacompanyculture.Theorganizationofthecompanyisaflatstructurewhichday-to-dayoperationsareself-managedwithineachdivisionintheorganization.Thecompanyisdividedintofourdivisions:mechanical,electrical,software,andmarketingwhichenablesefficientworkflowfromtheinitialconcepttothemarketingplatform.Thecompanyholdsbi-weeklymeetingstocommunicategoalsthroughoutthecompanyandupdatetheGanttcharttokeeptrackofthetimeline.EachdivisionsetsweeklygoalsinadditiontodiscussingandresolvinganyobstacleswiththedevelopmentoftheROV.DuringthedevelopmentoftheROV,3Ddesignsandsimulationsoccurredthroughoutofdevelopmentofanyparttoreducethe

Techn

ical R

eport

17

Page 18: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

wasteofresourcessuchas3Dfilamentandplasticsheeting.However,thefinaldecisionisacollec-tiveinputfromthecompanyasawholetoensurealloptionsarediscussed,creatingthebestpossibleoutcome.

DuringDART’sfirstyearinoperation,manyemployeeswerenotinvolvedinunderwaterroboticsfieldcomparedtoothermemberwhohavemoreexperienceintheunderwaterroboticsenvironment.The integration of experienced and inexperienced divisions was critical in fostering a mentoring and collaborativeenvironment.Thistypeofenvironmentfostersrapidintegration,leadingtoathoroughunderstandingofunderwaterroboticsconceptsanddevelopmentprocessofanROV.TheGanttchartwasusedasatooltounderstandtheprioritiesofthecompanythatneedstobeaddressed(AppendixB). Inaddition to theGanttchart,anonlinescheduling toolwasused inconjunction tocompletedaytodaytasksandproblems.TheonlineschedulingtoolwasthroughGoogleCalendarinwhichDART’sCEOanddivisionleadswouldestablishweeklytasks/problemtobecompletedbyacertaindeadlinefollowingtheGanttcharttimeline.Ifissuesarisewherethedeadlineisnotmet,theentirecompanywillhaveameetingregardingtheproblemanddiscusstheadjustmenttotheGanttchartandGoogleCalendartimeline.Byhavingallthecompanystaffatthemeeting,itensurestheentirecompanyisawareoftheissueandcanbemitigatedoreliminatedthenexttime.

DARTiscomprisedoffourdivisions:mechanical,electrical,software,andmarketingwhichensuresproper engineeringprinciples andbusiness strategies are followed from the initial concept to thefinalproduct.Themechanicalconsistedoffouremployeeswhousedvarioustechnicalresourcetoresearchanddevelophydrodynamicmodels to identify theoptimal framedesign that reduces thefrictional force or drag on the ROV. Another task mechanical division was asked to design and man-ufactureamanipulator,liftbag,OBS,andADVrequiredbytheAPLatUniversityofWashingtonrequestforproposal.Theelectricaldivisionwasresponsiblefortheconfigurationofalltheonboardelectronicswhichincludedinsingleboardcomputer(SBC)andthrustercontrollerselection.AlsotheelectricaldivisiondesignedandwiredthepowerdistributionsystemfromthecontrolboxthroughthetethertotheROV.ThesoftwaredivisionresponsibilitiesentailedindevelopingacustomdashboardandsoftwareprogramwhichintegratesalltheROV’ssensorstoassistthepilotthroughsemi-auton-omousfacilitiestoincreaseperformance.Finally,themarketingdivisionassisttheorganizationtomakebusinessdecisionsinmarketingpitch,ROVmaterialselection,andallassociatedpaperwork.

B.BudgetandCostProjection WedevelopedthebudgetforADAMROVfirstbyunderstandingwhatwasrequiredoftheROVtocompletethetasks(AppendixC).Asanewlyestablishedcompany,alargesumoffundswenttowardthemechanicalandelectricaldivision,buyingnewcomponentssincenoprevious resourceswereavailable.ThecompanyunderstoodthatthesuccessoftherobotwouldcomefromthemechanicalandelectricalintegrityoftheROV.Meticulouslyselectingpartsandallocatingtheappropriatefundstowardthecomponentsmeantthatthecompanywouldbeabletoreusesomeofpartsinthefuture.Forthesoftwaredivision,asmallersumofthebudgetwasapportionedduetoopensourcecode,andlowcostcommercialhardwarethatcanbeintegratedintotheROV.Allsourcesofincomecamefrom

18

Page 19: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

DrexelUniversity,inorderforustobuynewtools,partsfortherobot,3Dprintingmaterial/printer,andtobeabletotravel.

V. CHALLENGES A. Non-Technical Challenges ThisisDART’sfirstyearinoperation,andthecompanyreliedheavilyonrapidprototypingwithalowcostbyusingthe3DprintingresourcesdonatedbyDrexelUniversity.However,thecompanywasfacedwiththelogisticalaspectofchanginglocationsandofflineissuesof3Dprinters.Thecompanywouldmakeaprintingrequest,onlytohaveitbouncedaroundseveraldepartmentsuntilitcouldbecompletedordeniedbe-causeofmachinemaintenance(Figure19).Thiswouldcauselargedelaysintherequesteddatetotheactualpickupdate,leadingtomajorchangesinthetestingtimeline.Thisproblemwasalleviatedbyidentifyinganoffsite3Dprinterthatwasavailablebeforetherequesteddayforpickup.Teamworkandcommunicationensuredthatall3Dcomponentsthereafterwereprintedontimewithhighaccu-racy. Another organizational challenge was attendance for all employees since some are part-time. Nothavingallemployeespresenteverydayallowedforthepossibilityofmiscommunicationandadecreaseinproduction.Toavoidthis,weeklydepartmentalmeetingswereheldafterworkhours,sothatallemployeeswerekeptuptodate.

B. Technical Challenges One challenge that DART faced was perfecting the release mechanism of the Ocean Bottom Seis-mometer(OBS).ThereleasemechanismoftheOBSinvolvesanacousticselectivereleasemecha-nism.ADAMROV’sbuzzerwouldplaythreeconsecutive3000HzpulsesignalsmustregisterintheOBS microphone sense to release it. Once the microphone sensor registers the signal, two relays are triggeredtoinversetheelectromagnet,causinganinverseintheelectromagneticfield,repealingtheferrite/neodymiummagnetcombinationtoreleasetheOBS.AlthoughthesoftwareoftheOBSwasconsistentindetectingtheacousticsignals,whentestingwithaneodymiummagnet,theOBSreleasemechanismwouldcausefalsepositivesduetothelargeelectromagneticfieldflipassociatedwiththestrongermagnet.Afterfurtherresearchintomagneticfieldsandelectronics,itwasnotedthatmostmodernelectronicsaremadewithmagneticmaterialsothedisturbanceofthefieldorfieldinversewouldshortouttheprocessor.Thismeansthatthecombinationoftheelectromagnetandneodymiumwouldcause themicrocontroller torestartbecause theenergyof thefieldchangewas toosuddenforittoadjust.Throughfurtherresearchandexperimentation,thesolutionofusingacombinationmagnetandseparationplatebetweenthemagnetandOBSreleasemechanismwaschosentoreducethemagneticfieldchange.Bytestingthedesignofthecombinationferriteandneodymiummagnet,itwasconcludedthatusing3.175mmplatein-betweentwoneodymiummagnetsonthetopandasingleferritemagnetatthebottomtoachievetheresultsneedtoaccomplishthetask.

Figure 19: Third Incident of a Broken 3D Printer Nozzle

19

Page 20: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

VI. LESSONS LEARNED Mentoring Thisyear,therewasastrongfocusonpeertopeermentoringasmanymembersfromtheteamwerenewtotheunderwaterroboticswhilesomehadbackgroundknowledgefrompreviousroboticscompetitions.Itwascriticaltoensureallnewmembersweretrainedandtaughtinthevarioustechnicalskillsandsafetyawareness needed to design, develop, and operation an ROV. The mechanical division learned how to uselaboratorytoolstoensuresafetyofmembersandthelifespanofthetools.Moreadvancelessonstaughttoreducewastematerialandeaseofassemblyoptionstobetterthemechanicaldesign(Fig-ure20).Theelectricaldivisionlearnedtheelectronictheorytogetaccustomedwithdigitalsensorsandpowerdistributionsystems.ThesoftwaredivisionwasfamiliarwithCSharpsotheirsoftwarewasreviewedandtestedearlyinthedesignprocess.Theteamspentaconsiderableamountoftimetogether,growingtogetherintheirknowledge,confidence,andpassionforunderwaterroboticstech-nologieswhichhelpwithcommunicationandvoicingtheiropinions. Interpersonal

Theteamspentaconsiderableamountoftimetogether,growingtogetherintheirknowledge,confi-dence,andpassionforunderwaterroboticstechnologies.Thefocusonmentoringcreatedanenviron-mentwhereallemployeeswerecomfortablewithaskingquestionsanddependingoncoworkersforhelpwhentheyneededit.Thisopen,judgement-freeenvironmentallowedforthisknowledgetobesharedandalsoincreasedemployeescommunicationskills.ThereweresomeemployeeswhotendedtobereservedwhenDARTfirststarted,butastheyearprogressed,theirconfidencegrewandtheybecamemorecomfortablewithvoicingtheiropinions.Itwasrewardingtowatchemployeesimproveboththeirsoftandhardskillsthroughouttheyear.

Integration of Sensors TheintroductionofsensorsinDARTdeepenedthecompany’sknowledgeonsensorapplicationtoautomatevariousprocesses.Byutilizingthegyroscope,accelerator,andpressuresensors,itiswaspossibletodesignapilotassistfunctionforoperatingtheROV.Thesesensorsallowlivefeedbackintothesoftwaretoadjustmaximumpropulsionandreachsetlocations.Learninghowtooperatethesensorswasquickasitonlyrequireduserstopowerandcommunicateviamicrocontrollertoreceivethefeedbackdata.Thechallengewith thesensorswas the translationandfilteringofdata tofindcrucialvaluestocommunicatewithandassisttheROVinitstasks.Byincludingmoresensorsintothe design, it allows for the growth of the electrical and software divisions experience in designing autonomoussystemswhichcanbeappliedtoalmostanysituationorenvironment.

20

Figure 20: Louie (In front of Dill Press) Demonstrating the Proper

Use of the Drill Press to Arjun

Page 21: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Techn

ical R

eport

VII.FutureImprovements 3DLayeredPrinting Inthepastyear,DARThasbeenusing3Dprintingasamainsourceofmanufacturingforallstructur-alandfunctionalcomponentsoftheROV.ThePLAmaterialusedinthe3Dprintingwasanexcellentoptionforthecostversustensilestrength,butthematerialabsorbedwaterintothelayersofprinting.Thewaterabsorptionwouldvarydependingonthetimeitwassubmergedunderwater,whichwouldcauseissuesinbuoyancyastimeelapsed.DARTcorrectedthisissuebycoatingthematerialwithasyntheticrubber.Whilethisdidsolvetheissueofwaterabsorbingintothematerial,itcausedover-whelmingdelaysinthecost,time,andcomplexityofthe3Dprintingandanincreaseinmanufactur-ingcosts.Inthefuture,improvingthedesignoftheprintedobjectsandchangingthe3Dprinterpa-rameterssuchasnozzlesizeandfill,the3Dprintedcomponentswouldbemoreeasilywaterproofed.Despitethis,DARTengineersstillstrivetoimprovethepresentdesignfrompreviousdevelopments.

VIII.Reflections“BecomingDART’sfirstVicePresidentandjoiningthesoftwareteamhasallowedmetomakecountlessamountsofmemoriesanddevelopvariousnewskills.Steppingintoaleadershipposition,especiallyinthisteam’sfirstyear,wasdefinitelyachallengeatfirst.Alongwithmyotherboardmembers,wenotonlyhadtofocusoncreatingafunctionalrobot,butalsoonbuildingateamstrongenoughtocompeteandsucceedincompetition.WorkingonthesoftwarefortheROVhastakenwhatIalreadyknowaboutprogrammingandadvancedittoanotherlevel.Whilelearningcomputerscienceandsoftwareen-gineeringskillsinclass,Iwasabletoapplythemthroughthesoftwareteam’swork,whichrangedfromdesigningefficientandrobustsoftwaretoapplyingtheory.Beingapartofthisteamhastaughtmenotonlyunderwaterrobotics,butalsowhatitistobeapartofadevelopmentteam,frombothaleadershipandtechnicalrole.Solvingtheproblemswehaveexperienced,whetheritwaslegislativeortechnical,madebeingapartofthisteammoreandmorerewardingaswetackledthemheadon.”– JoseArguelles

“JoiningDARThasbeenagreatdecision.Fromtheverybeginning,IcouldstartchippingawayatourgoalofcreatingaROV.Beingapartoftheelectricaldivisionhasgivenquiteaninsightastohowtoefficientlypowertheentirevehiclewithoutadrop-inpowerfromthestartofthetethertotheROV.Ithasenhancedmyproblem-solvingskillsbyaidinginfindingleaksintheelectronicenclosureandhelpedwithcreatingneutrallybuoyanttetherfromscratchthroughtheoreticalcalculations.Iwasevenabletogainmechanicalengineeringandcomputerprogrammingskills,aswellasprojectmanagementskills,bybeingabletofreelycollaboratebetweenallthedisciplinaryteams.Ilookforwardtocontinuingtolearnwiththeteamfortherestofmycollegecareer!”–ArjunPillai

21

Page 22: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

IX. ACKNOWLEDGMENTS

Sponsors

SpecialThanksTo:

DrexelUniversity’sInterimDeanofCollegeofEngineeringGiuseppePalmese – for providing sponsorshipandlabsforDARTuse.DrexelUniversityRecreationCenter–forallowingDARTtousethedivewellfortestingADAMROVStephanie Delaney–ouradvisor,whoseguidanceandadvicehelpedusimprovebothourtechnicaland non-technical skills.KyleJuretus–forthesupportandguidancewithanytechnicalandlogisticalissuesJonahLevin – for providing assistance with imaging processing and editing MATE Center – for organizing the international competition, providing a platform for the growth of entirecommunity,andpromotingSTEMeducationaroundtheworld.SPXInc.–fordonatingSPXbilgepumpsforADAMROVAutodesk–forsponsoringFusion360StudentEditionCADsoftwareforDARTJaneWhite–forassistinginanyissuesregardingMATEROVcompetitionpreparationVelda Morris –forguidingandorganizingthePennsylvaniaRegionalMATEROVCompetition2018

22

Page 23: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

X. REFERENCES

A.ArfaouiandG.Polidori,“ComputationalFluidDynamicsMethodfortheAnalysisofthe HydrodynamicPerformanceinSwimming,”MassTransfer-AdvancementinProcess Modelling, 2015.Archimedes’Principle.[Online].Available:https://physics.weber.edu/carroll /archimedes/principle.htm.[Accessed:26-Apr-2018].“AgPowerWebEnhancedCourseMaterials,”Electrical/Electronic-SeriesCircuits.[Online]. Available:https://www.swtc.edu/ag_power/electrical/lecture/series_circuits.htm.[Accessed: 26-Apr-2018].“25.GraphicalUserInterfaceswithTk¶,”25.GraphicalUserInterfaceswithTk-Python 3.6.5documentation.[Online].Available:https://docs.python.org/3/library/tk.html. [Accessed:26-Apr-2018].S.Hill,“Willamagnetdestroyyoursmartphoneorharddrive?Weasktheexperts,”Digital Trends,31-May-2015.[Online].Available:https://www.digitaltrends.com/mobile/how- magnets-really-affect-phones-hard-drives/.[Accessed:26-Apr-2018].

XI.APPENDICES

AppendixA:GanttChart

Techn

ical R

eport

23

8/3/17 9/22/17 11/11/17 12/31/17 2/19/18 4/10/18 5/30/18

New Member Training

Frame Design

Frame Manufacturing and Assembly

Manipulator Designs

Manipulator Prototying

Prototype Evolution

Buoyancy Formulation

Main Program Writing

Main Program Debugging

Electronics Component Design

Electronics Component Debugging

Elecontrics Component Assembly

Pilot Training

Competition

Research

Page 24: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Tech

nic

al R

epor

t

Appendix B: Operational Checklist Pre-Power: Clear the area of any debris/obstructions Check to see if power supply is “OFF” Connect Anderson connectors to tether to power the supply CHECK ROV Check Claw and OBS Mechanism Check Electronics Tube and Bus BarsPower Up: Pilot boots up the Laptop Pilot calls team to their attention Co-Pilot calls out, “Power On” and moves power supply to “ON” position. SHORESIDE team checks to see if ROV is on by checking electronic status lights. SHORESIDE puts ROV underwater under control and makes sure it remains stationary. When ROV is ready they call out “ROV is Ready” Pilot takes control of ROV and performs thruster test. The SHORESIDE team puts ROV underwater under control and makes sure it remains stationary. If no issues found, continue to Launch Procedures.Launch: Pilot calls for Launch of ROV and starts timer SHORESIDE team lets go of ROV and calls out “ROV Released” Mission tasks are commencedBubble Check: If bubbles are spotted during mission, pilot re surfaces the ROV Co-Pilot calls out “Power Off ” and turns off the power to the ROV

SHORESIDE team retrieves the ROV If after trouble shooting time remains continue to Power Up Procedures.Loss of Communication: Co-Pilot checks the tether and laptop connection on the surface Pilot attempts to reset the program controlling the ROV Co-Pilot cycles through the power supply If any of these steps restarts communication, continue mission. If all these steps fail, the mission stops, the co-pilot turns off power and calls out “Power off ” SHORESIDE team retrieves the ROVROV Retrieval: Pilot signals for ROV retrieval to SHORESIDE team SHORESIDE team member puts arms in water up to the elbows and retrieves ROV once contact is made with ROV. SHORESIDE team yells, “ROV retrieved” and pilot stops timer. Demobilization: Co-pilot turns power supply off and calls out “POWER off ” SHORESIDE team inspects ROV for any dam ages or leaks that might have occurred during the mission. Pilot stops program controlling the ROV and powers off the laptop. Anderson connectors from the tether are dis connects and removed from the power supply. Cameras and monitors are turned off. Team makes sure area is clean and then vacates the area.

24

Page 25: A.D.A.M. ROV...Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang

Appendix C: Budget

Appendix D: Cost ProjectionType Item Market Price (USD)

Purchased ATC/ATOInlineFuseHolder $5.18Purchased 2.1mmStraightDCCoaxialPowerPlugtoPowerpoleAdapter6ft. $15.98Purchased 30AmpToggleSwitchSPSTOn-Off $15.95Purchased RaspberryPiCameraModuleV2-8Megapixel,1080p $29.45Purchased JacobsPartsDCBarrelJack $3.95Purchased Pololu5V,15AStep-DownVoltageRegulator $39.95Purchased AdafruitNeoPixelDigitalRGBWLEDStrip $17.95Purchased Missile Switch Cover - Red $1.95Purchased BlueSeaSystemsDualBusPlus150ABusBar-1/4 $23.73Purchased 22"BlackTacticalWeatherproofEquipmentCase $59.99Purchased 102VNTCX5000MCR10AWG/2Conductors $81.00Purchased 10-CONDUCTORSHIELDEDCABLEW/DRAIN $6.20Purchased 3/4"PETExpandableBraidedSleeving-25Ft(Yellow) $40.77Purchased UxcellElectomagnet $15.54Purchased Marine Epoxy $18.00Purchased ShapentyWhitePlasticFilmCanisterHolder $7.90Purchased ElectretMicrophoneAmplifier-MAX4466withAdjustableGain $6.95Purchased 45AmpUnassembledRed/BlackAndersonPowerpoleConnectors $36.99Purchased LucasOil10682MarineGrease-3oz(Packof3) $9.76Purchased DEDC480PcsInsulatedWiringTerminalsWireConnectorsAssortmentElectricalCrimpTerminalsKit $15.38Purchased XboxOneRemote $42.95Purchased DualChannel10ADCMotorDriver $74.34Purchased Logitech963290-0403Extreme3DProJoystick $34.99

$604.85

Purchased ATPIMBIBENSF61PolyethylenePlasticTubing $18.23Purchased WaterproofMicro180°RotationServo $27.99Purchased WatertightEnclosureforElectronics $215.00Purchased CablePenetratorfor8mmCable $52.50Purchased MiniPan-TiltKit-AssembledwithMicroServos $18.95Purchased 316 Stainless Steel Hex Head Screw $7.99Purchased 18-8 Stainless Steel Socket Head Screw $12.13Purchased HATCHBOXPLA3DPrinterFilament,DimensionalAccuracy+/-0.03mm,1kgSpool,1.75mm,Black $22.99Purchased HATCHBOXPLA3DPrinterFilament,DimensionalAccuracy+/-0.03mm,1kgSpool,1.75mm,Blue $28.00Purchased 18-8StainlessSteelHexNutM3 $5.36Purchased 18-8 Stainless Steel Socket Head Screw M8 x 1.25 mm Thread, 10 mm $14.10Purchased SanatecHighDensityPolyethyleneSheet,MatteFinish,1/4"Thick,36"Lengthx36"Width,Blue $33.40Purchased SanatecHighDensityPolyethyleneSheet,MatteFinish,1/4"Thick,24"Lengthx36"Width,Yellow $24.98

PartsDonated SPX1250GPHMotorCartridge $239.94Purchased 3DPrintingService $56.38

$777.94

Purchased RaspberryPI3ModelBA1.2GHz64-bitquad-coreARMv8CPU,1GBRAM $35.70Purchased 9DoFRazorIMUM0 $49.95Purchased 16-ChannelServoHatforRaspberryPi $17.50Purchased SanDiskUltra32GBmicroSDHCUHS-ICardwithAdapter $16.90Purchased ArduinoUnoR3MicrocontrollerA000066 $19.99Purchased Tolako5vRelayModuleforArduino $5.80Purchased RJ45GoldPlatingConnectors $6.99Purchased Cat6StrandedUTPEthernetCable $15.49Purchased LED Controller $7.89

$176.21$1,559.00

Software Sub-TotalADAM ROV Cost

Electronic Components

Mechanical Components

Software Components

Electronics Sub-Total

Mechanical Sub-Total

Techn

ical R

eport

25

Airfare(14members) 7,700.00$ Electrical Components $604.85 PartsandMaterials(DrexelCollegeofEngineering) 1,600.00$ Hotel(4Nights,7Rooms) 4,172.00$ Mechanical Components $777.94 RegistrionFees(DrexelStudentOrganizationFund) 500.00$ Rental Van 225.00$ Software Components $176.30 Airfare(DrexelElectricalEngineeringDepartment) 5,000.00$ Total 12,097.00$ Total $1,559.09 Total 7,100.00$

SponsorshipsTravel Expenses ADAM ROV Development