134
yKeU'v-T-.-'j-i^fi.T mmmmmm AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE PARTICLE VELOCIMETER (MIPV) Joseph D. Renick Air Force Weapons Laboratory Prepared for: Defense Nuclear Agency November 1974 DISTRIBUTED BY: um National Technical Information Service U. S. DEPARTMENT OF COMMERCE

AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■yKeU'v-T-.-'j-i^fi.T

mmmmmm

AD/A-004 219

ANALYSIS OF THE MUTUAL INDUCTANCE PARTICLE VELOCIMETER (MIPV)

Joseph D. Renick

Air Force Weapons Laboratory

Prepared for:

Defense Nuclear Agency

November 1974

DISTRIBUTED BY:

um National Technical Information Service U. S. DEPARTMENT OF COMMERCE

Page 2: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

IfTV ■-.:, ■■!...■■■■ ,-,■ ;,.;,, .--; , ., .,■-,-;,,. r-. -.-, ,; ,,,,„,- .^ ., . iV

AFWL-TR-74-205

This final report was prepared for the Air Force Weapons Labora- tory. Mr. Joseph D. Renick (DEX) was the Laboratory Project Officer in Charge.

When US Government Drawings used for any purpose other than procurement operation, the Gove bility nor any obligation whats ment may have formulated, furni said drawings, specifications, by implication or otherwise as or any other person or corporat permission to manufacture, use, may in any way be related there

, specification a definitely r rnment thereby oever, and the shed, or in any or other data i in any manner 1 ion or conveyin or sell any pa

to.

s, or other data are elated Government incurs no responsi- fact that the Govern- way supplied the

s not to be regarded icensing the holder g any rights or tented invention that

This technical report has been reviewed and is approved for publication.

JOSEPH D. RENICK Project Officer

FOR THE COMMANDER

F. BÜCKELBW Lt Colonel, USAF Chief, Experimental Branch

WILLIAM B. LIDDICOET Colonel, USAF Chief, Eivil Engineering

Research Division

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.

Page 3: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

.TfWW! mmmmmmm lanMi

llNCI.A.SSTFTIil) SECURITY CLASSIFICATION OF THIS PAGE (Whtn Dm« Entered)

REPORT DOCUMENTATION PAGE 1. REPORT NUMBER

AFWL-TR-74-205 2. GOVT ACCESSION NO

4. TITLE fand SubtUU.)

ANALYSIS OF THE MUTUAL INDUCTANCE PARTICLE VELOCIMETER (MIPV)

7. AuTHORf«;

Joseph D. Renick

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Air Force Weapons Laboratory (DEX)

Kirtland Air Force Base, New Mexico 87117

M. CONTROLLING OFFICE NAME AND ADDRESS

Defense Nuclear Agency (SPSS) Washington, DC 20305

IT MONITORING AGENCY NAME » AODRESSf/( di«»ren( from Conlrolling Oltice)

I RPAD ivsTPiirTinv«; READ INSTRUCTIONS BEFORE COMPLEflNG FORM

3 RECIPIENT'S CATALOG NUMBER

S TYPE OF REPORT ft PERIOD COVERED

Final report; June 1973-June 1974 6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERf»;

10. PROGRAM ELEMENT, PROJECT, TASK AREA t WORK UNIT NUMBERS

62710H; WDNS0303; J11AASX352

12. REPORT DATE

November 1974 3. NUMBER OF PAGES

i^r/3>3 15. SECURITY CLASS, (ol Ihlt reforl)

UNCLASSIFIED

15«. DECLASSIFICATION DOWNGRADING SCHEDULE

16 DISTRIBUTION STATEMENT (ol (his Report)

Approved for public release; distribution unlimited

'7. DISTRIBUTION STATEMENT (ol the abttracl »nlertd In Block 20, II dUlerenl from Report)

Raproducsd by

NATIONAL TECHNICAL INFORMATION SERVICE

US Department of Commerce SpringMd, VA. J215I

IB. SUPPLEMENTARY NOTES

PRICES SUBJECT TO CHA! M

19. KEY WORDS CContinue on reverse aide il nece&amry end Idenfffy by block nt/mber)

Mutual inductance; Soil motion measurements; Hydrodynamic flow

20. ABSTRACT CContfnuc on revere» eide ff neceeeary and Identify by bloclr number;

Three analytical areas supporting development of the mutual induct- ance particle velocimeter (MIPV) are investigated. First, the basic theory is extended to permit calculation of gage factors and determination of design criteria for complex geometry gages. A finite element model is developed to investigate the effects of divergent/off-axis flow upon the gage response. Finally, an elec- tromechanical mathematical model of the gage is developed to

DD , ^M7, 1473 EDITION OF 1 NOV »» IS OBSOLETE

I. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE fW,

'

Page 4: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PA&E(Wnn Data Knlarmit)

investigate the effects of shock-induced self-inductance and resistance changes upon gage response. The mathematical model identifies the influence of different conductor materials upon gage design, therefore a brief study is conducted to further define conductor resistance-stress and shock equilibration time characteristics. Numerical data are presented for each analyt- ical area. As a result of the numerical investigations, the following conclusions are made: (1) The gage length-to-width ratio should be greater than 5 after shock transit through the gage to ensure a constant gage factor. Generally a gage designec with a length-to-width ratio of 10 or greater will satisfy this requirement; (2) Increased gage factors without sacriiice in electrical rise time are available with a design which, instead of alternating single loops of primary and secondary turns, uses alternating multiple primary and single secondary turns; (3) The MIPV is essentially insensitive to divergent flow effects for normal gage designs where the width is less than 3 inches and the source is at a range of 1 meter or greater; (4) The gage is relatively insensitive to off-axis flow in the plane of the gage loops, the error induced being approximately equal to 1/2 (1 - cos Y) where y is the off-axis angle. However, flow off- axis in a plane normal to the loop plane results in much larger errors approximately equal to 3 (1 - cos 9) where 9 is the off- axis angle; (5) Errors caused by shock-induced self- inductance and resistance changes in the gage are effectively controlled with a large ballast inductance in the gage primary; (6) Three metals, aluminum, magnesium, and beryllium, all exhibit favor- able shock impedance, electrical resistivity, and pressure- induced AR/Ä, characteristics; each presents a relatively low neutron cross section, with beryllium being the most favorable.

L^L UNCLASSIFIED

Page 5: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

r-'Vö

AFWL-TR-74-205

PREFACE

Appreciation is expressed to Lt Colonel Giles Willis who provided the solution methods in the electromechanical modeling of section VI and to Mr. Gerald Perry, GE-TEMPO, who assisted in the assembly of this report.

1/2

Page 6: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

CONTENTS

I INTRODUCTION

General

Description

Background

II ' EXTENSION OF THEORY TO COMPLEX GAGE DESIGNS

Basic Theory

Extension of Theory for Complex Gage Gepmetries

Numerical Results

Summary

III OFF-AXIS, DIVERGENT FLOW RESPONSE

Development of Computer Model

Summary of Numerical Results

Summary

IV ELECTROMhCHANICAL MODELING

Previous Work

Electromechanical Model

Numerical Results

Summary

V CONCLUSIONS \ND RECOMMENDATIONS

APPENDIXES

A. Tabulated Numerical Data for MIPV Designs

B. Computer Code Listing--DIVE

C. Selection of Optimum Gage Conductor

D. Computer Code Listing--ELMEK

REFERENCES

Page

7

7

8

9

12

12

17

21

26

28

28

31

41

42

42

43

50

62

65

67

93

106

115

131

Page 7: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■■.,...-,.. -, - -,—«nr^-^iopf.-.,

AFWL-TR-74-205

Figure

1

2

3

4

5

6

9

10

11

12

13

14

15

16

17

18

19

20

ILLUSTRATIONS

MIPV Used in Gas Gun Testing

Mutual Inductance Particle Velocimeter Nomenclature

MIPV Undergoing Deformation Due to Shock

Cross Section of MIPV Loops, Type I Gage

Cross Sections of MIPV Loops, Type II Design

Gage Factor as a Function of Width and Number of Primary and Secondary Turns, Type I Gage

Gage Factor' as a Function of Spacing between Loops and Number of Primary and Secondary Turns, Type I Gage

Variation of Gage Factor and T\ with Gage Length-to-Width Ratio for a Typical Type I Gage Design

Comparison of Types I and II Gages

Nomenclature for Development of Divergent/ Off-Axis Flow Model of MIPV

Effects of Divergent Flow upon Gage Response

Effects of Off-Axis Flow upon Gage Response

Effects of Off-Axis Flow upon Gage Response

Effects of Off-Axis Flow upon Gage Response

Effects of Off-Axis Flow upon Gage Response

Effects of Off-Axis Flow upon Gage Response

Comparisons of DIVE Calculations with Cosine Function

Gage Undergoing Deformation for Off-Axis Shock, 6=0, Y^O

Gage Undergoing Deformation for Off-Axis Shock, Y^O, 9^0

Simplified Schematic of Power Supply and Velocity Gage with Open Secondary

Page

10

13

16

18

21

23

24

26

27

29

33

34

35

36

37

38

39

39

40

44

Page 8: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mmmmmmmmmmumimt .im

AFWL-TR-74-205

ILLUSTRATIONS (cont'd)

Figure Page

21 Electrical Network of Velocity Measuring System 44

22 Graph of Network Shown in Figure 21, Tree Indicated by Solid Lines, Branches by Dashed Lines 45

23 MIPV. Undergoing Shock Deformation and #

Nomenclature for Determining L(t) and L(t) 49

24 Nomenclature for Determining Gage R(t) 49

25 Glass Gage 52

26 Shock Response of AEDC Gage as Calculated by ELMEK, K » .4 ' 55

27 Shock Response of AEDC Gage as Calculated by ELMEK, K - 2 56

28 Calculated Gage Response Using ELMEK, Inductance Changes Only, AEDC Gage 57

29 Calculated Gage Response Using ELMEK, Resistance Changes Only, AEDC Gage 58

30 Calculated Gage Response Using ELMEK, Normal Resistance and Inductance Changes, AEDC Gage 60

31 Shock Response of Field Design Gage as Calculated by ELMEK, K = 0.2, L = 500 yh 63

ii

C-l Change in Resistance as a Function of Stress for Several Metals 109

C-2 Geometry for One-Dimensional Shock Response Analysis HI

C-3 Shock Equilibration of Copper in Tuff HI

C-4 Resistance Change Per-Unit-Length as a Function of Equilibration Time, t , for Several Conductor Materials, 2:00 Kbar e 114

5/6

Page 9: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

m—f' '*'

AFWL-TR-74-205

SECTION I

INTRODUCTION

1. GENERAL

The Air Force Nuclear Weapons Effects Research Council ha« established a requirement for the experimental investigation of the radiative and kinetic energy partitioning during the initial coup- ling into the ground of a near surface nuclear burst. An under- standing of the initial energy coupling is essential to the accurate computer predictions of crater formation and ground motion used in the survivability/vulnerability assessment of Ai-r Force weapon sys- tems. Ideally, this information would be obtained through experi- ments utilizing megaton yields in near surface nuclear bursts.

However, the Limited Nuclear Test Ban Treaty of 196S prevents atmos- pheric testing of nuclear weapons; thus, all nuclear testing in this country subsequent to the treaty has been conducted underground,

As a result, the near surface burst geometry, which represents the actual threat geometry, is replaced \>y a room geometry. An addi-

tional ground shock system is generated by the room effects which overtake the shock system generated by the initial coupling and obscure information about the initial coupling. To obtain any information about the initial coupling, soil stress and motion measurements in the unobscured region very close in to the nuclear source would be required. Supposedly, this would require measure- ments in the stress region of 2 to 3 Mbar; however, any measurements

above 100 Kbar would provide useful information.

It appears to be feasible to conduct an experiment with a room configuration such that the near surface burst geometry is preserved for early times. With soil motion and stress instru-

mentation suitably placed, the effects of the shock generated by the initial coupling could then be observed. However, the ability of the scientific community to successfully conduct an experiment

of this type has been seriously questioned since the capability to make the required temperature, radiative, and ground stress and

.'

Page 10: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

motion measurements has never been demonstrated. Until considerable

confidence is developed in the instrumentation to be fielded, a

full-scale coupling experiment is not justifiable. This level of

confidence might be achieved through evaluation of the instrumen-

tation systems in add-on experiments to scheduled underground

nuclear tests.

Instrumentation for use in an underground nuclear event would

also be suitable for use in the region close-in to a large-scale

high-explosive event since the material flow in each case is

described by a hydrodynamic model. Any calculations of cratering

and ground motion for the purpose of assessing structures surviv-

ability/vulnerability must begin with the coupling of the source

into the soil; therefore, measurements in this region would be

essential to verifying the calculated dynamic soil loading.

The Air Force Weapons Laboratory has been conducting a program

of analysis, testing, and evaluation in an effort to develop

instrumentation which can make the required soil stress and motion

measurements. Included in this program have been investigations

of the Impedance-Mismatch-High-Stress-Transducer (IMHST) (ref. 1),

Thermoelectric-Thermopile-Transducer (T3) (ref. 2), Mutual Induct-

ance Particle Velocimeter (MIPV) (ref. 3), and waveguide displace-

ment system (ref. 4). Other systems, i>uch as the crescent velocity

gage (ref. 5), DX pendulum velocity gage (ref. 6), electrolytic

stress gage (ref. 7), and the laser interferrometer system (ref. 8)

were also considered but did not appear to have potential for making

the required measurements.

The MIPV was judged to have the best potential for providing

the soil motion measurements, and a development program consisting

of analyses and testing was initiated at AFWL in late 1971. The

purpose of this report is to describe the significant analysis of

the MIPV completed by AFWL. Recent testing of the MIPV is reported

elsewhere.

2. DESCRIPTION

The MIPV consists of two sets of rectangular-shaped loops of

wire. The gage is embeded in a media (geology, grout, epoxy, etc.)

of interest and oriented so that the shock front propagates along

8

Page 11: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

its major axis. A constant current is supplied to the primary loop,

and a voltage which is proportional to the rate of collapse of the

loops is induced in the secondary. Any number of primary and

secondary turns with any desired grouping may be utilized. Typical

gage designs have utilized alternating primary and secondary loops.

Figure 1 is a photograph of a design utilized in gas gun test-

ing at AFWL. The loops are 0.020-inch diameter aluminum wire

embedded in a strap of aluminum-oxide-loaded polymethylmethacrylate

(PMMA) which electrically insulates the gage and holds the gage

dimensions. A capacitive discharge power supply provides a constant

current pulse to the gage primary. The secondary is connected to

a 50-ohm coaxial cable which in turn is terminated in 50 ohms at

the recording instrumentation.

3. BACKGROUND

In 1963, DASA, presently called the Defense Nuclear Agency

(DNA), awarded a contract to the Engineering Physics Company

(EPCO) for development of a soil particle velocity gage for use

in underground nuclear tests (refs. 3, 9, 10, 11). The gage was

to have the capability of making measurements in the 50- to 1000-

Kbar stress region. After considering several schemes, EPCO

selected the mutual inductance principle as the most promising.

Development continued through 1965 and resulted in what appeared

to be a reliable velocity gage. The gage was fielded in RED HOT

(ref. 12) in 1966 and DISTANT PLAIN, event VI (ref. 13) in 1967

with limited success. There has been no further use of the EPCO-

designed gage since these field tests.

Stanford Research Institute (SRI) since 1971 has been conducting

a program for DNA to determine constitutive relations in rocks and

soils by in-material stress and particle velocity measurements and

analysis techniques. During the initial phase of the program, SRI

selected the MIPV as having the best potential for making the

required velocity measurements (refs. 14, 15). Excellent results

have been obtained in gas gun and explosive tests (ref. 16), where

the gage was evaluated in the stress range of from a few Kbars to

40 Kbars. Recent fielding of the MIPV in ESSEX (1973-1974) has

produced good data in the 1- to 10-Kbar stress region.

Page 12: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

(a) Assembled gage

(b) Cross section showing 20-mil aluminum wires in aluminum-oxide-loaded acrylic

Figure 1. MIPV Used in Gas Gun Testing

10

Page 13: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

HfUMWiwUyypTi ■y■"W7^,■""^"""'"1"^^'1'^^":,1T■,^?■""^tr,"■■7>l■■'^■ ■■■

AFWL-TR-74-205

During the AFWL development program, gages were fielded in

MIDDLE GUST IV and V (ref. 17) and in MIXED COMPANY (ref. 18) which,

respectively, were 100-ton surface-tangent, 20-ton half-buried,

and 500-ton surface-tangent TNT events. During these tests, gage

survivability well after shock passage was demonstrated. However,

gage shorting due to electrical breakdown of the gage insulation

in the 150-Kbar stress environment was observed. This dictated

further investigation to obtain insulating materials which would

maintain their properties at high-stress levels.

A series of gas gun experiments was conducted at AFWL in 1973

to evaluate the gage response in the 15- to 50-Kbar region. Load-

ing, unloading, repeatability, off-axis response, and self-

generating response were investigated with very good results.

Testing in explosive and hypervelocity gas gun experiments was

conducted during the spring of 1974. The results of these tests

are to be published in a forthcoming AFWL technical report.

Three major analytical areas were investigated to provide an

improved understanding of the gage response to the intense shock

environment. These analytical areas, which are the subject of

this report, are presented in individual sections as follows:

Extension of Theory to Complex Gage Designs

Divergent/Off-Axis Flow Response

Electromechanical Modeling

The specific requirements for investigating these problems are

presented in introductory remarks in each section.

11

Page 14: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mill(PifTI»l^l)[j[j^r i «rrsi^^^mMI «TITVT"

AFWL-TR-74-205

SECTION II

EXTENSION OF THEORY TO COMPLEX GAGE DESIGNS

The MIPV theory of operation developed by EPCO was applied

specifically to a single primary, multiple secondary gage design

(ref. 3). Expressions were derived for a rectangular gage geometry

for calculating the gage mutual inductance, M, and dM/da, where

"a" is gage length (figure 2). These relations cannot be applied

directly in making calculations for gages consisting of multiple

turns of primary and secondary loops such as utilized in the AFWL-

and SRI-designed gages. A requirement, therefore, existed to

extend the basic theory so that gage parameters could be calculated

for a given design prior to fabrication. This permits designing a

gage to meet the requirements of a particular test.

The basic theory developing the expressions for mutual induct-

ance and dM/da will be summarized. The theory will then be extended

to consider complex gagt designs. The results of numerical inves-

tigation of the effects of changing gage design parameters upon

sensitivity will be presented, and design parameters will be

tabulated for several designs.

1. BASIC THEORY

Consider the simple model of the velocity gage shown in

figure 2. If the magnetic flux, *, linking the secondary loop

changes, a voltage, E, will be induced in the secondary that is

equal to the negative time rate of change of the magnetic flux

such that

The magnetic flux through the surface of the gage secondary

(in the x-y plane) may be expressed in terms of the magnetic flux

density, B,

12

Page 15: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

'!^1g5^^TvrlTI''w^^'T,,1 '""V^

(fi'lv w.f*~**^mm

AFWL-TR-74-205

Figure 2. Mutual Inductance Particle Velocimeter Nomenclature

/A"5 (2)

where dS is an element of area of the surface.

A vector, A, the magnetic vector potential, may be defined such that

(■v*X) = t (3)

Applying Stokes' theorem.

f fayX)-dS =(p%-dtc (4)

13

Page 16: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

*:!"^^T^,fT'r-t''^',,^iT:»^«r IfWTm-»--'-

AFWL-TR-74-205

where dl is an increment of length along the secondary loop.

Equations (1) through (4) may be combined to obtain the induced

voltage in terms of the magnetic vector potential

-^ t*dt (5)

The magnetic vector potential at any point, Q, on the secondary is

V^r/ Idt

(6)

where

y is the magnetic permeability of air

I is the primary loop current

, is an element of length aloi

d is the distance from point Q to the element dJ-

dl is an element of length along the primary loop

Combining equations (5) and (6) ,

E = ^#-

•Idt ^ —£'dl d s (7)

Since by definition the mutual inductance is the flux in the

secondary per unit current in the primary,

* = MI

and

dt M - Tiff^ (8)

14

Page 17: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

|y|l.l|Wl,Jlj.H i.|H<."t|ii'Jil'y^yfiyirey.ir->miT-<-<Ft'

AFWL-TR-74-205

which is seen to be simply a function of geometry. Equation (7)

may then be rewritten as

H..^ (9)

v.

if we require that the current be held constant, then

E = dM at (10)

Consider figure 3 where a plane shock wave propagates down the gage major axis, x, at a shock velocity, c. Assuming that the loops flow with the media at the particle velocity, u, it. is apparent that

u = - da ar

Expanding the term dM/dt

dM . dM da (It " cTa ar

The expression for the secondary induced voltage now becomes

r T dM E = I a? u (11)

recalling that M is defined by equation (8). EPCO obtained a

closed form solution to equation (8) in terms of generalized gage

dimensions (ref. 3). Their result is repeated here as equation

(12).

M = -r IT

2r -2jr2 + b2' -2 Jr2 + a2" +2 Jr2 + b2+a2

+ a In ^r2+b2' (aWr2->a2') r(aWr2 + b2+a2')

+ b In hz*a2\b*k2*h2') r(b + p + b2 + a2')

(12)

i«;

Page 18: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

r^Jf/Tr.;»^-7fl*f?^n-.T'^»-.:.'.';;^VmVn.<- 'TWVC-T»-»«»—' T ■

1 AFWL-TR-74-205

II .^^^ ^s. .UNDISTURBED GAGE GEOMETRY

Figure 3. MIPV Undergoing Deformation Due to Shock

where the nomenclature of figure 2 applies. Differentiating with

respect to "a,"

dM Jin (^2tb2')(aWa2^r2') t 3 (^a^b^r2' - vV-t-r2')

(r(a+^a2+b2+r2')) a2+r2

(13)

Equations (12) and (13) permit calculation of gage parameters for

simple geometries consisting of a constant distance, r, between

primary and secondary loops. This would be possible for a single

primary, multiple secondary (or vice versa) design such as that

of EPCO.

There is no way known to measure the term dM/da for a piven

gage design. To establish confidence in the gage sensitivity.

16

Page 19: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

-■ 'TffWfÄ^^^^^PWWffP

AFWL-TR-74-205

some method of experimentally determining the magnitude of dM/da

is required. EPCO noted that by assuming

M dM 3¥ (14)

an experimental estimation of dM/da could be obtained simply by

measuring the gage mutual inductance and length. Numerical inves-

tigations indicated that for a gage whose length was 10 to 15 times

greater than the width, the difference between M/a and dM/da was

less than ^S percent. Further improvements to the determination

of dM/da are obtained by applying the error term as a correction

factor. The correction factor, n, is defined as

n =

dM M 3¥ a

dM 3ä

= 1 M

a ai- ds)

and dM/da is expressed as

dM M 1 (16)

In equation (15) M and dM/da are calculated values from equations

(12) and (13) , respectively. In equation (16) M and "a" are

measured values. This method of using a calculated factor (n) to

correct measured parameters (M/a) is applicable providing the calcu-

lated and measured values of M agree very closely. As will be shown

later, this has routinely been the case.

Extension of the previous analysis is required to calculate n

for more complex geometries.

2. LXTHNSION OF TliliORY FOR COMPLEX GAGE GEOMETRIES

Consider a gage geometry consisting of m primary and n second-

ary turns. For the ith primary turn and jth secondary turn, the

mutual inductance is M- ■ and the total gage mutual inductance M,

may be expressed as

17

Page 20: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

M -t t Mij i-1 j=l

(17)

As an example, consider the 4-primary, 3-secondary turn design

depicted in figure 4.

1 1 2 2 3 3 4

o r

r 11

+ O

1 2

+ o A

Primary Turns

1 3

Cj Secondary Turns

Figure 4. Cross Section of MIPV Loops, Type I Gage

The mutual inductance is calculated as

M=t t MiJ i-1 j=l

M +M +M +M +M +M 11 12 13 21 22 23

+ M +M +M +M +M +M 31 32 33 i»l >»2 1)3

Note that due to the same distance, r, between loops

M = M = M = M " M = M • , 11 21 22 32 33 Hi

M = M = M = M , and 12 2 3 31 *2

M = M 13 •»!

18

Page 21: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

"" ,* ■ ' ■ -. ■■V.-K.-r'.FU-

^■Äitota*^^

AFWL-TR-74-205

The mutual inductance may then be expressed as

M » 6M + 4M + 2M 11 12 13

',

In this case, by calculating the mutual inductances M . M , and ' 0 1112

M with equation (12) utilizing the distances r , r , and r , 13 n e 1112 13

the total gage mutual inductance may be calculated. By requiring

that the loops be separated by the same distances and specifying

that there is one more primary turn than secondary turn, the generalized expression for gages with alternating primary and

secondary turns is

:

M = £ I n+m+l-2j M1;j (18) s

|

Recalling equation (15) and substituting equations (16) and (17),

n = l

m n

£ S M. . i=l ftl jj

m n M. .

i=l 3=1 1-n^

(19) ■

■l - i

where

13 = 1

M ij dH

da

and dM- /da is calculated from equation (13). Utilizing equation

(18) in equation (19),

19

Page 22: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

fipfTZHtf.r* ■ ■■"■ 4 ■ -, '.■■7VT1—y-

AFWL-TR-74-205

n r -I V n+m+l-2j M1.

■■'-44 4— I n+m+l-Zi dM J ^

(20)

which applies to the same geometry as that associated with equation

(18). A more general expression for n would utilize equation (17)

in equation (15), resulting in

n m

n . ! - Ö_JB n m i i dM. .

U i=l j<l da

(21)

Considering the example from before (figure 4) ,

n = 1 6M + 4M + 2M

1 1 12 13 —ar m ar-

a |6 ^-Li- + 4 ^-^- + 2 13

da da da

Equations (11) and (16) may be combined to define a term, gage

factor, GF, such that

GF E _ M / 1 \ ÜT a \lTny (22)

where

M is measured mutual inductance, henries

a is measured length, meters

20

Page 23: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

rTf*rs}~WV.T

AFWL-TR-74-205

n is calculated from equation (21)

GF has the units volts/amp • mps but is more conveniently expressed as mv/(amp • mm/psec)

Thus during a test, two measurements, secondary output voltage and primary current, must be made to obtain particle velocity.

3. NUMERICAL RESULTS

A generalized computer code (DSIN1, appendix A) calculates

gage mutual inductance, gage factor, and error term (or correction factor) for gages utilizing alternating primary and secondary turns

This will be referred to as the Type I gage. A specialized code

(DSIN2, appendix A) calculates the same parameters for the designs shown in figure 5. This will be referred tu as the Type II gage. Numerical results for a variety of designs for each type gage are tabulated in appendix A.

oo@oo

ooo@ooo

oooo@oooo 9 Loop Set A

O Loop Set B

OOGOOOOO

OOO0OOO@OOO

00®O0@OO@O0

ooooooooooo^ooo Figure 5. Cross Sections of MIPV Loops, Type II Design

a. Comparison of Calculated and Measured Mutual Inductance

Table 1 shows the results of calculations made for gages

designed for fielding in MIXED COMPANY, a 500-ton TNT event.

Measured values of mutual inductance are compared with the

21 v

Page 24: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

calculated values and the error between the two indicated. Induct-

ance measurements were made with a GR Type 1632-A Inductance Bridge.

The slight variation in measured values is primarily due to slight

variations in length between individual gages which results from

the fabrication technique. For gages which have a length-to-width

ratio, a/b, greater than approximately 5, the mutual inductance

essentially varies directly with length. Therefore, by considering

the individual gage length and controlling other gage dimensions, a

very accurate value of the gage factor, which, as will be shown, is

essentially independent of gage length, may be determined. The

results of table 1 are typical, i.e., gages can be constructed

routinely to within less than 1 percent design gage factor.

Table 1

COMPARISON OF MEASURED AND CALCULATED VALUES OF

MUTUAL INDUCTANCE FOR MIXED COMPANY GAGES

Gage No.

Measured mu inductance

tual (uh)

Calculated mutual inductance (yh)

Error m

1 4.411 4.356 1.2

2 4.385 4.356 0.6

3 4.398 4.356 0.9

4 4.386 4.356 0.6

b. Parametric Analysis

Figures 6 and 7 show the influence upon gage factor of

varying gage width, spacing between turns, and number of primary

and secondary turns for typical Type I gage designs. The results

are not unexpected, i.e., increasing gage width, increasing number

of turns, and decreasing loop spacing all result in increased gage

factor.

Since, as shown in figure 6, a wide range of gage factors is

available, the gage may be used over a wide range of particle velocity

inputs and still produce measurable signals. For instance, a signal

of 400 mv is produced for a O.l-mm/ysec velocity input («5 Kbar)

with a gage factor of 40 mv/(amp • mm/ysec) and 100 amperes current

in the primiry. For applications in the stress region above 100

22

Page 25: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

••-»V»-"

AFWL-TR-74-205

SO

40

30

a e

O

U

a

20

10

Primary Secondary

I

Figure 6. Gage Factor as a Function of Width and Number of Primary and Secondary Turns, Type I Gage

23

Page 26: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

50

40 H

P. 6

o *-» u «a u,

oo CO u

T r

30 H

20i

10H

r=.06

o-t

a = 30 in b = 2.0 in

T

Primary 2

Secondary 1

T 1 r r

3 4 5 6

2 3 4 5

TURNS

Figure 7. Gage Factor as a Function of Spacing between Loops and Number of Primary and Secondary Turns, Type I Gage

24

Page 27: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■pvRwn |.||IWTWW^' "^"wwufl! »mw"™*'. ^"'*"'■

fi;* ■■■:'':,'*i:- mmmmmmmtmir.^- •mmmm

AFWL-TR-74-205

Kbar, the particle velocity would generally be greater than

1 mm/ijsec, and signals above 2 volts are easily obtainable.

Note in figure 7 that loop spacing has a relatively small

influence upon gage factor. This would suggest that one would be

free to choose from a wide range of wire diameters without

seriously affecting gage factor. Past designs by AFWL have

utilized wire diameters varying from 0.020 to 0.0625 inch. Loop

spacing is generally 2 to 2.5 times the wire diameter to ensure

adequate separation to prevent mechanical contact and hence

electrical shorting between loops. Typical designs employ spacings

ranging from around 0.040 to 0.160 inch.

In many geologies at very high stress levels and for long

duration stress pulses, a gage deformation of up to 50 percent may

be experienced during the shock transit. This introduces questions

as to the influence of changing gage length upon gage factor. The

numerical results shown in figure 8 indicate that certain geomet-

rical limitations do exist, beyond which the gage factor would

undergo significant changes. For a length-to-width ratio greater

than 4 or 5, the gage factor for this design (which is typical) is

constant within 0.5 percent. Therefore, a gage of any desired

length might be utilized, as long as the length-to-width ratio

after shock transit did not decrease below 4 or 5. '

The correction factor, n» is plotted in figure 8 to clarify

its role in determining gage factor. Note that as a/b decreases,

large changes in the value of n result. This is of little consequence

since the proper application of n is in determining the initial value

of the gage factor. The results of figure 8 clearly indicate a

constant gage factor for a/b > 5 even though n is obviously changing.

c. Comparison of Type I and Type II Gages

To form a basis for a detailed comparison of the Type I and

Type II gages, many factors such as desired signal rise time, record-

ing duration, stress and particle velocity, geology, and type and

length of cables must he considered. This, however, would be a very

involved discussion and beyond the intent of this analysis. There-

fore, a simple comparison is made which illustrates how one of the

25

Page 28: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

16

o 0) (A

£ E i

Cu B a)

O +J O rt

0) 00 rt

14 -

12 .

10

T f 1

K /— Gage Factor

MJ

s^^_^ / /

\ " ■""

^. ^---C ■ ^^^J

1 L. ' • 1 1 1 1 -^1—

60

5 6

a/b

- -40

- -30

. -20

- -10

10

n(*)

Figure 8. Variation of Gage Factor and n with Gage Length-to-Width Ratio for a Typical Type I Gage Design

designs can be used to advantage. In general, an analysis based

upon the requirements of a particular test would be required to

identify the most favorable design.

Consider figure 9 where it has been specified that loop

set A in the Type II gage is the secondary, and the definitions

set forth in figures 4 and 5 apply. Significant increases in gage

factor are available with the Type II gage without increasing the

number of secondary turns. This is important in that likewise there

will be no increase in the secondary self-inductance and thus no

increase in electrical rise time. This advantage would be partic-

ularly important in improving the rise time performance for gages

designed for the low kilobar stress region where a large gage

factor, and hence many primary and secondary turns, are required.

4. SUMMARY

Gages of any desired design may be fabricated routinely to

within 1 percent of the design gage factor. In the Type II gage

26

Page 29: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

»■TRT-TTisTf^r»,- T't";?'n"*-'■-"•--

AFWL-TR-74-205

significant increases in gage factor are available without affect

ing gage rise time. A complete analysis would be required to

determine the optimum gage design to meet the requirements of a

particular experiment.

Considering only the requirement for a constant gage factor

duriTig gage deformation, any length gage may be chosen as long as

a/b > 5 after shock transit.

T X

40-

u a>

e 30 i

e

o +J u u.

20-

10-

O D o A

n

Type I Gages oo«o o ooo»ooo oo•oo«oo ooo«ooo«ooo oo«oo«oo«oo ooo«ooo«ooo«ooo

Type II Gages

a = 30 in b = 2.0 in r ■ .08 in

T 1

T

3

Secondary Turns, Type I Gage Secondary Turns, Loop Set A, Type II Gage

Figure 9. Comparison of Types I and II Gages

27

Page 30: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

P|IWWA''?W"W1'"'! ''"r »Hl,,'^r-«»"^f^»<1 iWTwmrrr^^-'TTW'—- r.-f—fpT'^HP l'^WÜHT-r^.' r™ ' •■'

AFWL-TR-74-205

SECTION III

OFF-AXIS DIVERGENT FLOW RESPONSE

The theory previously presented in section II was based upon

one-dimensional flow along the major axis (x-axis) of the gage.

This environment is easily created in laboratory-type experiments

utilizing flyer plates or plane wave explosive lenses, and in fact

these types of experiments are very useful in comparing the gage

experimental and theoretical responses. However, in large-scale

TNT or nuclear events, the flow field will likely be oriented off

the gage major axis and be spherical in nature. Flow components in

the y or z directions will clearly distort the gage geometry and

consequently change the gage mutual inductance. The end result is

a response which is not totally defined by the one-dimensional,

on-axis analysis. To establish the usefulness of the mutual induc-

tance particle velocimeter as a field gage, it is necessary to

investigate the sensitivity of the ga^e to nonideal flow effects.

1. DEVELOPMENT OF COMPUTER MODEL

A simplified gage design, consisting of one primary and one

secondary turn, is chosen to reduce the computation time which

becomes prohibitive for multiple turn designs. The geometry of

the problem is shown in figure 10, where the coordinate system

origin is located at the center of the front end of the gage, and

the source is located at some selected position (x ,y ,z ) ahead of

tue gage. A spherical shock front propagates at a velocity c, and

behind the shock front the material flows outwardly at a velocity

u, along radial lines emanating from the source. Typical values

of u and c are chosen to simulate realistic field conditions. A

step particle velocity is chosen to investigate the worst case

and to simplify the calculations. The conservative relations would

not allow an actual step in particle velocity for constant stress

loading at the source of the spherical flow. However, where the

spherical flow approximates one-dimensional flow (source at a

relatively large distance from the gage), this is a good approxi-

mation.

28

Page 31: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

,i'i—WÄ '"^P «»Ill-|JiTV<-i-n-r<-X" ..--,T-,.-.„_,

AFWL-TR-74-205

>

>-

/

o

o

i UL,

V) •H X <

«4-1

o

c

l-<

>

«4-1

O

c 0> E P. O f-i

> Q

U O

<+*

<ü Si

4J

t—i

u c 0) 6 o

0)

3

• H

29

Page 32: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

As shown in figure 10, the gage primary and secondary are

divided into small segments. Time is stepped in increments of At,

and as the shock front propagates through the gage, the segment

positions are calculated. At selected intervals, the gage mutual

inductance is calculated, resulting in the mutual inductance time

history, M(t). By numerically differentiating M(t) with respect

to time

M. Mt^t • Mt-At

TKt

M(t) is determined. M(t) is then multiplied by the current

(assumed constant) to give the gage output voltage E(t). This

output is then compared with the one-dimensional, on-axis response

calculated by equation (11),

The mutual inductance is determined at each time increment by

first calculating the magnetic vector potential at each segment

midpoint on the secondary utilizing the finite difference form of

equation (6)

At *io-£2£ (23)

and then using the relationship

M = T Z X'At (24)

which results from equation (23) and the finite difference form of

equation (8) .

A computer code, DIVE, was developed to make the calculations.

This code is listed in appendix B.

30

Page 33: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■HWIIMiiii '■ * n'v .-^w-i.^ »i —r—T" -w-rw-^-mrr-

AFWL-TR-74-205

2. SUMMARY OF NUMERICAL RESULTS

Initial numerical investigation of the problem involved select-

ing time increments and number of primary and secondary segments

which would minimize the computation time while providing a

reasonable accuracy in the numerical results. M for the real flow

model is calculated by placing the source on-axis and at a great

distance so that one-dimensional flow is approximated. It is then

legitimate to compare the ideal and real flow results for the

purpose of determining computational accuracy. The result was a

gage consisting of 868 segments for each loop. The difference in

the numerically calculated mutual inductance and that determined

from equation (12) was approximately 0.008 percent. The difference

in the numerically calculated ^ and the ideal Ä was less than 0.2

percent. It is apparent that the errors due to the finite elements

are insignificant and may be neglected.

All numerical results are based upon the following gage design

and flow environment:

Gage length

Gage width

Loop spacing

Primary turns

Secondary turns

Shock velocity

Particle velocity

19,5 inches

1.5 inches

0.080 inch

1

1

4000 meters per second

2000 meters per second

The values of the shock and particle velocities are important

here only in their relative magnitudes. A worst case of c/u = 2

is selected here, where the case of very high pressure (over 500

Kbar) in geologic materials is approximated. At lower pressures

c/u » 3.

As a first analysis of the real flow effects, it is considered sufficient to investigate only the single gage geometry described

above. The expense of expanding the effort to include other geometries is not justifiable, since it is intended here only to show the general effects of the real flow upon a typical gage

design.

31

Page 34: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

The effects of divergent flow are shown in figure 11. Here

the results are shown as a percentage error in gage response as

a function of time. The source is located on the gage centcrline

in each case. Note that for a source position as close as 1/2 meter,

the error in gage output is less than -2 percent and for 5 meters

and beyond is less than -0.2 percent. Generally, it may be con-

cluded that for anticipated field flow environments, the error

generated due to spherical flow is negligible.

Figures 12 through 16 show the off-axis response of the gage

in terms of the output of the gage, normalized by the ideal output.

Source radius was located at 5 meters in every case to observe

only the off-axis effects. The two major effects are identified

clearly in figures 12 and 13.

In figure 12 the angle off in the x-z plane, 6, is held at

zero, while the source position is varied by the angle y in the

x-y plane. The obvious effect is an increase in rise time and

slight overshoot before returning to essentially a constant level

slightly below ideal. For y t 0, a finite time interval is

required for the shock to transverse the front of the gage, and

hence the increasing rise time with increasing y is observed.

Further analysis would lead to the intuitive notion that the

output of the gage would be reduced in proportion to the angle y,

or simply, to the x component of the particle velocity u , where A

u = u cos Y

However, this is not the case as seen in figure 17, where the

normalized velocity is compared with u . It is apparent that

there must be some compensating effects to explain the discrepancy.

Observe in figure 18 the nature of the gage deformation. Since

shock arrival occurs at one side of the gage prior to the other,

the gage width is reduced somewhat behind the shock front. The

effect is to decrease the mutual inductance with time and hence

results in an additional positive output voltage in the gage

secondary. The result is that, except for the early time peak, the

gage is relatively insensitive to off-axis flow in the x-y plane.

32

Page 35: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

vop'W'^-" '^-»imi*""i*'z"i'w""

AFWL-TR-74-205

C/5 10 CO

- 0D<3

0)

Ln

CD IS

0» 4) (U u O u c C C « 03 rt 4-> *-> 4-> I/I tn trt

O Q Q 0) <u u u

3 3 O O

U

3 o i

r o

o CVJ

o o

o 00

o (£1

u

3

o

o

to I

V) c o a w 0) & (U «50 rt U c o D. 3

O i-t li,

(U 00

>

o

(/> +J o

UJ

(1

3 oc

auooaoj ^ aoja'j

Page 36: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

P^WWWWW 4 i IM, ■■ ' t HI'JIP M i.piWB|n»ii|T~<Tr,-v^if;~.

AFWL-TR-74-205

1.0

.8

U A O . u l-l 0) >

0) N •H

o

.4

.2

.2

o Y = 1U

G Y = 20

A Y = 30

e = 0°

-L J. 10 20

Time ^ (ysec)

30 40

Figure 12. Effects of Off-Axis Flow upon Gage Response

34

Page 37: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

1.2

1.0

.81-

o iH «i >

0) N

•H 4

* 1

o

.21-

^><><><X(><>0 O

/DQOOOOG D-

P^AAAAA-

O e D e A e

= iol

j-

Y = 0

X

20" 30°

o

10 20

Time ^ (ysec)

-D-

A-

30 40

■/

:

■ ■,'.

Figure 13. Effects of Off-Axis Flow upon Gage Response

35

Page 38: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

10 20 Time ^ (usec)

Figure 14. Effects of Off-Axis Flow upon Gage Response

36

Page 39: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

10 20

Time ^ (ysec)

T \ -I r -

1.0 ■ Q^ -0 —o— -

.8 poo^- -D —D -

>s |AAA^^_ A A

o -o i—i I

u -

Normalized [ -

.2 - -

0 0 e Dö A e

Y

l I

= 10o = 20°

= 30°

= 20°

i

-

30 40

Figure 15. Effects of Off-Axis Flow upon Gage Response

37

Page 40: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

10 20

Time ^ (ysec)

30 40

Figure 16. Effects of Off-Axis Flow upon Gage Response

38

Page 41: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

p-^-.f,,,,--,■-„;, .-„^j,.^.

f;::%;^'

AFWL-TR-74-205

^ c •H O U-H o <->

rH U <ü C > 3

U< 13 0) 0) N C

•H -H iH (/) rt o EU u o 2

.4

cos Y»0 or u cos (9+e) DIVE, Y=0 DIVE, 9=0

X X X 10 20 30

Y,6 (Degrees)

40

Figure 17. Comparisons of DIVE Calculations with Cosine Function

Figure 13. Gage Undergoing Deformation for Off-Axis Shock, 6=0, y^O

39

Page 42: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TK;*"jr:nf7Tm>:'^,T''^''**" "?£'""»■•/■/T"- ■ ■-'

r^^VMi

AFWL-TR-74-205

In figure 13 the shock propagation is off-axis by the angle 6 in the x-z plane, while y = 0. The gage rise time is relatively unaffected, while the level is significantly influenced. It must

be pointed out that for multiple primary and secondary turns, the z dimension will be much greater, and hence, the rise time would also be increased.

Comparing the gage response with u in figure 17, an error in

gage response much greater than anticipated is observed. This is

explained by considering figure 19. Note that as the gage deforms, its orientation relative to the shock front propagation direction

changes so that the effective component of u down the deflected gage axis is not u cos 9 but rather u cos (0+e). In figure 17 cos (9+e) has been plotted, and we see that it conforms fairly well with the actual gage response, especially for 6 ^ 20 degrees. The angle e is obviously a function of the ratio of c/u, therefore, as

c/u increases, e would, for a given 6, decrease. Again, for c/u ■ 2, the worst case results.

Figure 19. Gage Undergoing Deformation for Off-Axis Shock, y=0, 6^0

40

Page 43: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

'"(^f^yi"-Tn,,rT¥i77i?03r'""r^T'T-r" ■:—-^ ■■

AFWL-TR-74-205

PW^^ff

The intention of figures 17, 18, and 19 and the related discus-

sion is to attempt a logical explanation of the numerical results

and provide an improved intuitive feeling for the gage response.

The remaining data in figures 14, 15, and 16 show the gage response

for various combinations of 6 and y. As might be expected, it is

observed that the effects protrayed in figures 12 and 13 combine to

provide the results of figures 14, 15, and 16.

3. SUMMARY

The results of the numerical investigation of the off-axis/

divergent flow response are summarized as follows:

a. For anticipated field flow environments, the error gener-

ated due to spherical flow is negligible.

b. The gage is relatively insensitive to off-axis flow in the

x-y plane, the error induced being approximately equal to 1/2

(1 - cos y)• However, off-axis flow in the x-z plane results in

much larger errors approximately equal to 3 (1 - cos 6). An

immediate result is that if in a field test there is a plane in

which the uncertainty in shock propagation direction is a maximum,

then the preferred orientation of the gage is with the x-y plane

aligned with the plane of uncertainty.

Page 44: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

SECTION IV

ELECTROMECHANICAL MODELING

The development in section II leading to equation (11), the

expression for the gage output voltage, was based upon the assump-

tions that the media and gage flow were ideal, i.e., one-dimensional

and aligned with the gage major axis and that no electrical param-

eters other than the gage mutual inductance were changing. The

nonideal flow effects were investigated in section III. In this

section the effects of nonideal electrical behavior are treated.

It is obvious that as the gage shortens, the primary and

secondary self-inductances will decrease. Also, the gage resist-

ance will change due to the very high stress behind the shock

from . These effects are totally ignored in the analysis of

section II and must be considered separately. The approach is to

evaluate the effects of changes in self-inductance and resistance

on gage response and, by proper circuit design, control the effects

so that equation (11) adequately describes the gage response.

1. PREVIOUS WORK

The Engineering Physics Company, during their development

program, performed a detailed analysis of the error generated in

the gage output by changes in self-inductance and resistance in

the gage primary (ref. 10). A closed form solution was obtained

for a model utilizing a voltage source as the power supply. The

solution was developed by linearizing the differential equations,

neglecting self-inductance and resistance changes in the secondary,

and making other simplifications.

An analysis was performed (ref. 16) that used a simplified

voltage source model, linearized equations, and neglected resist-

ance changes in the gage. This is an adequate model for applica-

tions in the low Kbar stress region.

Neither of these analyses were considered completely adequate

for application in the very high-pressure region because of the

42

Page 45: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

?*wir«T"l"^T»'~7 ^•"••'."«..Mrrv'T-^rTrr'» ■■ i-

AFWL-TR-74-205

approximations used. A more detailed model was required that would consider inductance and resistance changes in the primary and secondary. Additionally, it was desirable to incorporate a capaci- tive discharge power supply in the model.

2. ELECTROMECHANICAL MODEL

A simplified schematic of the power supply and gage, assuming an open secondary, is shown in figure 20. The elements L and R are controllable parameters used to minimize the undesired effects of changes in self-inductance and resistance in the gage loops. The basic problem is to determine the proper values for L and R

for a given gage design under some specified test conditions. The circuit in figure 20 is described by a set of nonlinear differen- tial equations with time-varying coefficients which are not amenable to closed form solution by conventional methods.

a. Approach

The approach taken in obtaining a solution is to determine a set of first order differential equations in the normal form (state variable equations) that will describe the electrical model. Given initial conditions, these equations may then be solved to obtain numerical results. Due to the ease with which more complex models may be handled by this method, it is possible to utilize a detailed model of the gage that introduces as few assumptions as practical.

The electrical network that models the system is shown in

figure 21. Elements 2, 6, 12, and 13 represent the power supply; elements 1, 10, and 11 represent the primary cable capacitance, control resistance, and inductance; the gage consists of elements

5, 9, 4, and 8; and elements 7 and 3 represent the secondary line cable capacitance and termination resistance. In the network, it

is assumed that the distributed parameters may be lumped. It now

remains to determine the appropriate mathematical model that

describes the network.

b. State Variable Equations

Stern (ref. 19) describes the procedures for applying the

linear graph and electrical network theory of Seshu and Reed (ref.

43

Page 46: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

ry™WT**r7T?*^.^T:-yc'i}tyj^Try*mFvrw'-.rKr-*'vv----''i~r ■"■■ ■**"■.,

AFWL-TR-74-205

■n^

Figure 20. Simplified Schematic of Power Supply and Velocity Gage with Open Secondary

Figure 21. Electrical Network of Velocity Measuring System

44

Page 47: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

20) to determine the linearly independent loop and node equations,

equations (23) through (35), which mathematically describe the

network. A graph of the network is shown in figure 22. The equa-

tions are based upon the choice of the sign convention shown in

figure 21 and the tree of the graph shown in figure 22.

\

\ \ \

Figure 22. Graph of Network Shown in Figure 21, Tree Indicated by Solid Lines, Branches by Dashed Lines

e = e 1 6

e = e 2 6

e = e 3 7

e = e -e 13 6 12

e = e + e i» 7 8

e = e - e 5 6 9

i =-i - i 6 1 2

i =-i - i 7 3 t

i = i 12 13

i =-i e k

i = i 9 5

i = i 1 0 5

i = i 1 1 5

e - e 10 11

i - i 1 3 5

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

45

Page 48: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

»^VT»7rWTrmTff*^*If ^ TTfTT-'' "rz-T.-^r-.-r .-n-

AFWL-TR-74-205

The tree branch charges, q , q , and q , and chord flux «7 n12

linkages, X and X , are chosen as state variables. By applying H 5

the basic relations

q - Ce,

X - Li,

e ■ iR,

q « i,

X ■ e,

X = L i + M i

X = L i + M i 5 5 5 •♦

apply in reducing the state variable equations to the form

to equations (27) through (31), expressions for the state variables

may be obtained resulting in

X = e + e •♦7 8

X = e - e 5 6 9

q =-i - i 6 1 2

q =-i - i 7 3'»

q = i 12 13

e - e 10 11

i - i 13 5

The basic relations are then applied throughout, except for

elements 4 and 5 where the coupling relations

1 1

(36)

(37)

(38) 1 (39) i

(40) :4 :i |

ept for f

46

Page 49: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

i - f(x,t)

The resulting equations are

q R 7 8

C~ " IT 7

L X - MX 5 * 5

(41)

r n irq /R + R v L X - MX

>f s I

H'1 L - MX - X

\ L D/ ^ . _LL_(MX

- / D2 \ ^ L X

l» 5

(42)

_ c + c 6 1 6 2 13 \ 6 12/

ü (L.xs " M\) (43)

S = q7 or

3 7

IfLX MX 5 <♦

•)

(44)

12 - ir (— r 13X6 1

2

2 i

(45)

where

D = L L - Mz

i* s

D = LL +LL -2MM "♦5 5 ^

47

Page 50: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

r m ^pTflW^'-'l"!'''-^» -II^I

AFWL-TR-74-205

c. Time-Varying Parameters

Note that the state variable equations are functions of the time-varying circuit elements L , L , R , and R and also L

. i» 5 « 9 <♦

and L . To proceed with a solution, expressions nust be obtained for each of these variables. An analysis of the physical model is

necessary to determine these relationships.

A step stress and particle velocity and constant shock velocity are assumed for the physical input parameters. Figure 23 depicts the gage deformation, Aa, as a result of the particle

velocity, u.

For typical gage designs, where the length is greater than

five times the width, the self-inductance is essentially propor- tional to the length, and the inductance-per-unit-length is

independent of gage length. Therefore, the self-inductance may be

expressed as

L = L0 (l + Aa/a0) , Aa < 0 (46)

where L is the initial self-inductance, and a is the initial gage length. L is calculated by extrapolation of the data of reference 21 or by measurements on actual gages.

Differentiating equation (46) with respect to time gives

1 - io f/ao]= -u |yao] ^

which is seen to be constant for a step velocity input.

The expression for resistance variations may be determined

by considering the portion of the gage behind the shock exposed to

high stress and the resistance change that is associated with that,

stress level. The situation is described in figure 24, where no

consideration is given to gage deformation. For an initial undis-

turbed gage resistance of R , length a, and width b, the resistance

per unit length is

R0/2(a + b)

48

Page 51: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

m a •

Figure 23. MIPV Undergoing Shock Deformation and Nomenclature for Determining L(t) and L(t)

l_ \

L-Aa-J

1 1

<

u

Figure 24. Nomenclature for Determining Gage R(t)

49

Page 52: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

The length of the shocked portion of the gage is

b + 2 xc

where xc is the shock position relative to the position of the

front of the gage prior to shock arrival. The remaining length is

b + 2 (" - *c)

By assuming that behind the shock the gage resistance is changed by a factor K, the expression for the total gage resistance is seen to be

R = Ro

2(a + b) Tb + 2(a - xc) + K(b + 2 xc)j (48)

Equations (47) and (48) apply to both the primary and

secondary loops in the gage.

Appendix C presents a study of various conductor materials

as applied in the MIPV. Included in this study is information on

the variation of resistance with stress level.

3. NUMERICAL RESULTS

Computer calculations were made to investigate this problem

on an AFWL CDC 6600 utilizing a modified Rung-Kutta-Gill/Adams-

Moulton method variable step size integration routine (ELMEK,

appendix D). First, the program was run to simulate power supply

turn-on and allow sufficient time for the transients induced in

the gage secondary to decay. The shock was numerically positioned

well away from the gage so that only the turn-on effects were

present. Then the final conditions were input as initial conditions

and runs made to observe the gage response to the shock.

The equations were found to be quite sensitive around the turn-

on initial conditions, with the automatic step size feature con-

verging to less than 10-nanosecond steps during start-up. A

constant step size of 5 nanoseconds was selected and utilized for

all subsequent calculations.

50

Page 53: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

Because of the extremely wide range of stress and particle

velocity environments in which the MIPV may be used and the differ-

ent designs available, there are numerious test conditions which

justify numerical investigation. Examples are

• Large-scale HE tests (such as MIXED COMPANY) with field-

size gages (typically 2 inches wide by 30 to 40 inches

long, 4 primary turns and 3 secondary turns) exposed to

the 50- to 150-Kbar stress region.

• Large-scale HE tests, free-field measurements in stress

region below 5 Kbar, field-size gages (same as above but

with 10 primary and 9 secondary turns) .

• High-pressure evaluation experiments (explosively driven

flyer or gas gun) in 0.2- to 1.0-Mbar stress region with

scaled gages (0.4 inch wide by 3 inches long, 3 primary

and 2 secondary turns).

• Underground nuclear test, field-size gage in 0.2- to 2.0-

Mbar stress region.

The two most severe conditions would be those in the megabar stress

region--the high-pressure evaluation experiments and the underground

nuclear test. These two conditions will be investigated and

numerical results presented. Other test conditions may be investi-

gated as the need arises.

a. High-Pressure Evaluation Experiments

The MIPV was evaluated in May and June 1974 on the Von

Karman Gas Dynamics Facility Range G, two-stage light gas gun

(ref. 22), located at Arnold Engineering Development Center (AEDC)

near Tullahoma, Tennessee.

Two basic gage designs were evaluated at AEDC. The first

consisted of 0.020-inch aluminum wires embedded in aluminum-oxide-

loaded acrylic, as shown in figure 1. The second design, shown in

figure 25, consisted of 0.020-inch titanium wires in 0.064-inch

OD by 0.024-inch ID borosilicate glass tubing backfilled with C-7

epoxy resin. Titanium was utilized with the glass because it would

51

Page 54: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

>. r« ' '«MNWWM

Figure 25. Glass Gage

better withstand the temperatures required for the glass forming.

Both the aluminum and titanium wire designs were investigated but

only the titanium gage will be discussed here since, as shown in

appendix C, it presents a more severe perturbation to the gage

response. The problem is further complicated by the fact that

titanium, as a transition metal, undergoes an increase in electrical

resistivity by a factor of 2 at high pressure. This condition must

also be considered.

In preparing for the tests at AEDC an extensive investiga-

tion of the nonideal electrical behavior of the gage was made.

Details of the gage design investigated which approximates the

AEDC design are

Length 6.0 inches

Width 0.4 inch

Spacing between turns 0.050 inch

52

Page 55: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

wrT^iT,'^T-3;^^T■•'~,^•'" ■VT-::'T;,r-r^ ...,-,,-;---

AFWL-TR-74-205

ff^-mm.

Primary turns

Secondary turns

Conductor material 0.020 titanium

Insulator Horosilicate glass

This design resulted in the following electrical parameters:

R 2.017 ohms pr i

Lpri = 1.68 uh

R = 1.345 ohms sec

L =0.9 33 \ih sec

M = 0.655 uh

GF = 4.179 mv/(amp mm/ysec)

The shock environment selected was

c = 9.7 mm/ysec

u = 5.25 mm/ysec

a = 1 Mbar

K = 0.4/2.0

The investigation was accomplished in two phases. In

addition to determining suitable control parameters for this

particular gage design and shock environment, there was a require-

ment to verify the code behavior, gain an understanding of how the

nonideal electrical behavior affects the MIPV response, and

determine the most effective means of controlling the induced

errors.

In the first phase, several values of ballast inductance,

L , and ballast resistance, R , were selected to observe their 11 10

effect upon the sliock-induced errors.

In the second phase, conditions were set up to observe the

response for some extreme values of the control parameters while

restricting the code to the following calculational modes:

53

Page 56: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

(1) Normal--inductance and resistance changes are

permitted

(2) Inductance changes only

(3) Resistance changes only

(4) No changes in inductance or resistance

Figures 26 and 27 show the effects of varying R and L

upon gage response. For K < 1, the induced errors are negative;

for K > 1, the induced errors are positive. The ballast inductance

appears to have a strong effect in controlling the magnitude of the

error while the ballast resistance has a relatively minor effect.

The implication is that the errors can be adequately controlled

solely with the ballast inductance. This result, which will be

verified, is significant in that the amount of primary resistance

has a direct effect upon the magnitude of the current in the primary

and hence dirccly affects the gage sensitivity.

Now, it is of interest to determine the manner in which

the errors are generated in the gage and verify the calculations

of ELMEK.

Consider figure 28 where only inductance changes are

permitted. Where no ballast inductance is provided, the rise time

response is affected, but no error results in the magnitude. Where

ballast inductance is included, the response is identical with the

ideal response within the normal rise time capabilities of the

system, regardless of whether or not there is ballast resistance.

In figure 29 only resistance changes are permitted. It

will suffice to discuss the results for either of the values of

the resistance change factor, K, since qualitatively the effects

of one are, in a sense, reflected about the normalized voltage

value of 1. Consider the case for K = 0.4 where the induced errors

are negative. The first observation is that■in no case is rise

time degraded. Considering the result of the previous discussion

of figure 28, it may then be concluded that the primary effect of

self - inductance changes in the gage is to degrade the rise time

of the gage output and that the ballast inductance is very effec-

tive in controlling this degradation.

54

Page 57: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

i.o U

.8 L

<-> rH O >

(U

e »-> o

.6

.4

Nomenclature: X/X

2/300 5/300 8/300 2/100 5/100 8/100

X -L

microhenries

ohms

5

Time

10

ysec

15

Figure 26. Shock Response of AEDC Gage as Calculated by ELMEK, K - .4

55

Page 58: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

|fflf,^:r»1tT^«fW)'F». '-TI '

im*

AFWL-TR-74-205

l-H . 6 o > T3

E

O 4L

oh

Nomenclature:

8/100 5/100 2/100 8/300 5/300 2/300

10

L1 - microhenries

R - ohms

15

Time ~ ysec

Figure 2' She ock Response of AEDC Gage as Calculated by ELMEK, K = 2

56

Page 59: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-2Ü5

00 a

o >

•a

6 U o

—1 1

Nomenclature:

r-

x/x

—l

2.5 - VV —L - microhenries - 11

—R - ohms 10

2.0 - -

1 .5 -

y-n/300

-

i. n -

/yr2/.^00

lY

r\~~z/0

.5 - 1 ^-o/o -

0

...... _J l •

5 10

Time ~ ysec

15

Figure 28. Calculated Gage Response Using ELMEK, Inductance Changes Only, AEDC Gage

57

Page 60: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

2.5

2.0

<u bo (0 *-> rH O >

0) N

■H rH rt E U o z

1.5

1.0

.5

Nomenclature: X/X/X

±

Resistance Change Factor

•L -microhenries 11

J. 5

Time

10

ysec

JO/500/2 ■^2/300/2 -.-0/300/. 4 7/300/.4

2/0/ A

0/0/ A

15

Figure 29. Calculated Gage Response Using ELMEK, Resistance Changes Only, AEDC Gage

58

Page 61: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

P«W/,?•-yy.^TT':'^r^'^"-'-'?-"TT.'.I1 rTl1^ "I■»y^ '.' ■• IT* '^"'17:". ■'"■' I' ■■ " "l T^JTiyvwyi—yryy; ■—■ ,

•UK"

AFWL-TR-74-205

The next observation is that where there is no ballast

inductance, significant errors result which are only moderately

affected by the ballast resistance. It is thus concluded that

resistance changes in the gage produce large errors, but effective

control is maintained with ballast inductance.

Now, consider figure 30 where normal resistance and induc-

tance changes are permitted. Again, as in the discussion of

figure 29, only the case where K = 0.4 is discussed. Applying the

conclusions from before, it would be expected that in every case

where there was no ballast inductance that the rise time would be

degraded and large errors would result in the magnitude of the

output. Likewise, where the ballast inductance is present, one

would expect good rise-time performance^ and small errors in magni-

tude. The results in figure 30 confirm these expected behaviors.

An additional run was made where self - inductance and

resistance changes were not permitted. This served as an additional

check on the behavior of the model. In this case the model matched

the ideal response within 0.20 to 0.05 percent.

b. Underground Nuclec.r Test

The primary difference in fielding a large gage in a field

event as compared to the scaled gage previously discussed is that

the electrical parameters are also larger. Also, for a field test,

long lines on the order of 3000 to 5000 feet would be required.

The large increase in secondary line capacitance could present a

problem, at least in the lumped parameter model, in that there

could be some undesirable oscillations due to the inductive and

capacitive components in the circuit.

The possibility of an underdamped response was investigated

by considering the secondary portion of the network in figure 21.

If a step voltage is "inserted" into the network in place of the

motion induced M and the circuit parameters are assumed to be

constant, the circuit can be modeled by the second order differ-

ential equation

a^+ B^ + yQ = ECt) df It

59

Page 62: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

tHiwni"wirw ■ -m ?n»^f-^T»t'\

AFWL-TR-74-205

GO

r-t o >

0)

6 o z

2.5

2.0

1.5

1.0

0 -

1 1

Nomenclature: X/X/X

X

Resistance Change Factor

L - microhenries

R - ohms 10

J.

5 10

Time ~ usec

0/300/2 -'2/300/2 -O/300/.4 2/300/.4

■2/0/.4

-0/0/.4

15

Figure 30. Calculated Gage Response Using ELMEK, Normal Resistance and Inductance Changes, AEDC Gage

60

Page 63: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■rn^v^Hf;-^--.^'—--V'- .-IVf'■■-■■

iPiin,imniii,im -^^mmmmmmmmmmmmmmmw'-' v»1«

AFWL-TR-74-205

where a, ß, and y are time invariant coefficients, E(t) is the

forcing function, and Q is the charge on C . By lumping the long

line capacitance and resistance for typical coaxial cable (RG-213

or RG-531) and for typical gage designs with L on the order of 10

to 20 microhenries, damping ratios of 0.3 are obtained resulting in

an underdamped response. Since the purpose of this analysis is to

observe the response to self - inductance and resistance changes, a

short length (100 feet) of cable was assumed for the secondary to

avoid the underdamped response. The 5000 feet of RG-331 retained

in the primary circuit presents no problem because of its relatively

small magnitude in comparison with the other circuit components.

In this case a damping ratio of 1.9 resulted for the problem inves-

tigated.

The effects of long-line capacitance are of great impor-

tance to the proper design of field gages, and this problem must

be addressed in future analyses of the system. The approach

anticipated is st ra ighforward. First, an equivalent "IT" or "T"

network would be employed in the circuit to model the long line

and the damping ratio calculated from the coefficients of the

second order differential equation which describes the circuit.

This would provide some insight into the range of permissible

values of secondary seif-inductance which would ensure an over-

damped response. The next step would be to modify the complex

model by inserting the equivalent network and observing the code

response. This analysis is not presented here to ensure timely

reporting of the present work.

The gage design selected is as follows:

30 inches Length

Width

Spacing between turns

Primary turns

Secondary turns

Conductor material

i inches

0.140 inch

4

3

0.060 beryllium

bl

Page 64: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

ff'yr-^ff.^^'r'W,^'iygp'*y>cffiw' T" -n-?'-

AFWL-TR-74-205

The resulting gage electrical parameters are

R^^i " 0.213 ohm pn

Lpri = 14-3 Uh

R =0.160 ohm sec

Loo,- = 9-2 wh sec

M = 19 yh

GF = 9.81 mv/(amp'mm/visec)

The shock environment is as before with K = 0.2 assumed

for beryllium.

The results are shown in figure 31 for the only case

investigated where L = 500 uh.

As shown, the error is controlled to within approximately

3 percent. It is apparent that larger values of L could be ii

employed to make the error negligible. It is worth noting that

one reason for the effective error control here is that while the

gage is considerably larger than that previously investigated, the

resistances are significantly smaller because of the larger diameter

and lower resistivity of the beryllium wire. As shown in appendix

C, consideration must be given to a conductor's shock impedance,

initial resistivity, and resistance-pressure characteristics to

determine the magnitude of AR/ü, which directly causes the resist-

ance-change-induced errors.

2. SUMMARY

The present mathematical model of the MIPV is adequate for

investigating the effects of shock-induced self-inductance and

resistance changes upon gage output.

The resulting error appears as essentially a level shift from

the ideal, accompanied by a deterioration in rise-time performance.

Both these effects are effectively controlled by employing a large

ballast inductance in the primary circuit. Resistance in the

primary external to the gage is relatively ineffective in control-

ling the errors. Therefore, the total primary resistance can be

62

Page 65: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

PITr^'»r"T;-TT(i.V*-'l»T- ■-■ 'IV-W-WT-.';,-.»^» FWrrT'J'.1"'^ V-'

AFWL-TR-74-205

3.

o o

U

3.

<I> 6

o I

us

US p-1

w

>s Xl

0)

R) l-H 3 U

rH rt U

w as

(U M CO u

c oo

• H w

P

O

(U W c o Q. V) <u at

u o

aSBHOA P3ZTIBUUON

a>

3 oo

■H

63

Page 66: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

7^T^.^f'"'''-l*VTV,.^i''ir7liwT7"''TTr-i'^-t'(f.w-*iiT'-

AFWL-TR-74-205

maintained at a reasonably small value to ensure maximum current

and hence maximum sensitivity with no compromise to gage accuracy.

A major improvement to the present model would be to replace

the lumped parameter model of the long lines with equivalent 'V

or "T" networks. This would represent a more realistic model of

a field installation of the system which would permit investigation

of the possibility of an underdamped response and provide a manner

in which to establish limitations upon gage secondary self-induct-

ance. This work should be accomplished prior to fielding of the

gage in a field event.

64

Page 67: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

These conclusions and recommendations are based upon the results

of the three principal analytical investigations of the previous

sections of this report and the conductor materials study of

appendix C. The purpose of these analyses has been to provide

improved understanding of how the MIPV responds to the shock

environment. A direct consequence of this work, however, is the

development of important analytical tools which are necessary for

the proper design of a system to meet the requirements of a given

test. Available also is the ability to study alternative designs

and the nature and extent of resulting compromises which appear in

the system performance.

1. CONCLUSIONS

As a result of the investigations of this report, the following

conclusions are made.

a. To maintain a constant gage factor during gage deformation^

the gage length-to-width ratio should be constrained such that

a/b >^ 5 after shock transit through the gage. Generally, a/b >^ 10

prior to deformation would satisfy this requirement.

b. Gage factor may be increased significantly without affect-

ing gage rise time by utilizing a Type II gage design instead of

a Type I gage. The overall system design and specific experiment

requirements must be considered to assess to overall benefits of

the Type II design.

c. The MIPV is essentially insensitive to divergent flow

effects for most anticipated experiments. Only when the source of

spherical flow is within 1 meter of conventional gages (b ^ 3

inches) will significant errors in gage output occur.

d. The gage is relatively insensitive to off-axis flow in the

x-y plane, the error induced being approximately equal to 1/2

(1 - cos y). However, off-axis flow in the x-z plane results in

65

Page 68: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

^•l*rrr*TXwyF,irirw-nrjr.7™V' ?*mm-'*fm*IiipriWTr^* 'r-^r-'T ' v - ^ .- .^-.,-^--1

AFWL-TR-74-205

much larger errors approximately equal to 3 (1 - cos 6). An

immediate result is that if in a iield test there is a plane in

which the uncertainty in shock propagation direction is a maximum,

then the preferred orientation of the gage is with the x-y plane

aligned with the plane of uncertainty.

e. The effects of pressure-induced resistance chafes and

motion-induced self-inductance changes upon the gage response are,

respectively, to cause a level shift in the output voltago (positive

for K > 1, negative for K < 1) and degrade the rise-time perform-

ance. Both of these effects are effectively controlled with a

large ballast inductance in the primary circuit.

f. Three metals, aluminum, magnesium, and beryllium, all

exhibit favorable shock impedance, electrical resistivity, and

pressure-induced AR/Ä characteristics. Each presents a relatively

low neutron cross section, with beryllium being the most favorable.

2. RECOMMENDATIONS

The conclusions above indicate that the MIPV has the basic

characteristics of a desirable field gage; that is, it can be

designed to produce a voltage level output and, with care in

placement, small errors due to real flow can be maintained. Like-

wise, the effects of shock-induced resistance and inductance

changes upon gage response have been shown to be effectively

controlled with the ballast inductance. However, though based upon

sound theoretical approaches, there is a need to verify these

results. It is therefore recommended that these results be inves-

tigated experimentally in explosive testing. The approach would

be to deiign an experiment, make calculations utilizing the

appropriate code based upon that design, conduct the experiment,

and compare the results.

As was noted in section IV, a requirement exists to modify the

ELMEK code by providing an equivalent 'V or "T" network to properly

model the secondary long lines. This will permit designing an over-

all system which will provide a desirable overdamped response. It

is recommended that the model be modified accordingly and that

experiments be conducted to ensure that the resulting model is

suitable for actual design of field systems.

66

Page 69: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

' i"iv'T |''^T""^ •nr v^

AFWL-TR-74-205

APPENDIX A

TABULATED NUMERICAL DATA FOR MIPV DESIGNS

i

I

The results of calculations utilizing two codes, DSIN1 for the

Type I design and DSIN2 for the Type II design, are tabulated for

several different applications of the MIPV. The codes are listed

at the end of this appendix. The different applications are

briefly discussed.

1. TYPE I GAGE DESIGN, FREE-FIELD MEASUREMENTS, LARGE HE TEST

(TABLE A-l)

This design would be suitable for free-field ground-motion

measurements in the stress region below 10 Kbar, since large gage

factors are available with the large number of primary and second-

ary turns. Results from this data are also presented in figures 6,

7, and 8.

2. TYPE I GAGE DESIGN, GAS GUN AND SMALL-SCALE EXPLOSIVE TESTS

(TABLE A-2)

Information is presented for scaled gage designs. Gage factors

are considerably reduced; however, the smaller gage designs are

more compatible with the gas gun and explosive experiments utilized

in gage development and evaluation.

3. TYPES I AND II DESIGNS, GENERAL DESIGNS (TABLES A-3 AND A-4)

Data are presented for designs where gage parameters are varied

over a wide range. These designs would be suitable for use in the

high stress region close in to an explosive or nuclear source. The

numerical results of figure 9 were obtained from this data.

67

Page 70: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■.- .^^iwiMJrw«»r»i^«iiw*^j'«t"¥(TW>«w,w,»»rp'PirVWfl<^

TVPc L GMa£ 3^bIG"<, ft-l

Nli, uAnti-. H. iy/E.NT

LcNjTrl HUFrt .OO3 SPftClMo PKl J-^ IUIUAL iNOUL (INiHcil (ZNCHiil (INCH£i) TUKNS IüRSI iHuUHlc*)

oAuiL FA TOr

i.odOGCt ♦ ü 1 • U u ü C J ^ »c: 6■ jC u MO — *i 2 2 1 i.OJOCti ^ i# 1 • J ö u u j:. »Uü L>UCüJMC.*W^ 3 2 i.acocc£ ^ j 1 • jOüj ai HJ. b.JOüJJ£--2 i« j

3 • CJüC C £ fJl § u OJÜ Q- »^ü. o«Juuü0i-J2 5 « 3•CJüü Cc ♦■ - 1 > iiCOC JL Ku 6 » * 0 * a U i * u i^ 6 j

iiuüüüC^. ^ U 1 • üü« JJ£ ► u- ö.CüuO0£-j2 7 z

JtOüOQüE f U 1 A u u U u u ^ »ij» ö.iüi,« u£» J2 6 1 i.caouCL ^ w i fl rf u U <# J C »w. bsyOwJ^l—JC i ■>

j.omoi K u 1 • J Jü j JL ► C. t*MGuJ0£*w2 1« ■)

i .CJüüCi ^ 1* 1 t «J J U u U ^ fü J o.uöüjüi-ji; U 1. 3.oaocc£ ► w 1 täCüJJc ► iu o.iö0«fl£-i2 12 11

3.000QC£ t- J 1 • jOO JJ- t-J- y.iiöii oi-;2 2 i i • uOü S ij£ * >J I 1 J j ^ Ü J^< I--- /.JO-jjd-öi 3 J 3.0ü0üü£ ► ü I • Ü Lr u J J£i HJ- ?. 3aü 3 Sc"j2 ■» 3 3.0J0QÜ£ 'r u I • uü ü üJ£ *M< 7.JOCüO£-I«2 5 "» 3 « ü J 0 ü i £ * ^ 1 ■ J Ü C j JL< ► t,- /•UUUUU-*J2 b 'j

3 .CQ&uu£ ► u 1 1 J Vi Ü J j L ► w. 7.u0uu0^-^2 7 o

3.000QC£ ^ J 1 iiiOC J J£< ► C /.JüuU0c-j2 ö r j.oaocci *• Ü 1 i s*Ut* Jyc •■öi. 7.u0düJ£-j2 9 < J.0J0uC£ ' u 1 Ü3 . J lj£ n. 7.jü Jüu£-i2 lL J

3.C0Oük.£ t-Ol I U JÜÜJ^* H,ü 7.JGC00£-J2 11 i- 3•büu ü C - ' w 1 ü UO j ULl 'LJ ?.jßüJt£-j2 12 ii

3.ud0J d ' u 1 u ut0 J ^< n»« o.iOüti-t-iä 2 i 3.oaaüü^ HJI ü08iJ£( UJ Biiü 0 3u£-i2 3 ?

J.QQaCü£< ̂ 1 u j j J J£< !• ^ ^ 0iuüüjj£-j2 i« i 3>CüUCIü-< ̂ 1 üüüuJ£* I-CJ t.JOüiiui-J2 5 ■»

3.(J30OC£i ̂ u 1 j xO üü-< >L, j.30CiCi£-j<i b 5 3.000ul<£< ̂ j 1 i 0 ü j « i < »■0- 8.J0C0 ü£-^2 7 0

S.OJQiuc a 1 U J Ü J «i w^ Ü to 0»UUMJ1«C*M2 ü ?

3.C0üüÜi< ' J 1 üjuQ J-4 ■ oc o . DC 0 Juc-i 2 i i

3.030CÜ-4 y a 1 ilOliilii* Ü ^ o.JOOJU£-J2 lu l

3.I)QC00£< ►u 1 U Jü J0^4 L v o«j0liGü£-32 11 i: 3i0SQCb£< ̂ j 1 U . 0>jOGüC£-J2 12 ii

3.0QOCC£< »•til 0 iiO at* &u 9.CCG'JC£-02 2 i 3 . Ü0 Gi< Cd< i-j 1 j ud JüL< L j i«äflü3ui*,ä2 3 c 3.aaaco£< * u 1 OfliJOt* b ä -jijOCGiJL-j^ (* 3 3.0300 b£< • j 1 CJCJJ£4 Ü N ;..3003C£-32 5 i«

3.ö0üCC£< u 1 U ÜU Qji* 0 J ^•3Guii3£-b2 3 i

3.00000£« u 1 uOOJOt* M si 'J.0OGOO£-J2 7 Q

3.CQ0JCL u 1 üJGOOc« Ü j <j.aC03C£-j2 ö 7

3.öOGiJCi-< Ü 1 BJcüüi* Ü w ■)» JC ü iiiz-i i 9 j

J.OaObDc« Jl ^ jü ü OL * bu y.üOJJ0£-J2 10 3

J.üOQÖCL^ u 1 u0ü0u£4 U tf 9.30JGC£-02 11 1- 3.000CC£< 01 u ü ü 0 J t ♦ Co ScJÜG J0£-32 12 11

1 .7<«Joe.L-Qb ♦ •J bsli»-UD 3 .i5öut)_-i.b 1.2327t<£-03 l.b^5bbc-0i> 2.19älvc-Ö5 2.72i»'»2i-u5 3.27s3£:£-Ge. 3.352o&--35 '♦.'♦'»'♦iS^-bS 3 • J51 7l«L-a3

I.b5273£-Üb '■♦.2ö2O7L-I»6 7 ,5952D£-bo l.li»123t-Jb 1 .Sbläit-Os 2.J1217£-Gi> 2 .'»673ii-ub 2 . ^blbo.-Oi 3 .(♦92obL-i.5 "».Ü1732--05 !».5536Uc-05

l^bi^Si-üb *.J3713:.-ab 7.11<»%'»L-06

1.06317^-05 i .'♦«»ra&L-os 1 .33793£-05 2 .<iöj05t-ü5 2.73'«23L-y3 3.1937i>L-u5 3.fa6*l3£-G& '».li»3dS--03

1 .'♦9bi'«c-ljb 3.3217JL-06

6.693 3 bc-Gfa i. i5l»bi»£-0 3 l^^iiCc-ü^ 1.725ob£-G5 2 .11 b 3 b £ - C 5 2.52i«31£-G5 2.9I»117£-Gb 3.367ji;i-a5 3 .ä03HG£-G5

2.25 3 »03 1..5 1 .J9 2.ii 2.33 3.t»2 *.2f» <« . 33

5./5

2i»b£«-(,-

25U«-bl 19o£»ui 9 7 £ ♦ u 1

77Gc:*01 335£*C1 llb£+Gl 597£*C1 362£*Cl ubS.+ol

2 .l2^6i£*Gb 5.u25i»l£*üü 9. SO^HSI^OU 1 .'♦7%6b£*Gl 2.ul992£*Gl 2. oGir^i »bi 3.21o2b£«-ul 3 . o5ioi i♦«! <».32238£*ai 5.2a309;*ul 5.a9^ajL»ol

2.w23<»i«£ a.21125£ 9.19171£ 1.37t»54i 1.37292£ 2 . t j "»««äs 2.4b22b£ 3.3%ll6i '♦.13733£ >» .7i»79a£ 5.37a75£

l.'329d<£ '♦.335b5£ ä .65i«2i«i 1.2ö76i»£ l./'»b92: 2.23<*35:

3.27a6'».:

3.3il(j6i '».36<»75£ ■♦.^2759:

♦ b u

♦ 0- ♦ üu ♦ 01 ♦ ül ♦ 01 ♦ 01 ♦ 01 ♦ bl ♦ 01 ♦ Gl

♦ U u

♦ 00 ♦ 00 ♦ 01 ♦ 01 ♦ 01 ♦ bi ♦ ül ♦ 01 ♦ ui ♦ ül

■1.^:2 •1.7o'» •1.3^5 •i.oc;«» •1.565 •1.517 •l.'»75 •m^j ■1.^09 •1.3ol •1.356

OJC ♦ bi,

b3i+ u u de ♦ J u 2t* «.0

jlt* JO j2t*b 0 9lt^bj 29t+CJ

3-ȣ^ wO j7i+00

-1.9'«333t^aü -1.72ü33t^00 -1.3J19Q£*G0 -1.3bll2t + 0 0 -1 .5J337£+ 00 -1 .'♦5b'«Dt*0a -1 .'♦1OH1L.+ 0 J -1. 3:>2 j^t + b j -1.352l3t^00 -1.32579E^«3 -1.3u236t*00

•1.76^ -i .6bo -1.575 -1.5u 3

-1 .'♦03 -1.3b'« •1.331 •1.3.2 •1.2'7 •1.255

03£*00 bdt^ 30 56£^b0 s3c+J J

•♦öt^ 00 37i^00 o6£*b j 5at+ü0 obt*Ju o5t*0a 22£^JJ

-1.736o5t^ * 0 -Lölfolt^OO -1.52'»73t^00 -l.i»55/5t^00 -1 .i«jlG2t^03 -1.35633t* Ob -1.31o91t^00 -1.2tt7u|»t^00 -1.23^H3t^Cu -1.235i7t^C0 -1.2136at^u0

68

Page 71: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mMmm* ^ ^"-wmmw®

TVPt I GAü ütSI&Mi FR£t-Fl£L3 1cASJ«tM£NIS, LftRbc Mi ttftNT

J»|i|f$i»r»w"- i^fn

I

LtN&TH HIJT^ .001» sPluINS PRI ici IJTJftL IHUJi ittid FAilOk £«R0R TtRM (IHCHtS) (INCH£S» (INCHiS) TURNS URNj (HtN<lii.S» / M>/ A JPt^Cfjr) / Htf \ (PtiüCt'jr)

lAM^'MH/JStJ

>O00Qü£»Gl I .30000:. ► G. 0 >GOGuC£-02 2 1 2.023U£-üo ^.^7b35£ tOu -3.Üi224L ► uu

lüOOaCitul 1•5üOO0£ ^GJ b .000JQ£-u2 3 2 5.37*52c.-0b 6.o552G£ ^ u u -2.6!Jl)ui»£ ► uO

> &JCü C L + U1 l.5QüC0c K- b iÖfl&Oc-JÄ 4 i 9./3Ji0L-Gb 1.2'«37at ► 01 -2 .73ib^t ► 00

,Q00aD£*«X 1.50G-J-- »l*u b tGOGuCc-x^ 5 * I.'»9l6ä£-u5 1 • 40b9b:. t-ül -2.b&'«bi»t ► 30

,Q00üC£«-i/l t.500 JOE »■G* b iOGJC£-i2 ö h 2.ü7bi»3£-G; 2. o5o7i(£ ► Jl -2 .3bo3'*L ► OG

>äOQCC£*ol i.äaaaOi ^G & uGOiüt-JZ 7 0 2.7l7j7t-L5 3.«7^i»'i£ ► ul -2.'»3ÜbOL ► Gü

(taöüOt*»! 1.50GJO£ K, b >0GGJü£-J2 i r 3.<4Gbu2t-o5 <♦. jb^Gii >G1 -2.t2'«bac. ► GO

«Öödüßi+ül 1.äCQOO; ► u- o tuOGjO£"G<? 9 ■ "♦.^iolc-uS b. bGl33£ ► Gl -2.3bfab2L ► G u

OuöüC£«-wl 1>5^JJJL >GJ b OOOGG£-Ü2 10 ■; i» .90 Jb2£-G5 b.2ö57«»£ ► bl -2.31<»^iL ► GG

■büaCCc^ul i. • äSü üOc n. 0 >CCCüG£~u2 11 i- 3.byb3l£-CJ 7 .iG'369£ ► ül -2.2bob8L ► ou

üuQGdl^ul 1 .SwGuiii tu- b 00ü'JGC.~J^ 12 ii b.Sl^SKi-Gi 3 . Jb9'*^£ ••ul -2.22O65L ► u u

OOüuLiL«-!.! l•500nJe M,, wOwOGc'wf? 2 : l.i2<»93ii-ub 2.<«5J25i tu^ -2.975üi£ ► -0

SüOiJ ut*U 1 l.5JGJ0; ► w« uü000c-G2 i c 3.üa2Jut-üö b.«ö773£ ► ßü -2.4iitbbi ► Gu

ÜüOüCi+wl 1 •30 J u J- ► UL JOiiiiO£-Gii > i 9 116 G 0 'i - - u b i.i7Lö2£ ► ül -2.b72bJt. ► iiu

flOügüt^y1 1 iS^G jiii f Gk OCGJut-j^ 5 ■♦ 1.39o22c-0& l.fäDtd£ HÜl -2.»b574. ► 00

OQ0bC£«'ül 1.äJOäOci >G- J0üJu£-J2 3 p l.i35G7i-G3 2.'«7o39£ mi -2.'«7b&Ji ► .0

oaaüti£*üi 1.SJCüj£< i-Gv J0WGü£~J2 7 b 2.52227£-u5 3.232-»b£ KÜl -2 .-»G u 7HC. ► G J

Oti JCC^^ol 1.5iGJa=.< ̂ w u ö CGJG£~J ü 3 1 i.U^GL-i^ i».u39i»0£ ► Ul -2.33519£ ►Uli

QüQQ J£«'jl i .a: JI,;L< G. JG^JJC"*? ^ ~ 3.9ll7ü-ü5 »♦.39ja7£ ► Gl -2.277ol^ ► 03

OOQGuctul 1«3uüüj^< C - GCGuOw-J2 IG 1 i».3G27ic-G5 3.76ü'»<«£ Kl -2.227-bt* ► GO

öiüJOif^l 1.5 C '^ G J £ ► - ^ JGüOG£-J2 11 1 ^ i»,2UG'»£-G5 b.^02o9£ ► 01 -2.1>:175L< ► Gu

uüüüCc^Jl 1 ■ 3 Jü 0 j£< t, w. G0GGGI-Q2 lc 11 5.i5717L-u5 7.3539<i£ ► Gl -2 . mG •ioc* Gu

ÖQfltibifyl 1 • 5G j J j -^ K- 0 :OuOO£-J2 Z 1 l .s^JUc-ÜD 2 .i«*obj£ i-GG -2 . iu •♦*♦>»-< uO üuQJü£+^1 1•5G0 Jat< w w a t JCJJGC~J2 s l "».a29^'»c-ub O.17J12£ I-Cu -2.72iGUH ► üO

uJCiiü^al 1 . 5ü0 liiii U ^ i. JOOJG--G2 * i o .6bl21£-Gc l.lG79i£ ► Gl -2. 53'»'»3c.< GO

öflGüGc*«! 1•5L u uJ£< U v Ot JGI, JC£-02 3 ♦ 1.31it2'»£-u5 1 .332bö£ ► Gl -2 .^cb3i!:< ► u J

ödi ütc* «i 1.5GG-ji« u . 0 ■ GGüJG£-J2 b > 1 .al'+Gbc.-Gt/ 2.i2'»92£ ^01 -2.3:,7ü3L< 'GG OCOG üC*>J l 1.aiCCje« W w 0. JCI.UGI-J2 J b l.ibbih'.-^ 3..213^L vul -2.32137^« 3 0

üoaßfli*ui 1.3J.uji< b M Ö. uGiiJv.c.-J2 5 / 2.:j322'*---ue> 3.7D316£ ► Ml -2.23373L< 3G

GOUüCIL + JI 1 •3vibuJc< Gu 0 • 3 G ü «u £ ■• w 2 -i - 3.b37bi«^-'j3 '♦.3i»25G--< ► 01 -2.2-J33-1 Jj

GüCuCi+^1 1 .5wi.«jt< U d 0 L U t. ^ «i ^^2 IG J '♦.Ib7d/L-J5 5. j537d:i( ► tai -2.1bJb3£4 G j

uöGüCi+jl 1•^JüjJ.« w J 0. 3,)t .GI-J? 11 i: !♦ . 3 1 7 3 t U. - «i t> o . li£:l^i< ► 01 -2.1.6i«2ii .0

GOQuCw«--! I.5-G:O£* -- a < 0GGüGi-J2 12 ii b .l«0337i-Gb 7.;5'»17£< ► Ul -2. jbo7i«i< G J

ÜIH.0Ü-+J1 1«5uC Jji^ U . •)' JGG j G£-G2 c i l^bai^L-ub ^.ib270ii ► j. -2 . äü J6C.4 00 uDuUu£*i.l 1i5»CJj£* u . 3. jGutfü-'~j2 i '_ ■♦ .oGb J /i-Oa s . 390o7£< ► OG -2.339b3l4 GJ Cu8 C ü £ *ul 1.i«j j4t< 1 • GuG» ---J2 + s i,223iGc-Ga l.Gö2bä£< ► ul -2.b2i<i2i« 00 C jü» ü£ *>. 1 1 . V J J J J c« U - 3t 33 aG Gi."i2 3 -♦ I.2't25st-ä5 l.3922'.£< 'Ul -2.*l*6ii« JO

uwui« G£*-1 l.iuu GOc« w . ^. JGU3G£-J2 3 > 1.7J3O7C-U> ^.19i33£< ► gi -i.32bb2w4 Ou äiiGGG £*vi 1 1»3>.LJJC4 L , ^ < JG-JGC-G2 7 3 2.211^'JL-b,3 2.33a23£< ■ul -2.2b03di4 uO üJGjb^^Cl 1 * y C >*« u • ^ L . } i 30GJQc~t>2 3 ? 2.7H*lli-M& 3.52i»12;< ■01 -2.1j70i»£< 00 üJOGC^«-^! 1 •5^Gj j£< U v 1 JGüUO-*J2 ^ ; 3.3ul'«bL-Gb ^.^'♦2l^£< 'Ul -2.UU3i« b u

UUUGCL^U! X # pucuji.* b y 3 • Gfi G G 3£•02 IG ,• 3.i7i'«£c-y3 '♦.3i72ü£) Gl -2,^3313-« Ott GJOGC£»vil l.äGGCJi« O 4 ■} . jOUi<3_-j2 U 1. '♦.'♦7I«OO--IJ-J 3 . 7 5 51 % £ < •«1 -2.G39;HL4 uO uJüÜU.^wl 1 »PJL^J'.^ G - i ■ jGGjj^'i- 12 11 ».y9:323e.-u3 L,.3i«2b5£< ul -2.0J13oi< .,3

69

Page 72: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TYPc I üACi OdSI&N. FKEt-FIELO H£4SÜÜ£H£NTSI LAKG£ Hi. ttftMT

LENbTrt HIJH .03? SPACI^J PR! Sti iJfUAL INOliC iA5i FACTOK ERROR TtiOT (INGHESI (INCHES» (INCH£3» TURNS TUR^S «HENRIES» / iV \ (PtRCEMT)

UrtP'MH/JSEV

i.COOd 3.0300 3.000C 31 OüüO 3.00JÜ 3.ÜQCÜ 3.&duü 3.0000 3.0000 3.0000 3.0000

6c*ül CE + üi CEt-wl

üc»öl 0E*ul O^tji CE + 01 iiL*ui

3.00000 3.Q0Q00 i.QOOCC 3.00000 i.OOuiiO 3.00000 i.OOOoG 3.00000 3.00CÜÜ 3.00 Cd u i.OüCkC

d*01

E«-ül

£»ul

£♦01 E.+ 01 Etjl

3.00 3.00 3.00 i.uü 3.00 3.00 3.00 3.00 3.00 3.CO J.OO

CO&E*Jt Ou&£*ul OOOL^OI

OwOd^ul OOOEt-Ol QüOE^ul 000£«-01 ÜÜüc»Jl

C&Q£*ul OOG^^Ol öaC£»ui

3.000 3.000 3.000 3.OO0 3.000 3.000 3.000 3.000 3.000 3.000 3.000

00£>Ü1 00£t01 OüE*01 JO£tul

Ofi£*Jl ac£*ai 0OEt.il 0fl£»01 ÜÜE+Ol «wt*ül 00£«--l

OOLOJEt 0. ü J 0 Oui*Gu uOaoi£*c. ü 00 Hi* 0 j OwOuOE* Oü 000JJe»tj j00jJEtOb lijOJOLtO. OOOOJE^OD it äiüüi* i'i 0 Ou J Oc*CM

üOöi}J.£*Ov Ow»uO£* CO j j ü üiii* Cü flü000t*5u

OuüJOi*C«, 0 ü ü ütfE^Ou OOCüOEtC.

a 0 Üu Ji.» bu jOGDOEtuj

OOCGOE^GJ

J00JUL* ba UJbUJL^bu

000 JOE* u> 000 JOctC GOß JOE»Cu uOQ 0Jt+uj Ü0ti0ßs*ü» OOOOOt*c« 0 OOCflc*G»

GbJOjEiGu OG ü uOc^ Gu OOOGOE* &•. ÖOßO0i»Üi u Ou yiit* G v

jOOJJEtb^ u üb 30t+Gu uüOGiiE^Gj uOflOOs.*üO J 0 U jÜL* C J

Ö.3030GE-J2 2 1 2.22910E-0& b.aCOO0£-i2 3 2 5.979>i«t-0b b.aObOCE-02 i* 3 1.0929SE-O5 6.G0b3aE-J2 5 <* 1.6S&72E-0& b.00003E--02 6 3 2.3b<*<*9E-03 6.00000£-b2 7 b 3.11i»i»bE-05 6.0bGQOE-32 S 7 3.92732c-05 fa.OOJbi£-02 9 i ■|».7 95'»rE-0& b.OOOaOE-02 10 9 5.71235E-05 6.JCaOO£-b2 11 13 b.b727<»E-05 6.00ubOE-02 12 11 7.b7l9»c-05

7.ao:oo£-j2 2 1 2.1293SE-0b 7.ilOJÖb£-02 3 2 5.6a2Q2£-0b 7.30G3ÜE-G2 ' l» 3 l.ü33bdt-05 7.0QGaQ£-32 5 <» 1.56d83E-C5 7.000J3E-02 b 3 2.218IJbE-05. 7.30C30E-02 7 3 2.912<»8E-05 7.00GOb£-ü2 S 7 3.b6B7bE-05 7.j00aflE-32 9 3 %7<»56'»5t-C5 7. 00 GO GE-02 10 ■> 5.29359E-Ö5 7. 30 3GGE-u2 11 lo t .lb720E-05 7.GCb03E-b2 12 11 7.37310E-Ö5

B.30uOC£-ü2 2 1 2.Gi«3C3E-06 t>.fl0üüC£-b2 3 2 r.^baE-iib ä.30üüCE-02 i» 3 9.i2bll£-0b t>.0üijbbE~u2 5 i» 1.50i»i»9E-Oj o.OOGJ3E-32 b 3 2.b93b9L-05 s. 3 0 0 u bE-G2 7 b 2.7392a£-05 a.300u3c-32 6 7 3.i»3278E-05 b.00juG^-b2 9 b i».lb7 3<!E-0 5 o.00b3b£-32 13 j i».93739£-u5 b.üÖGOiE-iZ 11 13 5.733<»UE-Ö5 6.0QübC£-b2 12 11 ö.5bbäot-05

9.OOOO:E-32 2 1 1.96&9bE-0b ^.30UJGE-a2 3 2 5.19il21E-ü6 ■i.30Üb0£-02 <» 3 9.377i»5E-0b '4.300aQE-j2 5 <« l.U056t-ö5 'J.JQ jj iE-i2 b '■} 1.98<*2GE-0S 9.30030E-32 / 3 2.58819E-C5 ^.3QüJG£-Q2 S 7 3.23i»<>0E-QS %.003öü£-OZ 9 j 3.916*5E-ü5 ?.00üO0:.-J2 10 i f».b2919E-u5 9 • 0 0 3 0 b£-32 11 i: 5.36b*H£-05 ij.30fl33£-j2 12 ii &.13077E-05

2.a0661£»3G 7.3<*37ft£«Ö0 1.38065E*Cl 2>1J399E«01 2.'*9'»79E*01 3.4<»ä51E«01 <t.46331E«Cl b.089<tbE*0i 7.2;o82E»01 d.i.8%i«9£*ül 9.7b059E»01

2.b83it2E»0u 7.l7522£>6tt 1.307<»i»E>0l 2.ul23l£*ai 2.813i»6E*01 i.&96bOE«01 <».65u35E*öl 5.b65i»8£>01 b.73<»36E*01 7.S50bl£*ul y.uJö97E*&i

2.57b7t»£*0w b.33b3&£»00 1.2<»(»02£*01 1.90735E*01 2.b573a£»01 3.<«8026E«01 H.36511£«01 5.30323c«01 b.287i>9£«'01 7.il203E*01 8.37196E*01

2.t82&8£tOO fe.57552£*00 I.18d2<»i*01 l.sl522E*01 2.520e>7EtGl 3.2912<*£*01 <«.11656£*0l t.iad^SE^ul 5.jOü2bE*öl b.8>»b&5E^01 7.<»2319£ + 0l

-'».2296i»£*00 •<*.d2512E»Qa ■3.8b279E»0a •3.72800EtQQ •3.ol292t+00 •3.51280E*00 •3.J»2H'»5£^00 -'3.3i.56<»E*05~ -3.27i.72E»00 -3.21Oi»3£*C0 -3.15177£*00

''♦.136B2£*00 -3.9'233ä£*0a -3.73*9<*E*0Q •3.bl609t+00 -3.<»983<»E«'0a •3.39b5'«E+00 •3.3M725E*00

•3'.22V05E*oa' ■3.157l3£*0tt •3.093l3E*Oa •3.03%99E»00

•<».051dl£*OQ •3.d3üb3£»W •3.6&7<»1£«00 •3.51562E+00 ■3.39598fc*00 •3.29323£t00 •3.2u365£4-00 -3.12<*S&£*0Q •3.0S<ibbt*0a •2,9^0b9£»00 ■2.93329E*Üü

■3.973_09£+00_ •3.7*S3l»c*ll •3.ä6ä2'»E*ÜQ •3.<»2'tl2£«0a •3.303<*6E«00 •3.2bi36E»00 ■3.ll088c*00 ■f.83226r*0Ö •2.9b2%3E*aO ■2.d99ö5£*00 -2.S<>333£«00

70

Page 73: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

T»P: TABLL A-l (CJ'U)

LE.NGTH HlJTH .03? SPACING Pkl 5c.: IUTUAL INJU. (INCHtS) (iNCHci) (INCrt£3) TUKNS fUftNi (HiNi<Iii,»

UA^E FAv.TOh

I'

J.ÖO&uüt J.OüQüüw

J.OOOCCc. J.OOCOÜt 3 »Qüütdt J.ÜOOOOt 3.0dQCüt 3.0dOQIiL i.üfiOOCE 3.0C00wt

3.äaOLüL 3.llQ0üL£ 3.C00CCw 3.C00ü(ic 3.oaooc£ 3.00üUb£

3.üöCdÜL

J.OOOÜQ£

3,uOOÜOc

i.QtJÜiiiiz.

3.caociJL 3.CQüCt.L

3.000CCL

3.oaocc£ 3.C0CCO£ 3,&&üC0i 3.0QdOCL 3.b3i)00c 3.oauüCL

3.0C0ÜÜC 3.üüaiiü£ 3.CaüQ&£ i,üüOO&£

3.daOCC£ 3,OäOOC£ 3.äO00ÜL }.fioacc£ JtÜCliwGt

♦ w 1 <f. ♦ j 1 2. ^ ü 1 2. * ili 2. ♦ u 1 2. ♦ j 1 2. *<ti 2. ♦ lil 2. ♦ u l 2. ♦ ül 2. ♦ ül 2.

♦ Jl 2. ♦ w 1 2. ♦ *. i 2. ♦ ul 2. ♦ u 1 2. + u 1 2. ♦ u 1 2. f äl 2. ♦ w 1 2. ♦ 01 2. ♦ ül 2.

♦ u 1 2. ♦ w i 2. ♦ ül 2. ♦ J 1 2. ^ w 1 2. * w 1 2. ♦ ü 1 2. ♦ ul 2. * u l 2. ♦ Jl 2. ♦" u l 2.

♦ Jl 2. ♦ u 1 2 , ♦ ü l 2. ♦ ü 1 2. ♦ dl 2. ♦ Jl 2. ♦ li 1 2. ♦ jl 2. ♦ u 1 2. ♦ öl 2. ♦ ü 1 2.

§üdu3£ 5üu CUE. öCdwdc '> u 0 d J £ 7 üüdJ£ 50 j J ML

3Ü 0 j u i i d u uJi äOÜüdL. SSuQüii ÖCiU ddL

5ÜU dJe

SdüiidL

7UüudL

3d ü ddt

öOtddi >du dd- 3doudc äößdfli vd w Uiic 7ddCdc Öüd-Ji

tiüd d J£ sdO ud£ 3d d J d^. 3uC dd£ 3dd dd£ 3iid dd£ aOCd d£ 5Uüddc 3jQdd£ i> juodi: Süddd£

5jd J d£ üöQddi 5ddudt 70död£ ädddd£ adüddc 3d ddde 7 d u ddc 5üb uuL äddjdc 3dCi jd-

u. i.

Cd

OL

d.

dj

b .

bw

du

UM

dj c. I, u

C j

c.

d ' tu du C. b w

U j

t>.dOddd£-d2 b«J0ddü£*d2 b«ddddd£~d2 b.dO d dd£-d2 b«ddddd£-d2 O.d ddddt*d2 b.3aOdC£-d2 b.dQdddc-d2 öi 30 d du£-d2 6.dOddd£-J2 o>3Cddu£~d2

7>3ddjd£~vi2

7>ddd3u£~d2 7>xCddd£*«2 ^iddddÜL'dZ

?.ud u udc-u2 7 • ud ü u Cc J 2 7»d& dödi"d2 7.3aß30£-32 r.ddüdd£-J2 7.dOCJd£-d2 7«d&dd(j£-d2

o.Jd d 0 d£-J 2 a>udddd£~d2 o«Jdddd£~j2 t>«dddxd£~d2 O.dd ddd£-d2 ä.30udd£-J2 o«3CCjü£-d2 o.d0odd£-i.2 t>.dOdCd£-J2 Oi 30 d d d£-32 o • dO dd d£-d2

^•dd dd u£-d2 •j. 30 d d d£-32 SlidO d dd£-d2 ^•3dddd^-d2 4iüdddd£~ii2 '3.3dddü£-i2 ^tddddd£-d2 -J. üdd Ou£-d2 '4ad3ddd£~d2 4.ddüdC£-d2 ^•dCdud£~d2

2 1 2.Jlj(U'»t.-bb 2 • i(Jb5dt*Ub -5.'«2371c^dd 3 2 b.'t/a»? i-db 0 .d79'«3£ + l,d -3.1s232c^dd <» J l.l^Mlbc-C5 1 .'♦(J7b7£^dl -i».9o91J£^ad 5 <• 1 .s<»b2 o£ -u5 2 .31l37L^bl -'♦.»2722£^dü b 3 2.bdu27£-d5 3 .25962£+ul -i».6b777£+0U 7 b i.^S^iSL-Oi <♦ .3l727£+dl -»♦.3b335L+00 b r ^.iSS^^E-bP 3 .'♦7195£ + dl -«..i»5639£^0d 9 ^ 5.33a55£-db b .71i37£^dl -«♦.35<>37c.^fl0

ld i o.3b23'.£-d5 9 ..32o2£^Ul -'♦.269<»&t + Q0 11 i- 1 .'♦buO»L-d& t .^2279E+dl -'♦.lo<J25t^dd 12 n ».62ju'«t.-d3 1 .Jö7b8£^u2 -H.ll3b3i^dd

2 i 2.297duL-db 2 3622bi. + ud -5 • JlO't&E* dd 3 ? xjW. 729i<t-db 7 71u3b£*üb -5.db3b2w+dd i* i 1.1299ut-db 1 '»l'tdbE + Ol -'♦.6o220£+00 5 ♦ 1.7i»&l«ut-C5 2 .IOJIOE^üI -«».b9'»33i^3d 6 i 2 .'»51 J^£-U3 3 d77j2£+31 -'♦.57d't7£^dd 7 b 3.2329Jc:-U5 i» bb291£*dl -<».<*2'id2c^üd ö 7 "♦.däl^st-db b .IJ^bE + ul -'♦.3133i»£+d0 9 j |».9891<»E-CÖ b 2cl2b(j£*dl -'♦.21491t + dd

ld 9 5.^i»i32i-d5) 7 >'«io2b£^dl -'».12393i+dd 11 lu o.95b'»l£-üi a 77<«!»o£*ul ->*% d»»2ü9£+0(i 12 11 d .dC5b3j.-d5 1 .i,l-52£*ü2 -3.9b7l8£+Jd

2 A. 2.2C92ö£-d6 2 .75553£+uu -5.21o23£+dd 3 2 5.91d9o£-Go 7 3-<üi2-♦dd -'♦.933'i2£+ü0 '■» i I.u77o5>t-05 1 35u39£^01 -<«.7<«711i+jJ 5 i« 1 i6by2<«£-ii5 2 uaJ^ii^Cl -<».37'»>»lc+dd o j 2.3231WL-U& 2 Jl^^gi^ül -'♦.'♦2716£^d3 7 o 3.d5i»93i-05 3 3<«3oi*E^dl -<».2i92Ji.^dd 3 7 3 .i'tbioc-ua <♦ 3«i%oal£*Ul -«»•la6<*Jc+flS i 3 I».b99ö7t-d5 b >«13u8£*ul -'♦.dbböbt^dd

ld J 5.57j2C£-db 7 0<+d'»9-^01 -3.9^5'»3i+üd 11 IM 3.509lL£-db S <i2ui»3£^ul -3.^l3'»7£ + dd 12 11 7, ^73l2£-dp ^. ^>»72l£^dl -3.b3671£^3ö

2 1 2.13197c-db 2 bbl-tl^ + db -3.12723E+00 i 2 5 .böd^t-db 7 ldii»l£^jd -«♦.böSbau^ud i* 3 I.d32u7c.-db 1. 29'«.'v-^dl -«»,bi»l»6i.+ Qd 3 ♦ l.Sd'iäoc-dä 1 i'<bb2£^dl -<*.i«bi«^5£^0d & 7 2.2l372t-&6 2. 7dl2j£^dl -«♦.SlSlSt+dO 7 J 2.i99l3£-ub 3. oblaäE^ul -'♦.lo559t + dU i 7 3.b<»lu3£-d5 •i. 39l3d£^01 -<..J7l69t + 0a i } t t>»2i,uOw-Ü5 3 i 39d'»3£^dl -3.97d93£+0d

ld J 5.25737c-d5 b. ö'«l7dt*i.l -3. dau'«9L+ dd 11 1, b.l2ld2£-d5 7. 73oi3£^Ül -3.7^377£+00 12 11 7.315a9£-d5 i 37b&d£^Ql -3.72<»ii3£+00

71

Page 74: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TVPITl 3A;£ OtSISNt FRtt-FIctO i£&iJ<E.M;NTSi LAftbd rt£ cViNT

LENCTH WIDTH LÖ5>"SPftCIN(i " PRI Stü iUTüAL 1NOUC GAit FftJTOK tKKUk TcRN (INCHES) (INCHES) (INCHES) TURNS TÜRMS (H£N*I£S) / H\l \ (PE-^CcNT)

s.ooDOOctai 3.00000£«01 3.ainroBt*oi 3.0000BE*01 3.00000£«-ai 3.0D01I0E»01 3.0000fl£*ai

3.d9ü 3.000 3.500 3.000 3.000 3.000 3.000

00t*_Ci

i33c*Ci 00t*QU J0£*0ö 0ö£*-öj OOE+Cü

TTUWsmrr 3.öffOO0E»ffl 3.iraoirffE*oi 3.0DO00£*ai

3.000 3.000 3.300 3.000

OOE^CC OOt+OÜ OOc^CÜ

6,OOG3GE-Ü2 T.iniT3"Dr=T2' 6.J0aä3£-i2 6.oooaoE-a2 b.DOÖ0O£-Ü2 6.00C0ü£-ü2

_61oo_üüCc.-oa 6.0TliJ"0lIt-"32 6.00QÜC£-i2 6.ü30aüE-3i 6.3Q0aa£-02

2 i I»

5 6

s 9

13 11 12

1 '?

3 ♦ 5 D

T 3

1« 11

2.5^7 6 , ;J ö 31 1.2734 1.^83* 2.d02ö 3.719b <«.723<* 5.8Ü59 6.9593 3.1777 9.i«55<»

l£-Cb u-ab 2£-C5 bt-05 SC.-I.5 5£-0ä öt-üt> Ct-05 2£-ö5 ut-C5 3£-y5

3.1319

1.5752 2.t3b9 3.<»773 <*.o2uö 5.s75i 7^292 8.b7i»2 I.u2u2 l.lSub

l£*0u 7;*CL "»£♦01 "♦£♦01 3£*0l 9£*0l 7£*ül 2£*ül 5itÖl 3£*ü2 «♦£♦02

-&.62ä -6.352 •6.13J -5.9'»3 -5.7bl -5.bid ■5.5C^ ■S.ij* -5.2d8 ■5.191 •5.1..1

6at.+ü« 62c*JJ 56EtuQ '♦7£*0fl

l7t*0J 99£*ü0

22i+üü u6t+aa 33L«'ua

3.nooöOc*öi J.oooooi^or l.ODDODEtai 3.0DOO0E^0i 3.00ö0D£*ai 3.00000E4-Ü1 3.0a00CE»bl

3.000 3.000 3.000 3.033 3.00C 3.JÜ0 3.aao

J0£*Cj aoE^Oü ooE^oa Ö3£*0C OOEtCu Ü0£*Cu ac£*iiu

I.OOOOOE^Ol 3.000D0E»0l 3.0aOOC£»Oi 3.00000£*dl

3.00000£»01

3.0000 3.0000 3.0000 3.0000 3.0000

OE^Ol 0£*Ol 0E4-Ü1 flt*ai OE^Ol 0£>01

3.000 3.000 3.000 3.000

3.000 3.000

oot^oa ooE»ca oo£*oa OüE^üü'

OJ£»0ü MEJW

3.u00 3.000 3.000 3.000 3.000

OOE^Ou OäE^Cü 30£*t; OOE^io OOEtOi

3.000? 3.0000 3.0000 3.0000

^£♦01 0E*Ö1 0£*ai 0£*01

3.üü0 3.ü JO 3.000 3.000

3.300 3.000a0£*fll "T.00000£*Ji'

3.flö00ÖE*ül 3.0CG 3.0a000£»01 3.uG0 3.0a000£*01 3.000 3.00000EO1 3.000 3.00000E»01 3.000 3.00aOO£^ul 3.000 3.0a0öC£*dl 3.000 3.0a000£*01 3.000 3.00000£*ai 3.000

aot^Cu 30t*üi ooE>oa OOC^OJ

03£*Ca alt»!« 30£»0M üü£*ca ooE^oa OOC+ÜJ

ö0£*üj 00t*bi OOc^bg 00E*0ü 03£ + liü

7.000 TTUDl 7.000 7.300 7.000 7.000 7.aoc 7.aob 7.300 7.000 7.000

6.300 o.aoo d.OCO ö.aoo b.aoo 6.900 d._fl 0 0 d.aoa ö.aoa d.coa ö.aoa

9.000 9.300 9.000 9.000 9.000 1.000 9.000 9.00 0 9.300 9.aaa 9.00Ü

00E-a2 WE-ltl OOE-02 00E-32 ü3 £-32 OOE-02 a_üE-ü2 ü öE-a2 00E-a2 OOE-02 aoE-a2

0i£-fl2 00c-02' 00E-a2 0CE-S2 bOE-a2 00E-a2 JB£-02 Ö0£-ö2 aoc-ae aQE-02 aoE-aa

30£-a2 JOE-02 00E-32 J0c-ö2 0C£-a2 3 0E-Ü2 30£-a2 acc-e2 a0£-32 aC£-i2 a&£-02

2 3 <* 5 6 7 s 9

10 11 12

2 3 I»

5 6 7 tt 9

ia 11 12

2 3 I*

5 6 7

9 10 11 12

1 2 i it 3

6 7 9 9

1. 11

1 2 i

1 3

■i 1J

11

l i i ■♦

9 6 1

1- 11

2.'»i»l7a£-ü6 6.595<i3E-06 1.21263E-Ü? l.dai79£-05 2.65113E-Ü5 3.50837£-b5 ■*.<»i»3<»3£-05 5.it<f9a2£-C5 6.515a9£-C5 7.6366a£-05 tt.61331E-05

2.35261E-06 6.32930E-CÖ 1.15967t-05 1.79401E-05 2.52fl3flE-05 3.326<«3£-u5 '♦.2a262£-B5 5.1i»Ja3£-ü5 6. 13<»3ü£-07 7.17727c-Ö5 t).2 6't7 9E-u3

2.27i»15t-d6 6.a9<»92£-ab 1.113<<7t-05 1.716i7£-i,ä 2.'»a5*5£-05 3.16695t-05 3.49l97£-a5 "♦ .Ö72<«3t-ü5 5.ä0216£-05 b.77560£-U5 7 .788aB£-t.5

3 . j 3 b 6 >* £ «-ü b ä.l<*a7 3£*iiü 1.P0150£*01

2.33'»35i*öl 3.2939tt£tbl <».36517£t01 5.33ä51£+01 b.79<»b&£*ül 8 .1338<*£*bl 9.5<»5'»7£ + i,l l.ia230£»L2

2.-»0188 7.b2o97 l.'«3771 2.22637 3.13565 '♦.m'»55 5.2i«29l« b.42J77 7 .66^37 a./6211 l.u3521

£♦00 EtOu £*C1 £♦01 £♦01 £♦01 £♦01 ♦ 01

£♦01 ^♦01 £^U2

2.3077 7.3<»/l 1.3615 2.1351 2.99bi. 3.95u9 •«. aöo*. 3.J93I*

7 .^oid t>.<«905 -3.7673

2£^üü t£^00 lifUl OtUl 5£^ül «♦£♦01 2£^G1 5£^01 0£^Ü1 äc + Oi 9£ + ai

-b.5j -6.21 -5.9o -5.7^ -3 .62 -5.it7

-5.22 -5.11 •5.01 •'♦.92

772£+0a 8u9£*0a 588C. + 00 lü2£+üa 2o7£+üa '♦yit+üü 313£+0a '♦3at^Cu o33£+C0 753t+0u bbO£>00

-6.397 -b. i<^3 -5.85<» -5.633 -S.^tJQ -3.328 -5.1^3 -3.073 -'♦.963 -•♦.063 -'♦.772

-6.2i^ -5.9o2 -5.733 -5.526 -5.3«.9 -5.1^5 -3.U3ö -«♦.9jb -'♦.ä2b -«♦.726 -4. 63'.

ostc*oa 35t+au *»it*ua G5t^0ö 01£+u0 >»6£+ 00 c7t+ao 05L+0Q b5c+Ü0 adL*oa 3^t+au

5itt+oa I2s.^3a 63t iO 78t.^aü 79L^üa '♦Ot^ao oic.»aü bi»t*00 i9£+oa 14£+ü0

"♦iL^Oa

72

Page 75: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mm* Wflf^fW'W *W "t'WTr-rsyl"

riTPc I aiji UcSI(,N, G45 uÜN \HJ Sib. SCALC -.XPLUSIY. IE.STS

LLN&1H (INCHcSJ

> . 0 ü ü 0 C c <-J ü j«ü0 3Gli£.+ .,u

j • Oü Q o C L*-O J

i» 0J&CCt*J j

j.OaOOGE»JC

J. OflO ü Ct + u ä

i . Jü u C G - «-u J

9« OiJOotiii + ü u i.QiJflaOt*üü

3 • d 0 G Q ti £ 4-ü u 9 . G 0 J 0 G £ ♦ J 0

HliJrt

'tiülJJUOC-

"♦ . u JO J J i-

•» • üütlJäi" 111

%• iO I»I2 Ji-Cl

(INCHES) rURNi JJKUS

"«^ JC3iii.£-jZ

bi JC ü j üi-iJ2 btjwJüJ£-J^

fa.Jfliiy Üi.-J2

5 • üüü Jii£- ü 1

5 »«»uJ jüt- G» 6 . jü3 JiJc- ut

5 • ü üG iili- Ci 5. ätiu 3G£-C1 3»wwÜuJ^.a'ül

& »CQu J«JC.-vi

ö.COQ'JJi-Ol

0>JüJüGC-ü1

6»uGGuä£-wi 6 . JÜOJJc-tl

6 . u J ÜUUw-u1

3«uJiiJü£-ul

&>UJÜJJ^-Ll

<».jflüQC£-j2 t • G G u ü J £ - ü 2 •»«GJüöCc-» 2

5<J0I;UG£-J2

»iSQGGüi-iiZ 3.J0Uüü£-UI2

b. Jü GG5t"i2 6.3Ü0GG£-J2

biJGJjG--j2

<«>J0UJG£-J2

'♦.30G JGC-J2

»♦•3ßG Ji£*<2

3. GüG JG£-G2

^.G3u JGi-ü2 ä.GBQGü£-ü2

6.G0üJJ£-J2 6aGGJGJ£-d2 bt JdQj u£-J2

2 1 3 ?

"♦ i

2 1 J £? i« j

2 1 J ^ k j

2 1 3 2 <» i

2 i 3 2 4 J

2 I 3 2 <« j

2 1 3 2 "♦ 3

2 1 3 2 •» J

2 1 3 2 ^ 3

lUTUftL iNJJo (H£N<I£3i

2.9ub73i-J/ 7 .37lbi,L--7 1.2a311i-jb

2.62563c-G/ 6.35212c-ü7 I.i2b2!>£-ub

2.39b23£-u7 5.»971bü-G/ i•j J275t-GD

3 .22I3öSE-U7

i .27Gi»öi-u7 l.'»555<«£-i,o

2.93211L-Ü7 7 . •♦2636£-07 1.292u7c-tD

2.697b7£-G7 ä .7>»772t-G7 1.162;3t-G6

3.'»aBl'4£-u7 9.C'«l't:«£-G7 l,äü%15E-üb

3.l9'»22i:-G7 o.l77bi;t-C7 1 • '♦Sibbi-ub

2.95533c-G7 7 .<»a062t-u7 1 .3CJ93L-Qb

ijtti£ FAiTOR

\wMP»Hi/Jät!V

1 .o<*7Gli«'0u %.t>926l£*a,. o .lo2d9£»Gü

'♦.l7^ö<»£*GG 7.i973a£tüu

l.i>2 755i:tuL 3 •7bä7o£«'Ü'j b.ifl9lB£*Öu

2.:2(»61£*üG ä .21.%?%£*'üb •».1967G£*CG

l.3'«75l-*u1, •». o 9 >♦ 1C £ ♦ ü u i>.ld5d6£*GL

1.7Q33ä£*GG '♦.27H27£ + i.t 7.37b2G£*'Gi.

2,i7G3G£*ÜJ

».b^SsjE^OG l.ia<»<i6£*01

l.i9277£*0G 3 • 12Gd8£»Gw 9. jlytl£*ÜG

i.8%at2£*Cy I..O9593£*Gü

a.lS953£+Q0

ERR3R TzkH Pi^GcNT»

•3.335O5L*üG

■3.a77i9£*üJ ■2 .o ^ G lot* GG

•StlZü oki* i>w •2.832b3t*GJ •2.b79oG£*uG

•2.933'«7c.+ -J •2 .b73b5i+0G •2 . 5J 1<«6C* Jü

•'♦.3j76a£*GG •<*. Jb664£^GJ -3.ä273aE*Cj

-«♦.13766c + Ga -3>aG9o3b+Gü -3.57j79c»üG

•3 .^I7ö7£*- DG •3.93S3Jfc* öü •3.35229t»i,a

•5.<»bJ2a:.*uG •ä.G3G57c:i-CG ■'♦.7^213c+>,u

•5.17719t*üü -<«.7b't35c»Ga

-'♦.92757c.tGfl •«♦.52758t*aa •<♦. 23'»'♦'♦£♦ GO

73

Page 76: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TVP- I GAUit ä£N£Rft», JiSIliNS

LENGTH fINCHES)

—UIOTH MNCHESI

.OOP SP'TiTHir" PRI St- lUTUAL iNuJG (.At,t Fft^fOiv iHRO*. Ttkrt (INCHzS) TUSN5 TJRNS (rf;N«I£S) / Htf \ (P£?Ct^I)

Z.OOODOEtül Z.ODDDOc^dl Z,(ntWQt*il Z.000B0E+BI Z.OOOQOE^Ol

2.aooaoE*Qj TTunmrmrr z.ooooaE»cj 2.aaooo£*oc z.ooooaEfo:

6.D00a0c-üZ 6.00«&0£-D2 O.0I10JCE-X2

i.e>82ii3t-Jb 6.665(>ic-ü6 l.il9i(l£-(ib

2.3776ä£*0i)

l.<:<»<»6ä£t ji

2.b54J<*&*ül

-6.0ii3'»7c.*ijj

■5 •<»19u3c.tüd -5.2UJ62iitCj •5.Jl577t*0u

Z.OOOOOE^OI 2.aoöoot»c: Z.OOODOb^Ol z.anoaoE^oi Z.OTUOBEm

2.d«10aO£»Cü' z.ocooac^Ou z.aooüOE^Cii Z,OOD00E*Oü

l>30i}ii JE-il

i.acaaoE-üi i.oDoacE-ai i.aooaiE-ii

1.289t><«c-db 3.369J3c.-0& b.a65J6--C6

1.2775i»t-ü5

2.399bbi*'iib b,i2o32i«-Öt 1..1.3917£tül 1.73<»3j£*Cl 2.i*aJ9b£4'ai

■5.7ili7c.»üa ■5.'»3J37t*Qfi

-H.93ü93t^0a •'♦.7i«22Jt*03

T.OOOD0£»01 Z.OOOOOc^Ol T.OD00OEV01 z.oooaoEm Z.00Q0ÖE*01

2.Ö0000E*Ö3 TTOOOOdä^Dü z.ooooot^c; 2.0aOJi)E*Ci z.üoooaE^Ou

_1.20»)aO£-il iTZDDUIt-il i.ZDcaoE-ai i.zoiaoE-ii i.zoaüOE-üi

1.20913E-06 3.l5ü<tttE-üb 3 .bl^tE-Db 8 .<*7bb7c-Gb I.lb4b2£-Q3

2.(f5<i2b£«-bu 9<s9Slb£«aC l.J535!>t*ül 1.593/I|£*&1 2.193b3£*Cl

-S.SoSryd + tji) •5.21355L*UJ

•<».92a'«9c:»0j ■«».b99b7£tC0

Z.00000E*ul Z.OOOOOE^Ül Z.ODOOOE^Ol 2.D0000£*a 2.Ü000ÖE+01

z.oaooö£*ai ynnnnnrerar Z.OOOOOEffil z.oooooEtai f.caoooe^ai

z.ooaooctbu z.jaaooEfOj z.aooooE+oc Z.JOOOOC^CJ 2.ÜÜD0a£*Ct,

Z.OOO0JE»CC z.aoooac^cü 2.aöeoü£*öy z.oaoooEtüL 2.üaoaj£»c^

i^OüaiiE-iji "i.^oooot-ai l.i»00a&E-31 i.«OQaüc-ji l.i»OÖOO£-01

t»6flä3i£-3t

l.bOCjiE-tl l.bODü3£-ai l.bßüJJt-il

1.1'«125L-UD

2.95üb8t-0b 5.Z23i»l£-t6

l.a/121£-u5

I..ü82b3£*ub 2.7762bt-C6 '«•Ö8739c.-üb 7.29353c.-0b 9.4213b£-üb

2.i31i»5£ + 0ü 5.33Ü73£»ÜJ •a.olSiaE + üij l,t7\»i*3L*ül. 2.u2l5a£+ül

2.u2522£-fUü p • 21b57£*üu 9.2a235£*Q- 1 .37b31£tül 1.97557t*ül

-3.<*üU'*2£»Q0

■5.il7i«9£»ÜQ -'♦.7277bL*0a •'♦.'♦,i75bt + 0u -<*• 3uö '♦bt + Cti

•5.23J78E*ÜQ •h • 31* Jii3c^Cii •i».5<*77i»E*Gl, ••♦.317oO£ + Cü •«♦.12-j7dc+Jfl

«.oooooEtai ^.OO0OOE»31

z.a3Doa£*c: z.aaoaaE^oa

T«00100£40r T.a003iJt*Tu V.Ö0000E»31 Z.OOQOÖEtOi %.ODOOO£»Jil z.aaocaEtCL

6.J8300£-a2 2 1 2 .b97'»6£-üt> 2.37c>33£tüb -3.3322'»ttüü 0 • 9 3 3 3 3 £ -TZ"' 3 " 2"' 7.1bbgic.-Gfa 6.3552a£«-aL -2 . öOöü'fc + Ca 6.0aOüa£-a2 <♦ 3 l.29S5b£-Ü5 1.2>*37i£tül -2. 739O<*L*üü

ö.30SS;£-ä2 b i» 1.96b9i>£-ü!> l.'9ub9b£»ul -2. b3i»b(»L+6a 8.0flüaO£-32 b 5 2.7bb5s£-ß5 2.ü5b79£ + 01 -2. 3fao34£+0a

V.ffffDOOE»ai g.QOOJJEtC. «.ooooo&toi z.ooaaaEtca F._oirooor»ar z. aoouat♦ c; *.OÖOOOE*01 z.oaoooEtüü ii.ireoooE*ai 2.jooaa£»iJ

i.Daaoc£-3i ■Tr3röaoo£-&i' l.üQ33QE-ai 1.30Ü33E-Q1 i.3aau3£-ai

2.5C!il7£-ab o«bü2<tl£-ü& 1.16b93£-b3 l.dC5ä3c-05 2.(»9b<»b£-03

baj2333£«Cb I.l3a27£*ül 1.73285£*01 2.i9o7!»£*0i

-2 .939C3c.*üa •2.7b5i3£ + (.ä -2.b3258t+Li -2« 5d5u Jc + uii •2.<«3563c*aa

V«0O0O0E*ül ;>.oooooE«ai ii.OO0OQE*0l d.oooooEvai «.ooofiOtvai

2.&003aE»0J T7ffT5TäI*Cw 2.üQQ3at*GJ z.oooaaE^oü 2.b000a£*C.ü

1.20üQC£-ai i.2aoa3£-3i 1.2330QE-J1 i.2oaac£-ai i.aaaaac-ai

2.35379t-ab b.m-tiat-ab l.a9b5lE-u5 I.b537bt-Qj 2.27822£-a5

2.2327b£»bü &.j9ao7£*0o l.j32ba£»ül 1.3922<i£tül 2.191 Jb£«-ül

-2. !>39ub£ + ii j ■2.b39bac*BQ -2.52322i*üa

•2.325b2£+ü»

t.oooooE*oi 2.äGaaa£*0w TTmnnr&TTüi «•ooooo£»ai i»,OOO0CE*0l <>.00000E*Q1

2.0QaaaE»0j z.aooaoEtc^ z.aoDoaEtCJ 2.ö0000£*0C

la'taa Jüc-ai i.Va'ä j'at-ai i.<*aaaQE-3i i.<ioaaoE-ji i.taoaaE-ji

2.22332£-Gb 5.75ib7£-üfa I.u2a8a£-u3 1.5332BL-Q5 2.a97i»l£-u5

2.l2's95£» ju

l.'*7<*9i£»ul

■2.7<»iJ99£*Cu -2.56'»97c*ia •2.'»27ü7£*üa ■2•31»öä£*ßd -2.23ublt*Qa

i».oooooE*ai 5TBDTB¥t*uI «.ooaooE^oi '♦.oooao£*ai «.ooaooEm

z.aocüaE*Cu_

Z.aOOGJE^Gu 2.aCOÖ3£*Ob

i.öflO 3 B £ -_u 1 1 .bBüTCc-ül l.b83aa£-jl i.aoaaQE-ai i.öaoaa -:-ui

2.11ü93£-ab 5.i«2b7it-jb ^.55il3t-üb i.ttZiüii-üb 1.9't<»17£-b3

2.-2372£*üM

5.212üö£*fli. li.l9335£ + üu 1. J7H32i»uX 1.. s 7 3 3 i i ♦ u 1

■2•obofabc*u u ■2.'«795i«i+aa

-2.2336ii*li« -2.1.'»7JäL + (jJ

74

Page 77: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

(•ü^l1»!"-"

LENSTH (INjHtS»

HlOTrt (INCHcS)

TVI>£ I GAGE. 3£*£RAL DESIGNS

.OOP SPACING PR1 Sti rtUTüAL INOUC GAGc FAKTOR" (INCHES) TUkN'> TJftHi. (HENÄIES» / H* \

ERROR TtRH (PERCENT)

1 3>0üüäb£

i.OJQOuc. a.OOOuüL

^ü 1

► öl

'y 1

2. j000ic< 2.u0äüd£< 2 «uäüQöE^ 2.iiü0üG£< 2 • n wii0>i£<

► G.

► Ov.

► Ü y

► G y

► Gy

O.-0CGJE-G2 ä.flGGüGi:-a2 o>G00aG£-G2 o.aaOGi£-32 o.i0GJ0t-<i2

2 i

5 &

1

2

3

•♦ 3

<».0C6l7E-06

t.93ai5£-Q5 2.95755E-05 <».11810t-05

1 ä.üOaüUE J.OSOOCC

^ w 1

Hi. •■ül t-ül

2 • ü ii j G JE* 2.0JJOJL<

2.JJ0QGE« 2•JOüJ3£<

► CG

► Cy

► Gy

► Gy

►Gy

l.GOßGflE-ül ItGGGGGc-Gl 1.300GG£-G1 l.OBGGlc-Gl 1.G0GG]£-G1

2

3

5

3

1

2

3

5

4.72b3b£-üb 9.81i»51E-06 1.7b5l2E-fi5 2.b852 3t-G5 3.7li*91E-G5

üi

i 1 w

ä.aoacüE 3<UJ0ÜÜC

i.GQQbüc

^ vi 1

' y 1

2.aooaaa< 2tiiiiGua£^

2.G0üGa£4 2iujüüJci 2 • jGüii Gc<

' Cy

► U y

► Cu ► Gy

► Gu

1.2SGGü£-ai 1.20uGJ£-Gl 1.20ai3£-Gl 1.20aQ0£-ai 1.2CCGa£-yl

2 i ♦ 5

1

2 3

<• 5

3.i»9)i0E-06 9.13&3lE-0b 1.63122E-Q5 2.46555E-Ü5 3.39132E-05

m 1 1

&.0ö00C£ i.OOüöOc ä.00000c<

}>COCüü£<

► 61

► 31 ^ u 1

2iGGüJj£< 2 .iidCGd£< 2 »GGüüiiu< 2 • GGG jJe« 2.GGaiG£«

► GJ

► Cy

► G J

► GJ

Y W W

1.<»GGJQ£-G1 i.ioaoo£-ai mOöuQE-Gl l.«0GGu£-Gl l.(*aCJG£-Gl

2

i k 3 b

l 2 " 3

5

3.3G545E-06 &.56ä75t-Qo 1.519C5E-Ü5 2.2ö2^b£-05 3.12311E-05

H i.iiOOÜüt btOüOübE o.G03C0£< i.üOüDOE j.CQOQbE

»■KI

► 01

► Jl

►u 1

2.GGGüJ£4 2 • iiGGG iz* 2 «uJ GG Gc< 2.G0GGG^< 2 .wGöÜös.^

► Cy

' W W

► Cy

► Gy

liäOGQQE-ul

l*&3GGGc.*yl

1.00 GuOt-y1

l>bOGGO£-Gl

l.öOQGG£-jl

2

3

i*

5 b

1

2

3

3

3.13d69E-06 ti.0 7i»2b£-0b l.'»22oae-C5 2.12&33£-a5 2.ö957Gt-fl5

1 2.üäQJb£< 2.Öii0üC£<

2a ÖJuu ü£<

'U 1

► ü 1

► ü 1

► u 1

*■ u 1

2.-»JbGG£< 2 «3GGJ Gc< 2 •5>GuGyL'f 2 .SJGJ Jd 2.»JGGJ£<

Cy r y y

'GJ

► G j

OIJ0GJC£-G2

a • 0 G ii 0 0 L - G 2

aaGGGG0£-G2

B.aBoaa£-j2 B.JCQ0G£-G2

2 S

<i

5 b

1

3

5

1.5Gj2G£-Cb "♦.a33lV£-0b 7.3<*7i»2L-Cb 1.13a8b£-G5 1.56133t-a5

1 1

2.a300C£4 2.SaööQ£< 2*äuüü(iE< 2.O(iG0O£< 2.aaQüC£<

r w 1

' Il 1

►Ül

► ü 1

► o 1

2 .5GÖJG£< 2•3G G GG-4 a.SGGGGt« 2•5C j G j£< 2.5üGuJ-<

►Gy

'G j

►Gj

G y

► Gu

l.aüJjO.-iil l.iiCOGGE-ai l.GOGGOE-nl I.OQGGQL-JI

1. JGaGy£-ul

2 3 I»

3

b

1

2

3

5

l.<*C8Ji>£-üb 3.732ibc-0b 6.75a91£-0b l.G32'»b£-03 I.*»35i9t-B5

1 2.000GO^ 2.&aüOO£< 2.000QG£< 2.0üOGCLI

2ICGüG G£I

► ü 1 ► li 1

HJ 1

^ u 1

► u 1

2.5GGJJ&< 2 täüüGJt^ 2 «9G&uG—' 2.SuGGGti 2.50GGG£<

•Cy

> Gy

► GL

►Cy

' Üy

1.200GGE-G1 1.2GGGü£-Q1

1.20GuG£-Gl i.2GG30£-jl 1.20GQy£-n

2 3

»

5

3

1

2

3

3

1.32565E-Gb 3.<»e7i»G£-06 b.2672ac-0b 9.52952E-ub 1.31793£-a5

i.aüü«ü£ !.ufiüüü£ 2.ajOGQ£< 2.Q00GQ^< 2.03üü0£<

'II1 ► u 1

' w 1

► ül

► u 1

2.!3uGJ JC<

2.5GG GJ^^ 2.SG G JGC<

2>äüGuJ£< 2.5GGÜJ£<

» GL

►Cy

► Gy

► G y

► ü y

l.W30C£-il i.iieaact-ai l.'»0Gua£-Gl l.i»0Gü j£-jl l.i»0GiG£-«l

2 i k 5 b

1

3

>• 3

1.25bl2£-üb i.28l5B£-Üb 3.8bl73t-06 ö.8&5<»b£-0b 1.2202<»£-03

^.äQCCu£<

2.G0Q«C-( 2.QüGGQ£ 2,üJüi.üi

► u 1

► II1 h a 1

^ u 1

► u 1

2.5GGGGt< 2.iOGOj£< 2«7vlüJilw1

2.5uG GG£< 2 « äu u ü üi<

►Oy

► 0,

► i..

►Gy

► Cy

1.6G yG u£-j 1 lia0uGG£-Jl l.bOGJCE-ul l.&GGaic-tii 1 IöG G G y £~G1

2 3

3

b

L ?

3

i.i96a<»t-a6 ä.lC»10£-0'b 5.513bbt-&b d.297?lt-Bö 1.137G9E-G5

2.S76a7E*aü 6.a5'»37c*0ü 1.2<»3b2E»tll 1.90b69E*iJl 2.65b38£*Gl

2.i9791£»0u b.i227ör»äli I.138ia£»01 l.73257E»Ol 2.ija32£»at

2.252i»de*00 $.8898i»E~*0ü l.G5251E»öl 1.59196E*01 2.19097E»01

2.12968£*0G 5.525«ili*ßC 9.oG7'»8£*Ci 1.<«7<*66£«01 2.Gltt92£*01

2.J23<»I»E»üU 5.21125E*0ti 9.19171£*6G 1.37<»5<»£*01 l.s7292£*0l

2.75726£*üi, 7.39bllE*äii 1.351<»3£*ai 2.uS522£*Cl 2.^2239£»ai

2.57697£»üü 6".6&3ä5£*0U 1.2'»535£>Q1 1.90^5o£tÖl 2.3bG72£*0i

2.i»33J9£*öG 6.V2652£tOG 1.15^ai£*0l 1.7fe7l7£»0l 2.<»i»956E*fll

2.31G39£«Oü b.ii6213£*0b l.G8b56£*Ol l.o<»7d5£*Gl 2.27333£«01

2.2039<«£»GG 5.7'»575£*0G 1.G2<»12E*01 l«9>»9S<i£*01 2.l2266£«ul

•2.ö<»367£»0a

•1.95C72E*aa -1.7bl67t<-00 -l,7237a£*Oa

-i.99»«<»c*oa_ •1.85«»7>E*Ö'(J -i.76702E*öO -i.696<»2£*00 -1.63796£*0fl

•1.902öOE»Qa

-1.6950«c*00 •1.&2<«C2£»CÖ -1.5659l£*0fl

-l.d<*333£«Oa -1.7223Q'£tÖT" -1.63190E*00 -1.5bll2£*C0 -1.5G367E*aB

-1.769liO£*Ca_ -i.b9&ü8c.*0ä -1.5755bt*0a -1*9G333£*0G -l.<«i*9«t6E*0G

-7.74 7G8£_*fl_a_ ■7.3V36i»tV0ö ■7.G2299E+0G •6.7563<»t*Ca -6.52a30£»0a

-7j!>7 775E»00_ -7.Ö<«82b£*0a -6.7101ä£*00 -6.<*31&ö£*08 -6.l9563t*aa

•7.239U3c*öö •6.7Ü931E4-00 -6.i»iö37E*G0 -6.l5i95£*00 •5.91120£»CB

-z.öz^ist^ea -&.SS73~3E«0a -6.197lS£*0a ■5.9ö563£*00 •5.6o237E*Ga

-b.32b83Lt00 -b.'lVmE^oa" •5.979ö9£*0a -5.b9320£*öa

75

Page 78: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TVPc I Ubci i£N£ülL OiSI&Ni

..l. .•»■ i «-I.V.ill,.:'»*/'-'!«

LcNÜTH MUTH wüO» SPACING PKI SL. iJTUftL INOJ^ (INCHcSI (INUHCS) (INCH£3) TlMNS fUHMi (t1wNi<Ic.S) (PtKCtNI)

\AMf»MN/JSctV

«.OQdbQc«.«! «.CaOGdc^ol •«.OQOüüt:*.!

♦.6oacoc*oi '*.oocao£»ji

2 .aäfljüi+tiu

Z töüitiiz.* in

2a5jUwd^tbx

2 • 5Ciö it» UI.

2.5uöi3ilä*C- 2.5ußJJe*t. 2«5üC"IJC*0J

«täJ0öb£*'Ji 2<SbüüJ-tli. « • CdCbG^^ül 2 • 3üüCI)£*'C«. ^•Qadi}C£>ül 2.»dgUJi»u» i«.CdJaC£4'Jl 2f5Juuiic.tgj ♦ .»iü JCCt*-,» 1 2»5CöCüc*Cto

♦ .eCiflCc*«! 2täuüQiJ=.*0t ^•CäüüCtc^ui 2»5uCC liifi. ♦ .O0GaO£*Jl 2.5Gi.üö£»0- ♦ « 0J&ü(lt*i»i 2»5ii5üii£* üW

«.OdbbC^^öl 2t3düJJi*ü«

«■QOüuüctul 2 «öOG Juc* C .< ♦ .0fl0aCi»ol 2»53üüJt»Ji^ (».UOCOCc + Ol 2.5üüb Jt»ij «.OCGaOctJl 2.äOGQd=.*CC i». OOduü £ + ü 1 2»»0<.J<ii*i.

3 t tiddüQciul 3 • GOdü itc*Ci 1 3.d00GG£+ai i,uO0iC£*öl 3.Qa0üO£*dl

2.'7G0bu-*C 2 • 3C t ju i* b 4 2*3uubJc^u« 2.?JUUJ_*UJ

2 • 3 u I. j j£* u »

ä.00üü0i + jl 2.3GJJJ-4'J. 3>uOGüG£^jl 2i'jijüäj£«'u. 3«üG0GO£>di 2 .5öfl liit* u- 3t0Q0GG£«'Jl 2.5ÜLuilil=.*ii- 3.QDCGÜC*J1 Z.büÜuüt^Uw

3.Od066£*Jl 2.5U JJ^tu: a.CQOCti^Cl 2.7Ubliu-«'tj. stOQGGOcful 2.5QCSit*G- 3 t O09SG w + bl 2t3JGud£«'Jj j.OdDGCL*«! E»5iiüCJü*w-

3.0000t-*ul Z.äuuJi£»ü- siuüGuGc.t'ül 2 .5ö0tiic*-£»

D.0d0GO£*ul 2.5dGaiJc*C- s.bflOGGEtjl 2.äGUü JL.* b.

3.flGüGi£*ul 2«&u&J'Jt.*G- i • OObU üc«-w 1 2 »SCi. Jut ♦ C . i . GGuO Oc:«-u 1 2 .5üküi5c»i<< 5.fldG6G;»ul 2,5üUUJC>C

3'üGOuC-^ul 2 .5JÜüüc + ii-

o•uCG 0ü£-u2 0« uCu J0£*b2 o..lOGdS£-J2 o.30ddO£-J2 o.Gd0dQ£-u2

2 i

3

1 2 3 i»

j

l.QuQdG£-ül

l.dOuüG£-dl l.iBbJfli-iii i«udwwG^*Jl

2 3 ♦ 5 b

l

3

3

1•2G üjü£-jl 1.20Cai£-i#i 1.20bdJ£-ul l.20bi3£-ai 1.20C»C£-uX

. 2 3 <t

b b

I 2

♦ 0

l.^&CjGa-a 1. •»& G Jic-jl l.-»QGJ(3£-Jl 1 altGC U ü£*wll i.-tOijji-a

2 3 >♦ 5

3

d. i

1■6üi«i£-it 1.6GQJG£-a 1•bC ^üG£-jl 1.öQGJO£-J1 1.bC ü JG £-Jl

3 ■♦ 5 0

i. J It

S.üC JüO£-ii2 b•jü bCk£-02 o.J0GQG£-G2 o.a0uGG£-J2 b.CCßQBc-j2

a 3

<♦ 5 b

1

3

l*GCüuG^~jl i. jcaot-iii l. JOüö(,£-Gi 1. jOüGC£-Jl

2 3 t

5 b

1

l,20uQC£-al l,200aG£-Ql 1.2aüaJc-.l 1.20CJbL-jl 1>2GJGJ£*ü1

2 3

3

b

1 Z s t

->

l.l»ÜÜ3a£-äl 1 «(»G u ui£-üi l.'iQ^JJi-Jl i.tOGJGi-Jl i.♦£GGC£-«t

2 3

0

1 c i

1 .oG ujJ£-ül ltaCuGC£-ul l»bdG^i £"ül

IibOGGC-'ul

2 3

3

b

S

i. m 4ii91bC.-Gb 7,rb7<iic.-uit 1 .i»2u7it-Gs 2.1643bu-G& 3 . Gb'taoc'd?

2.7iy^l£-Cfc 7.21b22c-Ub l.3C?2b£-G3 2.üül73£-G5 2.7a5(J&w-C5

2.75<»i2i*dG r138,ili.6*öb l,35bü3£*(il 2...a2o6£*Gl 2.ylo53£*Öl

2.»?663£*0L b.sSb*1«;* G« i.2-»343£*Sl !• j072i»£*i3l 2.a5?22£*0i

■3t *34<»2c*k.d -3.73a53£*Ga •i.'imictii ■3.i«3o77c»Gd ■3.3<*dl3ctGu

•3.bü277£tuö •3.5'<59<»t*0G -3.<*3<*C2c.*Cü -a.Sul^ttüO

2.561ü2£-bb 2.i«3U5£«-0li -3.bd732£*cJ o.75072c-üb 1.215j7£-Gb l .(»«♦9ö<Ji-0 3 2.561l3£-u5

2.i»29Gli-Qb 6.35ab4C-Gb 1 ,l37ai>c-G5 1.722»7t-&tj 2.37391--G3

2,,.31(o&c-Go 6.a2357c-Gfa I.ü7ll5c-bä l.bim^L-Gä 2.21'»32£-Qi

i4.3Gb'»7t-üb 1.15^13^-Gs 2.1Gb53t-GS> 3 .2<»733£-b5 i».5i»7J^-u5

e..«2l5d£*GG -3.'»7117£+J« t.l57&il£»öi -3.303s3t»QG 1.7b'»iJ'»£*01 -3.lod27t*GJ 2.'«i«6JbL«-01 -3.a552öi*üü

2. jGa<3£'*'0u b.J55ll£*(iG lti.9i>lb£*(il l.bi*ü52£*0l 2.^baä3c+ül

2.mbl£4-QG 5./3ö7<«£*0J

l.a2272£*dl 1.3<*321£*Q1 2.11'i36£*Gl

•3•53317c+uu -3.3a97b£.+ Gü -3.1.o<J7lc.*o& -3.051iJ9L*Jü -2.93ö31L*0j

•3.<»67b5i»0G •3.2äbo3£*0G *3a G 3? 39c*CG •2.9"»773c*üG

ittT'it'ilz + i., -2 .33529c.*ui, 7.3373i3£*3u -2.50fa^3£+GG l.3<«<77£»vJi -2.i«-5«»9L.«-wi Z,ji2kbi*üi. -2.321o3c*üG 2.3l793£+i,i -2.2SJ<«2£*LG

»♦.0202*1-06 2.37o20£*CJ -2 .5'«'9oi£* LJ

1.G69a 7t-G5 1.93ill£-bi 2.97G'»bt-u5 •♦ . 1 339li-Gi

3.795obL-uo l«bbl2'*C-U3 1 .5u31Jc-G5 2.7Hb29£-Ü3 3 .>)b353£-G'j

b. 33*7'»£ + üi, l.2'«3ö'ii*dl 1..4ublU£tOi 2.J5O37;*ü1

•2.<tl293i*üO ■2•3G o;o£*uü ■2« 21 9t>äc* GG ■2 . l'tbo3i*GG

2.i»3J61i*Ou -2.i»72j3c.«-ub b«*2j2J.£*&u -2«33ö79£+Gu I.157<«3£ + ui -2.22iu3t + ob l.^bH^Ji*!,! -2.1323bi»wG d.iti*'3tli*üi -2.G5o65L*bJ

3.bul37t-Go 2.3j/o2£*Gb -2 .<♦» «♦^7£«-ü J i .'♦3'»29c-bb b.J»3blt:«-0u -2.25732£ + GG 1.6o9sbc-G> l.jd^9J£*'3l -Z>tlt'i'*it*hi 2.55äbb£-G5 i .okijti*il -2.G^bulL*GG 3.32b7-»c-03 i,iiai\.ii*iil -1. 932 ibc* GG

3 .'♦33l3c-ijo 2.^J117L*GU -2 • Stl-tactOG -2.l4ll9c*üG - i. • jf ? Qü-* *Ü ■1.93 3 IsL* *U -1.ilDÜSLtOJ

3 .935'«(JC.-J3 b./37'»'«£* Ju 1 «3 ^iiolt-Gä 1 •ti22i»b£* Ji 2.397y3i-i.3 l.>«»277£*ei 3.2,SJ7DL-G5 2,ild71£*ai

76

Page 79: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■•'•■•^miinm^vmimipri'^f'mm--1 ..■■lv-^m.■l«^M■ww«»M^^n•^•ll<■M»WW■W***W»^^'*•,■' 9MMM

fABLE A-J (CONT) TVI»-: 1 ÜAGE, HMiftÄL OESI&NS

TEWTT «INCHES»

"VIDTH"" (INCHES) (INCHES)

'wir siT'HirnjiL INOJC TURNS TURNS (HENRIES)

£"Ä;E"7ACtO«'

VIHP»HÜ/Ü5k -)

tRft5R"~rtRM (PERCENT)

Z.OOODCE ^1 s.öoaoac yQi 6.B000C£-a2 2 1 Z.DODOOt ►ai 3.iirffJ3t rci r.TJUuUDE-C? 3 —g Z.ObüfiOE ►ji j.oaoaot: ► 53 6.3aaao£-i2 ii 3 z.oaooüi »ul j.aoocoE« ► Oü 8.00CaOE-32 5 ii

z.oaoojE >a 3.aaoaa£< V0y o.oßooa£-a2 0 3

Z.OOOCfli ► Ül s.aooooci >(K i.aooao£-Qi 2 1 Z.OQOüOc ^i 'S.ffiTfiüJE;» t-'bt. i."oTJ¥i*"ar-ai i 2 2.00DOOE >«l 3.jaoajE^ ► CÜ i.aooaaE-ai t 3 2.000fi0£ NI 3.ü00CIJ£( ► c; i.a0b0a£-ji 5 i»

2.0adC*0c >0i 3.aaaaa£< • y w l.GdOOOt-Jl fa 5

Z.bOGOaE ^i s.aocaaE my i.2oaac£-ci 2 l S.OQSCÜL ► 31 J.uJOädc^ Kiy in^fiöaE-ii 3 2 2*O00bC£ ^1 3.üö03at< mc 1.20GJÜE-01 i» i

2.00000£ Ul S.üüCaJ£< ► c: i.20oa:£-Qi 5 + 2*OdüOC£ m 3 tü JOüJ£< »■Uy iiZflüaoc-ai 6 j

2*(iQCCC£ >iii S.uJÖCüci ► l.- 1.I«Oüü;£-U1 2 1 z.caaoct 'ii 3iüuOJii£4 ► Lu i.i»äüa3£-ji 3 > z.oaaocii« ►üJ. s.iiocaji^ ► yy 1. !»Ü D y b£-ul 1» 3 2.t39üi(t£( ̂ i 3 i li ÜÜ Ü UL* mu l.l»003y£-Jl 3 t»

2.0aOCC£.< ► ui i.oOOJJc« >Cu l.+öSaiE-yl 3 5

2.oaaoot< »01 3i jaüGac« >i. 1■äü 0 G b£-yl > 1 2« iiJ><iiC£< ̂ i J • ü Jüii JL< ' Ü u i« »a ajji-ui i ?

2.aü00ü£< ► 01 3.JJüQ0£4 w w i.öC a a J£-üI ♦ 3 2.Ü00&1.£< ml 3 > u 0J u JI4 'bu 1iöQ u KJc-ul 5 l«

2.0aObC£< 'ul S täiii it* ►Ciu 1 • 6C y a y£~j1 Q >

4 •G0QCb£ ml 3*OÜUUJC mu 0«aüyyb£-y2 2 l «•üdOuOc ml 3•u üü ü üt< m- öi üb jflE-J2 3 c ♦.CGOCCL ml 3.üJauj£ ► ii o» 3CCäa£-y2 <• 1 ♦.000uC£ ml 3«uJuuJ£4 k

uy 0>y3yÜ3£-y2 5 4

♦ .OOOCiii ml 3•uJo Jü£< »by 0«uÖÜy3i-u2 3 i

♦ .CiOCiGi ml 3.JJüJi-< Hiy l.yOuyÜ£-yl ? 1 '«.üOQICL ► jl 3>uj>.jä^< ► u y 1« y b u y yc"y1 3 ') ♦ .öi/OiiOt »•Jl 3•J uC y G* ^ mu l^yCCyJC-ül ■» j

*.oaouC£ ml 3•uäü C j» m- li3übjy£-jl 5 4

'*.OOüUCC:< ml 3« MJüüU^^ ►iu i.30ja3£-yl 9 i»

i».daüüCt* mi ^.JÜUÜJC' > u - 1.23b:;c-yl 2 l ♦.caOuCt ml 3 . ü C C u üc< U u la2CJuC_-Jl 3 (1

«.büa&Ci* 'ul Otyuuuj«' ' u - t.2CbJ^L-^I ii 3 ♦ . ÜMflCi»£* '-1 3«yJbCj«^ i»20i JÜ£-yl 'J . «•caaCü^i ml 3«yuuu0ü.< b. i.2übjj£-ul b v

«.oaoübK ul 3>uJüuii:.< ■b - l.-ibiyu.-yl 2 1 *•ÜJ ÜU U L< 'ul 3 . y y Ji Ü£.< ■ L - l.itb u u b£-31 i L

«.oaüüCi« ul 3«üyywb«4 u . litCuyü.-jl * i ♦.aaiöGi« «1 3*«Üuüyw4 L . i•^b y u u£"y1 3 ■♦

*.caucc£4 ul i.yudjjL« bu 11♦C C y uc~y1 0 *

♦«tajiut« .1 3*uJuvyL4 L . l>bbuyul~yl p *■

*> ütlOu Cc* ul 3 «. y y u d y w^ U M i«bbüjÜL-yl 3 J

4aÜ'JiJiül4 ul 3»yjUUJ«^ L- 1 i ÄC b u 3 i ~y l i» > ♦ » wJüuC£< ul i»JuuJj»< U w 1.bO u y wi-y1 7 ■♦

* « Üw u a ü C * W A. -5 . , u J u y L 4 U • * »Ob y y * i. "y 1 O .

1.61535E-a6 2.)ai*37E Trnfi'ie.-ÖF T.sJb'»'«! 7.9l»3<»2c-06 1,'♦3420c 1.22775E-Ü5 2.23a6&E 1.72J<»7£-05 3.13936£

1.5119<*£-06 i» .03 lobt-Ob 7.33lS9£-0b l.l2bb9t-65 1.57327t-65

l.<»27bl£-0b 3.78112t-üb 6.a35<*<«£-0b I.a<»(»ii7£-G5 l.<»520«i£-C5

1.35b<»7E-üb 3.57Qä3c-do 6.Mla57c-lib 9.76J73c.-b6 I.35a9ttt-Ö5

1.29'»^9c-öb 3,J6799£-ab b.C6Cii4£-a& 9.17b5öt-b6 1.2b<»'«7£-ü5

2.72b00£ 7.302b2£ 1.332öl£ 2.u5*«3bt 2.o7bl3£

2. idöSli b.3b71b£ 1.2i*bl&£ 1.4ly9<«£ 2.bb2/7£

2.i»5r2<»£ 6.*94Ö9£ l.l732l£ l.79ü»6£ 2.<»ä<«3b^

2.35übd£ b.ld2Q7£ l.UGZit 1 .oöbdbc 2.33üai£

i.CöJbit-ub 2.jbl3u£ 9 . 317He£.-bO ?.i2o35t 1.52<»77£-0^ l.i«3719t 2.359d9£-li5 2.2275ü£ 3.3lb!>7£-b5 3.13'»3<«£

2.o9J61£-06 2.7226-»^ 7.73sii£-Ub 7.d9253£ l.'»(,9äo^-b3 l.33u8a£ 2.1b9l7£-J5 2.u5lJC£ i • 332b<»£*'Ü9 2.87139£

2.7372ljc-Cb 2.57697£ 7.2b622t-bO o.357:7i 1.31592c:-35 1.2<»H16£

2 . 3 1'♦'♦ ji-0 J l.jy?5a£ 2.oC3u2£-b» 2.ö5773£

i.6y3öli-üb i,^-}im\. a.abSi«bc-yb b.Hd^bJi 1.23717_-:5 1.17llj£ l.do'»73L-b3 l>7a71u£ 2.Gllyö_-Ui t:."473J3i

2 .'♦67-iOL-bt. 2.3H73li 3.323yu£-yo b.l7l99i l.lb^Jic-bi l.iaa27i l,77i«»>^-bt> l.bsiSJi ^ . •♦'♦03 3L-bi (?.3^3301

Ob -9.^'»'»5£*0ü ÖC -9.iri'J93lE*ÖÜ 01 -d.b<»797L*ÜO 01 -6.33623E*0a Ul -6.ab7bie*0ü

Cb Ob Gl 31 01

Ox Üb

Cl 01 ül

au Cb 31 31 31

bu

Üb

01 ui 31

-9.1ö307£*0a -ö.bdJ37t*00 -a.2dd5i»£*üa -7.9b017t*00 -7.b7925£*00

-8,910b9E.*00 -8.io7b7£*00 -7.97508£*00 '•7.o.1<»<«9£*0a -7.3'»51b£*00

-a.bb725c*C3 -9.122H2C4-0ü

-/' .b9593i:*00 -7.3i»b3-4£*CQ -7.051i2£*C3

•8.<t'«J,<9t*C3 ■7.63U95£*3y ■7 .'♦>«3'49£* oa ■7.3ä7<«2t*C3 •b.73ob5L» C3

üb -'♦.ö25b3£*33 -H.Oy 17'4t*C0 -'♦.i»23b5£*33 33

■♦.2 73 Ctf* ü3 *»•!'♦ 75J£*uu

uy -'♦.b70b7c*ba üu -I».<»39

1J3£*ü3

tl -'..2älo2£*Cb ul mhtii ^5 oöc* üb 31 -3.9D339£*W8

Cu -'♦.S'iiUi + üb Üb -f» .23 <J 09^4 b3 Ul -'♦.Iy2b9i43b 31 -3.^H139£*30 31 -3.Su3öS£«-bb

Cb -'♦ . "«Jy •j5£» bu üy -«♦.17ll5£*ü3 31 -3.9faJ3bt*y3 31 -3.6u53bt.*0C bl -3.b6öl6t*ü3

3b -i. .32 33dc*G0 j u -i». J 55ob£♦ yu 31 -3. o-. i7ai» u3 Jl -3.b3J/3£.*,bU ul -3.&'45o3£»0ü

77

Page 80: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

M i l - A - i ( C 3 * i l T * ® £ I i A l » £ » S i t f i ' t A - 0 £ S I 6 N S

U N u H rfIJT-1 ( I N C H W S J

. OJ® 3 P 4 0 1 & 3 P K i 3 0 0 1 J f J A L ( i N C H £ S ) T U 3 N S I ' J k . x a ( r t i N J U S i

i A 0 £ F A J T O K

( A H ^ H X * J S t i ^

£ K S 3 i < I c ^ H jp£<c=.*r>

3 . 0 G f l & C £ » 0 1 3 . C 0 0 G c £ » * l b . 0 0 d 0 c i * 0 1 6 • G 3 C U & - + 0 1 3 « 0 0 0 j f c - + 0 l

3 • 0 0 0 0 0 : * u .

3 • G G G G G £ • G .J 3 « u C

0 * G G G o 3 £ O t x J C w a ; 9 1 j M u J 4 ; O M I I I I W * !

O • uC M 4 tix

• - 2 •->2 • i 2 • : 2 - G 2

D « 0 « * G w w i * * i 3 l W J w i l 3 « W G W J 4 ~ + ^ -b « C u u u G i + ; * i W « 1 « W G G G G £ * « J 1

3 • GuCG UC. +w 1 1 • - G J 4 * - • * 1

D • u w U G G 1 3 • J u u J • w - i ( . 0 l i u w » " t f l

3 # w « # G * i » C . * G i j « < J u u J L ^ « . i « 2 ' « # - G - i . * . * l

D • G 3 G u G c. • u 1 3*>4<JW<iWC+<*« i i ^ G w u C i ' ^ l

S » G G G t » G - * w l 3 * w j u J w — * u « 1 « 2 G W U C - ~ J 1

j » W U l j t f u l ^ u l 3 * w u j w

^ t C i i W U U w ^ w l 3 • ^ w ^ J — ^ « - ; . 2 u -

3 • GG G G C - * w 1 3 * w i < « u i ' . ^ W «

3 • «*G G o w . + w 1 tf - i # " f J w U « i — ~«*1

b v G G G w G l . + ' w i 1 •

b v u O G G G c . + u l S . U w U w j - * - -

3 « u C G G w ~ + w l 3 • w - W w *£. • W -3 . GGGG G - • • u i 3 t l i 4 M W 4 . ^ W v

3 * G G G u G . ^ t i l 1 • bG G G G £ ~ 3 1

3 » w « U u C - * w * 1 i Ow li J k • a ^ 1

o « C ^ c o C - * j i 3 * * « # U \ J w « ^ »

2 1 <•. 5 6 i l b c - t i b <: • j u u J ( J i b u t i - 3 . 2 3 < » b J i * 0 j

i c 1 . 2 2 < 2 7 £ - * 5 7 . O 2 < * « O £ » U L - 3 • O j 7 7 1 £ f l id

*» 3 2 • 2 5 < * 7 5 c ' • i ? i . < * 3 6 & L £ » 0 1 - 2 . 3 7 < 7 j t * t a

5 •• 3 . 4 9 1 2 7 - • G> 2 . i d a i o i * u l - 2 . 6 ^ 3 2 6 c » 0 0

b = <• • * C ^ £3s. • - G 5 3 • 1 J J ' t x £ • « . 1 - 2 . 7 3 4 7 & t » i « a

2 « i. * * 2 7 d ? i - ' • w o 2 . / 2 2 0 2 £ * 0 u - 3 . l 3 7 7 i t » 0 J

3 ? 1 • 1<#<»22£ - G 5 7 • 2 - i j b b £ • 0 0 - 2 « S 3 l 2 7 i » 0 0 <• > 2 • G 6 i 5» l c . • w > - 2 . o i 77ti*Od

5 =• 3 . 2 1 GaSc. - „ 5 c ,*5u J s £ » j i - 2 . 7 3 5 7 6 c * o u

6 o • 4 9 G i 7 i • « 5 2 « s 7 j l 5 c + 0 1 - 2 • o o - ) 2 2 £ * 0 0

? 1 • J ^ 0 2 u w - j o 2 . ? 7 b 3 5 £ * 0 j - 3 • 0 5 2 2 i » £ » 0 0

3 1 N n c . "113 s . i s 5 2 0 £ » 0w - 2 • 3 0 3 « < t C * d i

*• 3 1 • * < • / - u 5 1 . 2 < » 3 7 3 £ » 0 l - 2 • 7 5 ' i b ^ c . * - 0 . .» ^ • J O 3 3 I £ - 0 5 1 . 3 j o * b £ » 0 1 - 2 . o 5 - » o * £ + 0 0

b J '•• . 1 5 2 o oc. - 0 3 < i « o 5 b 7 j £ * w l - i . j&oi'tz. • 1 0

2 A. 3 • o ' f * * ? - - i » o i » < « 5 3 2 5 i • » < - 2 . 3 7 5 v . s c . * - »

3 S 1 • « l o * 6 c - 0 5 o . - » s 7 7 3 £ * u v . - 2 . 3w - » b 3 i * 0 0

i i • o 3 2 G ^ c - u s i - 2 « o 7 2 t > i t . » . 0 •+ 2 . 7 • U 3 i . ^ 3 b - » 3 £ » a i - 2 > 5 u 5 7 * c * i j

- 3 . : 7 w U : — u ; - 2 • - 7 0 * J - * 0 0

2 . 3 • <J J J 2 Ji. - J D ^ . J H O O l £ » 0 t - 2 « 3 - ^ - ^ £ + t 0

3 j . O V « 3C - M D o . 1 2 £ » 0 - - 2 . 7 2 3 » l t * i . O

•• J 1 .7Z<L<L<4Z. " w> 1 • 1 0 7^u.*ul - 2 * 3 ^ - t 3 - * w U

5 <• 2 • O 2 3*4 i - - 0 5 l > 3 0 2 i 9 - * C a . - 2 . ^ o b 3 s £ * O J

o J • o 2 $ i i - - C ; £.' » i 2 • » • » 2 £ • u 1 - 2 • 3 3 7 u 3 1 0 3

78

Page 81: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TABU A-i. TrPE II SAGc, GENERAL DESIGNS

LENGTH (INCHES)

WIDTH (INCHES)

LOOP SPACIN;

(INCHES) PRI/SEC PATTERN

MUTUAL XNDUT (HENRIES)

GAG£ FACTOR

( ^ \ ERROP TERH

(PERCENT)

2.CO00OE*n a.ociooE+oi 2.C0000£*0l 2.000ö&E*ai Z.OOOOOEtOl 2.0000Ct*Cl 2. CO (TO Of+ 01

?.ooooiE+öa 2.0D003E+00 2.0)001E»00 2.ojoa)c*co 2.0J003E*00 2.QJ00QE«00 2.0]i)OJt*0a

6.000C0E-02 ^.0C000E-02 8.ocaoat-02 «.OC00OE-O2 s.cciooE-ae ».C0003E-02 8.00000E-02

00X00 000X000

0000X0000 coxooxoo

000X000X000 00X00X00X00

OOOXOOOXOOOXQOO

2.<.710rE-Cfc

'♦.1595'.E-06 6.I.13Q1F-C6 8.6062CE-06 l.H»0 37E-06 1.5080fiE-Of

<..6030äEO3 6.30706E+00 7.78530E*?0 1.198O7E+01 1.613)2E*n 2.13,9i»E + 01 2.83574E+31

-,i,67<»71t*0 0 •5.U0C76E»QC -5.173t<.E+00 -5.29117E*00 •U.q89S9E+00 •H.999U!:E*3C -I..68E'9E+30

2.üOOOCE*01 e.tjaooEtoi 2.00000Et01 2.000aOE*01 Z.ööflOCE+Ol 2.00000E401 2.00000E*01

2.&3003E*Or 2.03030E*00 2.GJ003E^OO 2.a')900EtOu 2.09003E+OQ 2.CJ33JE*0I3 2.00001E+0C

l.OCOOOE-01 1.00003E-01 l.OCOOOE-01 l.OOCOOE-01 i.ocoooE-ai i.ocoaoE-oi l.COOOOt-01

00X00 OOOXQOO

OOOOXPOOO 00X00X00

oocxonoxooo ooxcoxooxoo

000X000X000X000

2.27U7..P-06 3.08i,77E-Ot 3.773l7t-06 5.83<»2et-0e 7.7527ec.C6

1,02708E-C5 1.3<»29t£-CE

4.2<»781Et0C 5.776'.4E*00 7.08l75d+30 1.09362E*?! 1.<»5761E + 01 1.93072E»01 2.53220E+C1

•5.<»15<.<tE+'!P -5.12290E+00 ■<».88236E*00 •5.ni608E»00 •<..70127E*30 •i..7l766E*00 •1..39557E + Ü0

2.ÜOÜ00E+31 2.C0500£*01

T.üÜOOOE+Bl 2.ÖOOÜOE+01 2.00000E+01 2.00000E*01 2.000aOE*01

2.033O0E*00 2.03003E*03 2.CJ003c*00 2.33O03£*O0 2.03003E»00 2.03J03t+4)0 ».03O03E*O0

1.20000E-01 1.20003r:-01 1.2C0OOE-OI 1.20D0OE-31 1.20000E-01 1.20000E-01 1.200G0E-01

00X00 000X000

0000X0000 coxooxoo

000X000X000 ooxooxonxoo

000X000X000X000

2.11>llE-0b 2.6<»772E-C6 3.«.6O7eE.0f 5.3665oE-0fc 7.0b721E-06 9.36?11E-Cb 1.2H72E-05

3.95826t*30 5.3<ti*93E»CC 6.5110i»t*C0 1.0C82IE*0l 1.33186E+C1 1.76395E*ai ?.2902JE*'U

-5.18755E*Q0 •<».88C33E*00 •i..63CJ?£*00 •i.,77833£*30 ■4..<.5f.l9EO0 •«♦.«♦77'»?E*00 •'..150-.3E+30

"r.TöOOOE+Ol 2.COBOOt*01 z.oooooEm 2,duOOOE*01 Z.COOOOE^Ol 2.üOüuOE*01 2.ü0fl00£»fll

2.0Q003E+00 2.Ci;0C3E*0l5 2.00003£*CO 2.0x0OJ£+O0 2.00003E+00 ?.&3000E*00 2.oaooo£*oo

l,<»C00üt-0l 1.<»CCÜ3E-01 l.VOCOCE-Ol l.i»CCG3E-01 1.<»C000E-01 1.400C9E-01 i.<»oaooE-oi

00X00 000X000

0000X0000 00X00X00

oooxoooxoao 00X00X00X00

OOOXOOCXOOOXOOO

1.98082E-C6 2.6(»89CE-C6 3.19961E-C6 •..9758'.t-06 6.b9e3G£-C6 8.6092«.E-06 1.10«.12E-Cf

3.7li.l7£»00 i..96200E'00 6.0326SE+ÜC

1.22719E*?1 1.62537E*01 2.39112£*01

•'..983?3E*0r •i..fe6«.27E*CC ■'♦.I.0676E+00 •k.56829E*00 ■4.23772E+30 •<..26763E*00 •3,93772E+00

2.00000Et01 2.00000E*)! 2.000u0t*0l 2.0000CE*01 Z.TTTOOCE+Ol 2,0öüJ0E*3 1 2,OD0OOt»0 1

2.F3OO3E^00 2.07OO3E^O0 2.0aOC.3£*03 2.0000aE*03 2. 0l)9O3t«'C0 2.03aoaE*03 2.0a003E*00

1.6C000E-01 1.6C000E-01 1.6C000E-01 1.60Ü00E-01 1.6C000E-O1 1.6C00'»E-01 1.60000E-01

ooxoo 000X000

OCOOXOOJO 00X00X00

300X000X000 00X00X00X00

000X000X000X000

1.86'13E-06 2.'»781fcE-Pf. 2.97619E-Ct <..6«»17DE-t6 6.0152«.E-06 7.97C99E-C6 1.01381E-C5

3.5n3i»5E + 00 i..b6959e*30 5.62217E»00 8.75391t*30 1.13807E*31 1.5D757E01 1.92357£*01

•«..7973»E*00 ■<..<»6936E*00 •U.20 629£*0C •i«.379S8t*00 .<..0i.<.7SE*00 •<».0813«E»00 •3.7<,926E*00

79

Page 82: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TABLE ft-«» (CONT) TYPE II GAG?, GENERAL DESIGNS

LENGTH WIDTH LOOP SPACING PRI/StC MUTUAL INOUC GAGE FACTOR ERROR TERM UNoMtSI :INCHES! (INCHES) PATTERN (HENRIES)

(AMP^MM^USEQ) (PERCENT)

...comccOl 2.0300JE*00 8.COC03E-02 00X00 •♦.aoasgE-oe «».60007EtOO -2.88261E+00 ^.oo^cE+n 2.CJOOJE+0C *.0030aE-02 000X000 b.579i.9E-06 6.30257E+30 -2.7I.983E+00 -,.OD300E»G1 2.u0D0J€»a3 a.OOOOOE-02 0000X0000 8.112'»'»E-06 7.77931E*aO -2,6<»00i»E*00 >».,«0uC£*0 1 ?.03OC?£»ÖO (J.CC003E-02 00X00X00 1.25007E-05 1.19807E+01 -2.69756E*00 •♦.CCOuGE + Ol 2 03003E+C3 8.0000at-02 000X000X000 l,6798«E-05 1.61227E+01 -2.5527<»E*00 •«..OCubc+Cl 2.0000JE*CD S.OJOQOE-QZ ooxooxooxoo 2.2258(»E-05 2.13615E+01 -2.55786E+00 •♦.COOüCE+01 2.C3003E»OC e.ococa£.-02 oooxoooxoooxooo 2.9477&E-05 2.8330i»E*01 -2.'.08<»9E+0 0

•♦.«oijoce ci 2.O0OOJE+O? l.OCOOSE-Ol ooxoo <..<«3162E-06 <».2<»<t81E + 00 -2.75667E+00 *.COuOfc +0 1 2. 03000E + 00 1.O0OO0E-O1 000X000 6.01769E-06 5.77197E*00 -2.61533E*00 ■».C0«i0£*31 2.000CJE*30 l.OOOOQE-ai 0000X0000 7.36868E-06 7.07576E+00 -2.(.994TE*00 *.0uL3OE*Ol 2.0303:E*00 l.P0000£-01 00X00X00 1.13868E-05 1.09272E+01 -2.56I.90E+00 -.COOOCE*'1! 2.00001E+OC l.OCCOOE-01 000X000X000 1.51528E-05 l.<*5626E^ai -2.i»l<,<»6E«00 »♦.ccaoc;*oi 2.aü001E*0'? 1.OÜ0OOE-01 00X00X00X00 2.00727E-05 1.92892E+01 -?.«.2308E*00 •».jHOCE+n 2,C0JIJ0E*00 l.OCOCOE-Ol 000X000X000X000 2.62835E-05 2.52951E*01 -2.2710<.E*00

t.C0Jjt£^Ql ?.C3000E*00 1.200C?t-01 ooxoo «♦.12<»89E-06 3.9552$E+0a -2.e(»622E*00 «♦.C00wt':'*Cl 2.03COJE*00 1.2COOOE-Ü1 000X000 S.56141E-06 5.3i»0«»lE*00 -2.i»9829E*00 ■♦.OOi.wwP+1 1 2.oajoot*co 1.20CO0E-O1 0000X0000 6.7663<»E-06 e.sisoeE+oo -2.37850E+00 ^.COQOiEtCl ?.3J0OOE*CO 1.20003E-01 00X00X00 1.0<»B»*»E-05 1.0073<»E*0t -2.«»5071E*00 tt^üüOCt + Ol 2.03001t+03 1.2COOOE-01 000X000X000 1.38285E-05 1.33051E*')! -2.29680E*00 «♦."ajociici 2.0C3Q3E+03 1.2CCOOE-01 00X00X00X00 1.83169e-05 1.76216E+01 -2.30988E*00 ■». jüüuo^+a i 2.JJ0C3E*0C l,2C000£-0l 000X000X000X000 2.37<.25E-05 2.2875'»E*01 -2.1S6inE*00

-...aü3C':,*:i 2.0iO33E*CO l.tOOOQf-01 ooxoo 3.86660E-06 3.71117E+00 -Z,5i*7kU*n »..-OOCCEKl ».C33C3E*00 l.<.00OOE-öl 000X000 5.l7e23E-06 »♦.97751£*flO -2.39<»39E*00 *.coocci*: i ^.flJoa3t♦c,» l.<.COOOE-Ol 0000X0000 6.2621<>E-06 6.a2661E«aO -2.2717«E*0B ■,.,üOOC:*O! 2.00033E»uO i.woeoor-oi 00X00X00 9.73126f-06 9.35e07E+00 -2,35029E*00 •»««.uCj^E + O* '.C33ajEOO l.*»00OOt.-01 000X000X000 1.27279f-05 1.2258(»E*ei -2.19436E+00 ■».-oojuE + ai 2.u1l303E*Ofl 1.1.CCOOE-QI 00X00X00X00 1.68600E-OS 1.&2357E*01 -2,20981E*00 •..cou3oe*;i 2. 303'J3c*QO L't^OOOE-Ol OOOXJOOXOOOXOOO 2.16550E-05 2.Qe8'»<*E«'01 -2.05niE>00

•♦.LOOüC^ + Cl 2.CJ0B3E*C3 i.ecoace-Bi onxoo 3.6<»387E-06 3.501H.6E+00 -2.I.5775E+00 *,C3e3»£*31 '.ODBOOE^OO i.e-'oooE-oi 000X000 i..8i.880E-06 «..o65iaE + 00 -2.3008<»EtOQ -.. C 3 0 0 C E ♦ 0 1 2.C30a3E*03 i.erooof.-oi onooxoooo 5.83023E-06 5.6i618E+00 -2.176i»2E*00 (♦.LJU.uE+Cl 2. TJüü3E*03 1.6CC0lJE-0l ooxcoxoo 9.08570E-C6 e.7l»<»93E»00 -2.26060E+00

■4. ^u3 jLr «J 1 ?.QJ00J?*0j 1.6CÜOOE-01 oooxoooxoon 1.17921E-05 1.13673E+01 -2.10 36^T+00 •«,^C3Q3£*0 1 2.CJ02Qt*O- 1..600QOE-01 00*CO*ÜOXOO t.5623i»fc-05 1.50578E*01 -2.12231E*00 «.CawäCc*M ■'. C J^JE*^ l,«i0D09E-0t OOOXTOOXOOOXOOO 1.9903TE-05 1.92089E+31 -1.97D33E+00

80

Page 83: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

, ■,'■,;■-< 'r;, V.-

TYPE TftBLc. A-«. JCONT)

II GAGc, GC'Nc.KAL DESIGNS

LENGTH (INCHES)

WIDTH (IMCH£S)

LOOP SPACING (INCHES)

PRI/SEC PATTERN

MUTUAL INHUC «HENRIES»

GAGE FACTOR

(sMFTWUsrc)

ERROR TER1 (PERCENT!

&.i.b JQCE^Ol

b.v,Q00C"t-31

2.0J0(i:£«-ÜO '. ü-lODIEt-O ?.GJDOJE+Ol

2.Q0OCJt*Dj a-cpoo^E+co

«.00CQ0E-O2 ?.ocoooL-a2 P.OGCOOt-O? 8.31CIOTE-32 a.ujoaoE-n? I.GnCOOE-32

ooxoo 000X000

0000X0000 COXOOXOO

000X000X000 00X00X00X00

000X000X000X000

7.1i»5n6E-06 9.78G95E-06 i.aoe^E-os 1.8586i»E-0? 2.4.9S8UE-C5 3,no9Pe-o5 »♦.38673E-05

'♦.5995ie*00 6.3017'»£*,)0 7.7782Dc+iiO 1.19790E+01 1.61202E+Q1 2.13581E+31 2.8325<»^+0l

■1.93163E+00 •i,8».<Oi«E+00 ■1.77173E*00 ■1.80975E+00 ■1.71i.i»9E*0 0 ■1.71798E+00 -1.62C35E+00

6.r.0JGLE + 3 1 o.CÜJ3C£+l1 6.;03JLE + 3 1

6.taC0C£tC 1 ö,C030CE+3 1 o.COGSCE+Ol

2. O)3C0E+Q j 2.CG003t*')0 2.OJOC:E*GJ P.wOO'iDEtOC 2.3)0DJLtr,: 2. UOülE + 03 a.GJOOjE+OC

1.3:000^-31 1.0C303E-01 l.OOOOCE-01 i.mcct-oi 1.03C00E-01 1.0C0C3E-01 1.SCCD3E-01

ooxoo 000X000

0000X0000 COXOOXOO

OOÜXOOOXOOO 00X00X00X00

000X000X000X000

6.687Bie-06 e.g^gecE-oo 1.09628E-06 l.&937<»E-05 2.25'.99E-C5 2.96707E-0^ 3.91,'19E-C5

'♦.2'»'«26E + 00 F.771l*E+30 7.07<»65E + ';0 l.r-^56£ + 31 l.i»i>6UlE*01 1.92859E4-31 2.52901E+01

•l.öfc8i»9E+0 0 -i.75535E+00 •1.6792,'E + 00 •l.-'2239E + 00 •1.6236i»E+0C ■i.629i»8E+30 •i.53012E+aO

o.Li.i30i+C 1 6«MOIUO£+31 b.oi;occE*r i o.t300O >C1 6«L iiUl»v£ + C 1 o. .cJOOE»; i

2. C00CJE + C3

2. cioo-tc: H.GJIJC-JE + CO

2.o:003E+33 2. C J0g3t + CC 2. 3)0yJE + 33 2. CuJC^E+CC

1.2CrO3E-01 i.?C0G0F-01 l,2C30Cc-ai 1.203000-01 i.^ruüJE-oi 1.2uC03E-01 1.2Cn03E-01

00X00 000X000

0000X0000 00X00X00

000X000X000 00X00X00X00

OOOXOoOXOOOXOOO

6.13399E-06 8.c7'«09E-C6 1.C0736E-05 1.56021E-C5 2.05'i67E-05 2.72o77E-05 3.5^617E-C5

5.95I.71E + 00 5.33958E+00 6.5C395E+00 1.3Q717E+01 1.33026E+31 1.76183E+01 2.2870iȣ + 31

■1.77?63E+00 ■1.67826E*00 •1.599S0E+00 •1.6'«73lE-*00 •1.5«»651E+00 •1.55«.6TE + 30 •1.U5511E+1C

b . G u 01/C ^ t C 1 6.C 3CJC?+: 1 6.u0GCLf-O 1 6.C 0. "'Ci+Ol ö.LOO J.C+: i b.w«C0G£'»-3l b.Li-JilC;*] 1

2. OmjE + 03 2. u j3« 3u♦G^ ?.G:OC3E+:: ?.C:POJL+CJ ?. C JGO j£ + C ] 2, GJGCJ£ + ;"'

J.MKU + C:

1.43003E-31 1.<.:CG3E-J1 i.uc-ooc-ai 1.1..CÜCE-01 1.<*CC33E-31 l.i*e;CGE-3l 1.1.C :C3E-31

onxoo 000X000

COOOXOOOü OOXOCXOO

000X000X000 ooxooxorxoo

000X000X000X000

J.75171E-Cf- 7.7üb3&E-C6 9.32332E-Ct 1^',«47E-C5 l.f'iSf'.E-G«; 2.5136SE-C5 3.2?6?et-cr

3.71062E+',0 «..97667E*00 6.325F0E+'!0

1.2255 ^+31 1,6232'»E*01 2.J879-»£+01

-1../1C50E+00 ■1.50991E+30 •1.5295i.E+3C ■1.58138E*00 •l.-»7g5lE+00 •l.i»8992F + 00 ■1.39C86E+33

b.^CCDtu^Ul &.:CJ K£+) 1 o.O 3ü0i.£-«-3 1 o.£GG0C£-Ol b.rluCi.£+31 T . . oG 3Ct *C 1 p> . L i. J 0 0 £ + C 1

?. G : ^ o: £ *r ? '. a ]Cü-)£ + C3

2 j^Zj-.tt:

2.fl33nF + Cn

,. CJOC3£*0: 2,C330H«-JU

2. C 1 K ) £ ♦ t"

1 .6GC3Cc-31 I.'.OCJOE-JI 1.6LCGJE-31 i.6c:oai.-3i 1.6CC33L-31 Lb:: 03-.-oi UbCOODE-Jl

OOXOO 000X000

ocooxrnoo COXOOXOO

oooxooQxooo 00X OCX OCX 00

000X000X000X000

p.-^iq-tE-oe 7.218I.1L-06 3.68?91£-C6 1.35276C-00 l.-'Sf.^SE-O? 2.32717E-05 2.9b573F-r,S

3.^9990E+30 '..bCi'.27E + 00 6.bl537E*3P 8.7'.327EtüO 1.136*»9Et01 1.505«» % «l + Cl 1 .92',39E+31

■1.651it5E + 00 -l.S'tS^äEfOO •1.1.6735F+00 •1.52259E+00 ■1.1.2C32E+30 ■1.U328«E*00 ■1.33U(:>8E+00

81

Page 84: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

1 TVH^ IT Gfi^i. O^N^DSL aesiONS

LENGTH rtlHTH LOOP 5PÄC1N- o-'VUr MUTUAL INOUC \ (iNCHtS) ( I JGH-ZS» (INCHES) °ATrERN (HcNRIFS)

GAGE FACTOR ERPOR TFPM (PERCENT) (. ^ )

VMP*MM/USrC/

^.. o: c c c +":

2tC03uuE+:1 2 • £ u !J w ii £ ♦ C J

2. 5: K.)-. tc:

^.5:c53E♦',',

?. i: j o ] t ♦■ u c

2.5:ün3i*Jj ,.Li.uv,oE.+:i ?. 5JOC.

o.?r:o,U-0? OOXOO ?.7052i*L-C6 8.3: JOOL-Qi 000X000 J.^igo^-ce «.C:n0Cc.-02 0000X0000 H.6C7oCE-0f p.ccou-a? ooxooxoo ■'.o'm-.E-oe »..:CC00L-02 OOGXOOOXOOO 9.?8921E-C6 B.C:000E-3? OOXOOXOOXOO 1.2710CE-C5 ■».C :iiü]F-a2 OOO/OOOXOOOXOOO 1.696"',iE-0E 3.11.7105 + 01 - «>. 13C27E+0 0

'..90121E+?!) -7.33R2BE+00 6.8u28]£ + :0 -7.n'.^3E + 30 P.^<»75öS + :O -6.7i»379E+ir i.30i.60S*3l -6.87U90F+ao 1.7722i»5+ni -6.61126F + 0C ?.3-e91E+01 -6.51639E+00

Z.'.üCCtE »C 1 cJ tw jCi3<.^ + 5 1 2.LUJCE+!,1 B.wjOOOF+r1 2.L0C0CE+C1 c:.uOaDCE*Ol 2.i,ü JOCE*: 1

2.Liu JCC+31 2.CJJOCE+O 1 2.LijJCt+01 t.m jCE + O 1 2 . C J Ö VJ u £ ♦ 0 1 21 ii 0 ü «i w £ ♦ C1 2.0JCu0t*Cl

?. SjO^Etiil 2. SJ j^l.t1?: 2. SJOUt + SI ?.5T33?C+-J

?.':ijO(3v.E + Cn

2.5 joaH + c: 2. SOQOOEtC1;

?.5'3 3'11E + 1,'» 2.53ÜjOEtO? 2.5jüC]E+Cr ?.5303QL+J3

'.53T03E+,),3 2. 51003E + ';3 2.53303E+CC

1.CCCC3E-01 I.OUOCE-IU l.GCC30t-0l 1.C0300E-01 1.0G003t-01 i.oroo^c-oi LflOOE-Ol

1.2:303E-Ol i.2Coaot-oi 1.2C003t-01 i.^raoOE-oi 1.2CC03E-B1 1.2',3C3t-3l l.?p303E-31

00X00 000X000

CCOOXOOOO 00X00X00

OOCXOOOXOOO 00X00X00X00

OOOXJOOXOOOXOOO

00X00 000X000

0000X0000 ccxooxoo

000X000X000 0ÜX00X00X00

000X000X000X000

2.53<.13t-Cf 3.'i2ülOE-06 '..eicuE-os o.<*9-J25E-06 8.7078(}E-06 i.l5387F-0F 1.52^8?L-CE

2.3a03aE-Oe 3.l76^9E-^6 3.ft8852E-06 S.TlOgSF-O« 7.99699E-0t 1.05950E-OF 1.3872PF-05

i..6C531E+',0 e.31C'»2£+n!i 7.7bq7l<E+30 1.1996i»E+:i 1.61U62E+C1 2.13929t+01 2.83775E+01

'..3149»E + 30 5.87672E+Q0 7.21i»58t+CC 1.11351E+C1 1.48700E+01 1.96975E+01 ?.,;8923E + 01

-7.|i3E83£+0f1

-6.6881i*E+00 -6.39913E+00 ■6.5'»798E*0C -t.l6i.nt+3C -6.1755i»E+30 -5.77l.27r + 00

-6.76929E+00 -o.'.CilSi.E+OO -6.09853E+30 ■6.26377r+0C •5.86i»7i»E+00 ■5.88299E+90 ■5.'»71?7E*00

2.i.0 JÜCE+L 1

2.C0JOCE+i 1 2.LjjObi+Ol 2.CCJgO£+31 i:.wüOCCE+31 2.30300£+:3 2.UL0ÜCE + C 1

'.5JQ03E<-':: 2.iTSOJc+C 3 2.53 3 31t+0 3 2.53J03E+CC ?. 5 3 0.3E + 3'1

?.i0300E+0C 2.EJÜ-3E+0:

Lucroct-oi l.btaDOE-Ol 1.UC300E-31 i.'.^oaE-oi 1 .I4QCG3E-01 i.^coooe-oi LU^JOOE-ai

00X00 000X000

0000X0000 00X00X30

000X000X000 00X00X00X00

000X000X000X000

2.2025fF-06 2.97181E-0f- 3.6187CE-0fe ■5.6C68»E-Cf, 7,'.C'»28E-06 9.80911E-C6 1.27363E-05.

'».36997E+00 E.51132E+00 6.73095E+30 1.0«»11JE + 31 i.380Z}E*i31 1.82808E+31 2.38306E+31

•6.52957E+00 ■6.1«»?S5E+9C •5.83C90E+00 ■6,011!»2E + 00 ■5.60Ü88E+00 •5.6259f.E+00 ■5.206q6E+00

2.oüi.3CE + 3 1 2.CÜ0DÜE+?! 2 iljuG30£+0 1 2.Cü j()fic*31 2.0000C£+ei 2.20O3CE+01 2.CÜ33CE+01

2.5JO0JE+ü3

?. 53JJ0E + C'! 3.5j033i. + Crj 2.530C3E+03 ?. 53a0j£ + 00 2.53003L+0T 2. 5ü33uL«-00

1.60303^31 l.<i)L303t-01 1.6CüOa£-01 1.6C3D3t-31 1.6C000E-01 l.e^OOOE-Ol l.eOC33E-Ol

00X00 000X000

0000X0000 00X00X00

000X000X000 00X00X00X00

000X000X000X000

2.Ü8366E-06 2.795<59E-06 3.38715E-06 5.2O&29F-06 6.89851E-06 9.1393<»E-06 1.1775'*E-05

3.85821E+00 E..19607E + 00 6.31U6SE+00 9.78873EiOO 1.28883E+31 1.70697E+31 2.2082aE+01

•6.31058t*00 ■5,91312£+00 ■5.58923E+00 •5.78?95E*00 ■5,36i.52E+00 ■5.39635E+00 •<..9723<»E+00

82

Page 85: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TABU «-<* (CONT) TYPE I I GAGE, GENERAL DESIGNS

LENGTH WIDTH LOOP SPACING PRI/SEC MUTUAL INDUC GAGE FACTOR ERROR TERN (INCHES) (INCHES) (INCHES) PATTERN (HENRIES) / Nf \ (PERCENT)

*.OOQOOc»ffI 2.53 001EVC 0 8.00000F -02 00X00 5 . 22395E - 0 6 U . 9 5 6 5 3 E O O - 3 . ? 3 5 5 0 E * 0 0 <».oooaoE»pi 2. 5 0 0 0 3 E + 0 0 8 . » P 0 0 0 t - 0 2 000X000 7 . 19375E -C6 6 . 8 3 5 7 S E + 0 0 - 3 . 5 7 9 3 2 E * 0 0 <».00000E*91 2 . 5 0 0 0 J £ » 0 0 8 . 0 C 0 0 9 E - 0 2 0 0 0 0 X 0 0 0 0 8 . 92095F - 0 6 8 . 4 8 7 7 1 E + 0 0 - 3 . M»996E*00 * . O O u O O t O l 2. 53000E+00 S.OOOOOE - 0 2 00X00X00 1 . 37162E - 0 5 1 • 30<»20E* 01 - 3 . 51285E*0 0 4 . 0 0 0 0 0 E + 0 1 2 . 5J003E+GC S.OOCOOE - 0 2 000X000X000 1 . 85S51E - 0 5 1 .7701<»E*31 - 3 . 33671E+Q0 "».C06JCE»C 1 2 . 5 0 0 0 0 E » 0 9 S.OOOOOE - 0 2 00X00X00X00 2 . 4633CE -C5 2 <3<t611£ + 01 - 3 . 3 « 1 6 2 E * 0 0

~57 OOOOOE+Ol 2 . S0003E»00 S.OOOOOE - 0 2 000X000X000X000 3 . 2 9 M 2 E - 0 5 3 • 142 98E+ CI - 3 . 158OQE+00

<».JOOOOE»CI 2 . 5aaoiE*oo 1 . 0 C 0 0 0 E - 0 1 00X00 k. S«»201E - 0 6 k . 6 C 0 6 i £ » 30 - 3 . 5 8 9 2 5 E * 0 0 4 . 0 0 0 0 C C + 0 1 2 . 5000JE+00 l.OOOOQE - 0 1 000X000 6 . 623<»2E - 0 6 6 <303<»lE + 30 - 3 . <»2197E*00 •*. 00000E + 01 2. 50 000E+03 1 . 0 0 0 0 0 E - 0 1 0 0 0 0 X 0 0 0 0 3 . 16<»<»8E - f t 7 • 785<»J£* 00 - 3 . 2 8 3 5 2 E * 0 0 » . 0 0 0 J 0 E * 0 1 2 . 53 003E+03 l.OOOOOE -ai 00X00X00 1 . 25826E - 0 5 1 • 1982<»E* 01 - 3 . 35685E *0 0 <».bTffOffE*Tl 2. 5 u 0 0 3 c * 0 0 l.OOOOOE - 0 1 000X000X000 1 . 69031E - 0 5 1 . 6 1 2 5 2 E * 01 - 3 . 17330E+00 • .0000CE+G1 2. 5JOOJE+OC l.OOOOOE - 0 1 00X00X00X00 2 . 23968E - 0 5 2 . 136<»SE«-01 - 3 . 17929E»00 -.uiiOOCE+Ol 2. so OOOE +oa l.OOOOOE - 0 1 000X000X000X000 2 . 9.6<»9*E - 0 5 2 • 83355E + 01 - 2 . 99C25E»00

<•. OfiO OOE + O 1 2. 53 003E *C 0 1 . 2 0 003 £ - 0 1 00X00 53ii 82E - 0 6 k • 310 30 £ • 0 0 - 3 . "»6 G6«»E +3 0 <*.00au6E«01 2 . 500Q3E+0Q 1 . 2 C 0 0 3 E - 0 1 oocxooo 6 . 15950E - 0 6 5 , 8 6 9 7 1 £ • 0 0 - 3 . 28U39E+00 <*.C0000E + 0 1 2. 50 003E+0 3 1 . 2 C 0 0 0 E - 0 1 0000X0000 7 . 55036E - 0 6 7 . 2052<»£+ 00 - 3 . 13969E+00 *.GOOOaE»3l 2. 53003E>00 1 . 2 0 0 0 3 E - 0 1 coxonxoo 1 . 16b2*E - 0 5 1 . 1 1 2 1 1 E + 0 1 - 3 . 2198TE+00 < * . £ 0 0 0 0 c * 0 l 2 . 53Q03E»00 1 . 2 C 0 0 0 E - 0 1 •300X000X000 1 . 55<*38E -C 5 1 .*8<»90Ef01 - 3 . 0 30 S8E+3 0 %.OOOOOE*OI 2 . 5 3 0 0 3 t * 0 3 1 . 2 0 C 0 0 E - 0 1 00X00X00X00 2 . 05913E -C5 1 . 9 6 6 9 0 E + 3 1 - 3 . 3'»'j6'. ,r»00 <•. jooooE+ai 2 . 500Q3E»0 0 1 . 2 C 0 0 0 E - 0 1 OOOXOOGXOOOXOOO 2 . 70117E -C5 2 . 58500 £ • 3 1 - 2 . 8l»831E+00

<».oO «0G£»0 1 2. 5uOOOEVCO i.*»onoo: - 0 1 00X00 u. 26851c. - 0 6 (» . 0 6 5 3 0 E + 3 0 - 3 . 3<»521 E»3 0 -..CQuUCE+01 2 . 53 OOOE+OO 1 • i»C0 0 0 E - 0 1 000X000 5 . 76919E - 0 6 5 .5m»31E + 00 - 3 . 16166E+00 '•.uOOOOE+O 1 2. 50003t«-00 1.4GQ03E - 0 1 coooxoooo 7 . 03«,86E - 0 6 6 • 72161E+ 00 - 3 . 01219E+0 0 -..aooocE + oi 2 . 530G3E*C0 l.OOOOOE - 0 1 00X00X00 1 . Q8911E -G 5 1 • 0 3973E+ 01 - 3 . 3 9963E»0 0 4.0«)aaOE + Ol 2, 5 3 0 0 3 E » 0 3 l.OOOOOE - 0 1 000X000X000 1 . *4087E - 0 5 1 • 3 7813E* 01 - 2 . 90632E *0 0

• j uO G OE + 3 1 2 . 5 0 0 0 J E + 0 3 1 .4G003E - 0 1 00X00X00X00 1 . 90863£ - 0 5 1 . 8 2528E+11 - 2 . 91956E +30 '••uOGOOE + O 1 2 ( saoaoe.+co l.OOOOOE - 0 1 000X000X000X000 2 . 48283E - 0 5 2 • 37886E* 01 - 2 . 72556E+00

<*« uO 00 Q£>0 1 2. 53003E+0C 1 . 6 0 0 0 3 E - 3 1 ooxoo < • . QI.205E - 0 6 3 . 9535"»~ + 0 0 - 3 . 2<»015"*0 0 <,.003 JOE*'' 1 ?. 5 i 0 T 3 £ + 0 3 1 . 6 0 0 0 3 P -0' . 300X000 5 . '.32 9 ? t - 0 6 5 •18906E+C3 - 3 . 35C62£*90 <• • J0C u uE »C 1 2 . 5300J£-t-00 1 . o 0 GOO £ - 3 1 COOOXOOOO 6 . 5918 Si; -C6 f. .3!i53<»E*0C - 2 . 89753E +-0 0 '•.CO JUOE + Ci 2. 5Goo3E*oo 1.60C03E •31 00X00X00 1 . J2282F -C5 9 . 77<»72E* CO - 2 . 9915SE *3 3 V.uJDOaE+31 2 . 5 0 03 3£ +G 3 1 , 6 0 0 0 3 F. - 3 1 000X000X000 i a 3<»38 7E - 0 5 1 • Z 867-.E + 31 - 2 . 795i»0£+00 <• «G000 0£*3 1 2. 5 3 3 0 3 £ * 0 0 1.6caonE - 0 1 00X00X00X00 1 . 78013E -C 5 X . 7 j l » l 7 £ + n l - 2 . 81236E+30 ••.G0000E + 0 1 2 . 5u003£+G7 1 . 6 0 0 0 0 E - 0 1 000X000X000X000 2 . 29789E -C5 2 .20<»Q1S«-01 - 2 . 617<»G E »00

33

Page 86: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

ffmm MV-iWWiV'frrrmn. T:/H(T>,",',-;»T- •W ™ ■ r.-^.jr^n^Tfir ■,

TA^LF Ä-U (CONT» TYPE 11 GAGE, GENERAL DESIGNS

LENGTH (INGMtS)

WIDTH (INCHES»

LOOP SPACIN3 (INCHiS)

PRI/^EC "ATTtON

MUTUAL INDUC (HENRTfS)

GAGE FACTOR

(rr-P^MM/USFQ/

SRROR TERM (PERCENT)

6.COCOüE+01 6.C00C0E+01

6.C000C^+0l 6.l,ü000E*nl 6.0DaOQE+Ql 6.uü3üOE + !J 1

?.500JJE*C3

?.5i001E+00

?.5303TE*Ü0 a.saoojE + o1? ^.soaoaE^oo 2.5jünjE+00

W.003DQE-02 8.00003E-02 «.00600E-02 8.0C000E-02 8,CaC00E-ü2 ?.CC000E-02 9.CCCO0E-I12

OOXOO 000X000

0000X0000 00X00X00

000X000X000 00X00X00X00

000X000X000X000

7.7i»16CE-06 I'.gSSeeEOO -2.50U78E*00 1.06659E-r5 f .83i,i»^£+00 -2.<«0190E*00 1.3232?t-C5 e.'tesge'i + OO -2.31620E+00 2.C3'»07E-Cr 1.3C39<»E + 01 -2.35e33E+00 2.75762E-C5 1.76975E + ')1 -2.2'439i»E + 00 3.65'»96E-C5 E.a^SSgE + Ol -2.21.599E+00 '».»»9Q52E-C5 3.i<»220E4Cl -2.12599E-fOC

6.C000CEV1 1 o.COOOCE+3 1

e.oüCJuE+pi 6.B0JCCE+? 1 ö.OOOQüE+O 1 o.OOOOCE+C 1

2.5000aE+CO 2.5JJOJE+C0 2.5üOO'3E+0!) 2.5003JE+Q? ?. 5Jaao=.+oo 2.50000c*CC 2.5J0QJc*ÜJ

1.0rOOQ£-01 1.0C003E-01 l.CQCOOE-01 l.OCOOOE-01 1.0C303E-31 l.ncOOSE-Ol

00X00 000X000

0000X0000 00X00X00

000X000X000 00X00x00X00

000X000X000X000

7.17887E-C6 9.82516E-0e LZlie^E-Of 1.86689E-05 2.50935E-C5 3.32',85E-0? '..(♦0418E-0&

«..sggyeE+ao 6.30211E+T0 T./TijroE + O!! i.ig'AgsE+ni 1.61213E*(!1 2.13596E+01 2.8327TE+01

•2.<.0837F+aO ■2.2983QE+00 ■2.2073i»E+00 •2.25?39E*00 •2.13521E+00 -2.13953E*00 •2.01608E+80

6.00000t*01 6.COÖ«uF*01 6.0ÜQ00E+T1 6.-OQuLE+01 6. L ü Q J C £ + ^ 1 b.-OOJuF+Jl 6.CC3 JliE + 01

2.5ja03£+00 ?.53flOJt*(iO '.SOOCOEtCO 2.53003E + C(! ?.5J00JE+CJ

2.5J03JE+C]

2.5J0a3E + u(!

1.2n003£-01 1.20000E-01 1.2CC0JE-01 1.20CC3c-01 1.2C000E-Q1 1.20000F-01 1.2CüüO£-01

00X00 OOOXJOO

0000X0000 ocxooxoo

000X000X000 ooxcnxooxoo

000X000X000X000

6.72019E-06 9,ll»091E-06 1.12iniE-05 l.r31l5E-0E 2.30Ö59E-0E "^.C58^3F-'!,; (♦.CIMIE-OS

'.t339'»4E + 00 5.868«.lE + 00 7.2035ÜE+00 1.11185E+T1

1.96D«»2E+31 2.581.22F+C1

•2.32366E+00 •2.20781E+00 ■2.1129'3E+00 •?.16581E*00 •2.0'«2UFfOO ■2.0<.87qE+?0 •1.92360F+00

6.C0000E4-P1 &.00uuuc*3 1 6. t 0 J J ü E «-01 b.üOuOCc+C 1 6.ujo00£+r 1 6.C00J(J£*31 b.OOuQuE+Ol

2. B^OOOL + OT

2.i>]0QnE + 3p

2.5flu03EtQQ 2.53033^0" 2.?Q003c+CJ 2.530Q3£*Jü

'.5Jil03E*0j

l.'tO0Q3E-01 1.4COO0F-Ü1 1.UCCP3E-01 l.ttPCCOE-ai l.itCflQOF-ll i.uccroE-oi

00X00 000X000

0000X0000 00X00X00

000X000X000 ooxooxonxoo

nooxoooxoooxooo

b.^33<«2E-(]6 8.C6498E-06 l.C<»l»ä9E-C6 1.61721E-C5 2.1'»08c:£-ü5 2.83571E-05 3.^9103F-C=

'♦.0bi»4JE + 0(3 5.5C301E+00 fc.71988E+00 1.039i«7E+0l 1.3777'4E*01 1.8?i»76E+01 2.37809E+01

•2.2<.769E+00 •2.12718E+00 •2.02929EO0 ■2.08e96E+00 •1.96C7';c+00 ■1.96973F>aO •1.8'»3^7t+00

6.CQuJ3E+31 b.caoaoc+31 b.QCOOÜE*'1 1 u.üflJOlHO 1 6.u03QCE + C 1 b.CüOflCc*0 1 b.cooauF:+oi

2.5J3J3E+01: 2.5)303£*C3 2.5Jü00£+33

?.53033EtC3 2.53003E+GC 2.5J303E+CC

1.6C000E-01 l.f.p:C0E-01 i.eccoat-oi l.bOOCOL-01 1.6CQC3t-31 1.6C003E-01 1.6P0Q0E-31

00X00 000X000

ocooxrooo 00X00X00

000X000X000 00X00X00X00

300X000X000X000

5.999^8E-Ce 8.Ü6657E-06 g.rqifU'.E-Ofc 1.5193CF-P5 1.997i»lE-0F 2.b<«669F-05 3.U1729E-0?

3.85267E*"Q 5.i877bE+C3 e.3a361E*-00 9.77212E+00 1.28635E+01 1.70365E+01 2.23323E+01

•2.17P&0E+00 ■2.05i»32E+Q0 •1.95<.?3E + 00 ■2.01628E+00 •l.«8fli»2E+00 •1.8997PE+05 ■1.773S5E*00

84

Page 87: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

MBBWIQBPiWBWBi^lP Mfff.';. • .'■■■:l,i;.-r;\- i:- ■ '■.. : .-■•■ y *■.:■'■;•..., ..■■t.

TÄRLE A-l» (CONT) TYPE II GAG?, GENERAL tlESIGNS

LENGTH (INCHES)

WIDTH ( INCH-IS)

LOOP SPAC1N3 (INCHES)

"KI/SEC PATTERN

MUTUAL INDUC (HENRIES»

GAGE FACTOR

\AMP»MM/USEC/

ERROR TERM CPERCENT)

2f.»0 JC£ + 3 1 i.COuQ^E O 1

2.tCüGJ£+Ci 2.CaüJb£>Ql 2.CJüCCE*01 2.ÜC000E+01

3. ooaiot + oo T. OJ030FtO: i. JJOOJE*1»

3. OJOO JC«'3';

3.C0QO3E*-O0 3.OJ0J1t+u0

8.0C:CDE-T? 8.0CÜ00E-32 8. JuOOOE-0' «.0r003t-02 8.ÜC0OOE-02 e.0CC&JE-3? a.orcooE-02

ooxoo 000X000

0000X0000 00X00X00

000X000X000 ooxooxooxoo

000X000X000X000

2.qi033E-06 i*.01961E-06

7,67831E-06 1.0(H»67E-05 1.38500E-05 1.86159E-05

5.2550<»E*00 7.28275E+00 9.a8227E+00 1,39331E+01 1.90307E*01 2.S2305E*01 3.<»0 55<»E«-01

•9.01903£»00 •6.6<ta78E^00 ■8.33710EtOO -e.l>8089E>30 •8,05890E*00 ■8.05931E+00 ■7.60559£*00

2.0030uE't'01 2.i,üw30E*r 1 2.00JJCE+C1 2.C,0000£»01 2.üOUOCE*0 1 2.C0600E + Ü 1 2.COO00£*01

3.OJOOJE^OO 3. üSUOIcKül 3. coomi + ca 3. OlOOJi+Ol i. 0u0u3tt00 3.03030E+03 3. 03003E* j?

1.QCOJOE-J1

l.CCOOOE-01 1.300CPE-01 1.0C0OOt-31 l.OOOOOE-01 1.0C00uE-01 1.0C300E-31

00X00 000X000

0000X0000 ooxooxoo

000X000X000 00X00X00X00

000X000X000X000

2.70i»50E-06 3.712t,8E-06 '♦.59129E-C6 7,06790E-06 g.s^sabE-oe 1.26'»5'*E-06 i.sa^ooE-os

<>.89880E*00 6.7<*9<»tE«aO 8.37293E+00 1.2S700E<'01 1.7«»«»55E*01 2.31206E*01 3.09269E*01

•8.67598£*00 •8.27678E*00 •7.9<»265E + 00 ■«.105i»0£+00 •7.65685E+00 •7.663<»6£*00 •7.18727e+00

^.OOCOC^tCl 2.t03aCE+31 2.u200C£+01 2.UuOCr*0 1 2.!;0OCCc + 01 2tJOuuOu+Cl 2..03CC£+]1

3. C300 J£ + 3^ 1. CbOCjc + C] 3.3030JE+C3 3.ai3QlE*JQ 3. ü3aJH>0Q 3,0 jQCJt «-Cü 3.0 3D0 3E + G''

1.2CJ0ÜE-01 l.?Cu03£-ül 1.2C00aP-0l 1.2C0ü0E-0l 1.20Ö33E-01 1.2CuCaE-01 1.2r!303E-01

00X00 000X000

0000X0000 00X00X00

000X000X000 00X00X00X00

000X000X000X000

2.53689E-06 3.<»6279t-06 <».26083E-06 b.57263E-06 a.soa^^E-oe i.l672?E-05 1.5i.l35E-C5

«..6080i»E + 00 6.31<»53£+00 7.79525E*00 1.200<»6E*01 1.61585E+01 2.1<»0 92E*01 2.8'»020E + 01

■8.37321E+00 ■7.9i»967E*00 •7,5970<»E+30 •7.77768E+0fl •7.30»"' '♦OO •7.3:^ . jt+OO ■6.82892EiOO

2.oacocc*c i 2.Cü00üt*3 1 2.00^:»,^+: i 2 .wCOuCc + o 1 2.CÜO0CE+C1 2.CQJ00'+01 2.L0JQ0E+C1

3.li3303E+03 3. OJOQJt^uO 3. O:OOJE + O" ■'. O^OCTE+OJ 3. c joiaz^o11

3.C303JE+C0 3. C00:3E + O3

i.uccoaE-oi l.LSOOOE-Ol 1.1.0000E-Q1 l.<»QOaJE-01 l.ttOOOOE-Ol i.i»caa3E-oi l,i»PCC3E-0l

00X00 000X000

0000X0000 00X00X00

000X000X000 ooxooxooxoo

000X000X000X000

2.39569E-06 3.25278E-06 3.9a3<»H-06 ötlS^OlE-Ofe 8,19612F-06 1.18593t-0E l.'»229'«£-05

<*.3625<>E*Q0 5.9'»77<»E*00 7.30872E+00 1.1276QE*01 1.50786E+ai 1.99745E+01 2.62975£*01

•8.10 0<»(»E^0Ö ■7.65612E+00 •7.28817E»00 •7.<»8560E+00 ■6.99965E+00 ■7.01958E*00 •6,5l<»76£*00

2.cücatE+r i 2.UUJüO£>C1

2.1JOüOC? + '?1

2«C30UOE+J 1 2.C000CS + 3 1 2.Qüü0uE+,7 1 2.üJ0';Gi£«-ai

3,&30a3£+30 3.00ÜQJE+CO 3.jJOOJE+OO 3.aaaoit+oo 3. O30O3Et3: 3. ooon€ + oo ■».Ü J013E + 0^

i.e.coaat-ai LecooaE-Ti i.e^ooac-oi 1.6P000E-01 1.6L0B3E-31 l,6C000t-Ql i.scaoaE-oi

00X00 000X000

0000X0000 00X00X00

000X000X000 00X00X00X00

000X000X000X000

2.27383E-06 3.Ü7187E-06 3.7i,i.96E-0 6 5.79983E-0f ■'.67?0<»E-06 l.ül6<»3E-05 1.32235E-05

«..15020E*aO 5.63092E+00 6.88917E+00 i.a6«.«lE + ai 1.<»1512E*01 1.87U36E+01 2.'»5029E*01

•7.85115E+00 •7.38888E+00 •7.0081'♦£♦00 ■7.22139E*00 ■6.72211EtOO -6.7<»875E*00 •6.23<»50E*00

85

Page 88: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

TABLE A-l» (CONT) TYPE II GAGE, GENERAL DESIGNS

LENGTH WIDTH LOOP SPACING P R I / S E C MUTUAL INOUC GAGE FACTOR ERROR TERM ( I N C H t S J ( INCHES> ( INCHES 1 PATTERN ( H E N R I E S ! ( W \ (PERCENT!

VAMP^NM/USEty

H . C O O O C E + C I *. ooaait+Gc 8•GO 300 E - 3 2 0 0 X 0 0 5 . 5 7 7 6 2 E -oe 5 .2< .8 32E»9C -<». 600 75E»0 0 <».roooGcOi 3 . 3JGG3£*C3 " . 9 C 0 0 9 E - 0 2 0 00X000 7 . 7 1 5 8 3 E - 0 6 7 . 2 7 2 6 6 E * 30 - U . ( » 2 2 9 9 E * 0 0 • » . u u 0 0 G E * j 1 3. 3 3 09 3E• 03 » . 0 0 : 0 3 E - 0 2 0 0 0 0 X 0 0 0 0 9 . 6 0 7 7 0 E - 0 6 9 . 0 6 8 8 2 E + 0 0 - 4 . 2 7 3 7 2 E + 0 0 <•. oc ooos+; 1 3 . 3 3 03 3 E 0 3 6 . 0 C 0 0 3 E - 0 ? ooxooxoo l .<»7i»95E - 0 5 1 . 3 9 1 3 0 E + 0 1 ••<». 3<»3?8E»0 0 • * . C J U J J £ » C 1 3 . U C J C J C + G G 6.CCCG0E - 0 2 oooxoooxooo 2 . 0 1 0 - . 1 E - C 5 1 .9C00 5E+G1 - 4 . 1 < . 2 0 3E + 0C <..»:03CCE»0 1 3 . 3 3 OG 3E + 0 3 H.OOOOOt - 0 2 ooxcoxooxoo 2 . 6 6 5 3 5 E - 0 5 2 . 5 1 9 3 1 E + 3 1 ••<«.1<»287E>0C <» . OG 3 u l c »G 1 3GuGCE*G3 P . 3 C 0 3 3 E - 0 2 oooxoocxoooxooo 3 . 5 8 9 5 6 E - 0 5 3 . 399f»9E* 0 1 - 3 . 9 2 816E+30

* • G 0 u u OE »C1 3. 3 0 3 0 j £ » 3 3 1 . 3 G 0 0 3 E - 0 1 ooxoo 5 . 1 9 0 8 1 E - 0 6 I . . 8 9 2 0 7 E + 09 - 4 . U 3 5 6 3 E + 0 0 G 3u 5C E + 3 1 3 . OCOCJE+OC 1 .G0G33E - J 1 0 0 0 X 0 0 0 7 . 1 3 7 7 7 E -C 6 6 . ' 3 9 J 2 E * 00 - <». 2W439E + 0 0

. . . C 0 0 0 G E + 5 1 3 . C 1 3 3 C t * C C 1 . 0 0 3 0 3 c - 0 1 0 0 0 0 X 0 0 0 0 8 . S k O U E -C 6 s.ssgnE + ̂ o -<» .0d«.97E+90 •» . GO .,2 OE *G 1 3 . j 3 3dGE *C 0 1 . 0 3 3 G 0 E - 0 1 0 0 X 0 0 X 0 0 1 • 3 5 9 9 J E - 0 5 1 . 2 8 I . 9 9 E M 1 - < » . l b 3 7 3 E * 0 0 * . J C 3 G E +0 1 3 . GuQ£3£+Q3 1 .CCC30E - 0 1 0 0 0 X 0 0 0 X 3 0 0 1 . 8 3 9 2 9 E - 0 5 1 . 7 4 1 5 2 E + H 1 - 3 . 9 5 0 8 S E + 00 4 i t ilCCCE *0 1 3 . 0 j 0 0 3 c * 0 0 l . O f G O C L - 0 1 0 0 X 0 0 X 0 0 X 0 0 2 . 4 3 7 7 0 E - 0 5 2 . 3 0 8 0 3 E 4 9 1 - 3 . 9 5 i . 9 0 E * 0 0 - » . C 3 G 0 l t * 0 i 3 . 0 3 uG3£*G G 1 . 0 G 0 0 3 E - 0 1 0 0 0 X 3 0 0 X 0 0 0 X 0 0 0 3 . 2 5 394E - 0 5 3.3866<»£ + 31 - 3 . 7 3 1 1 9 E + 3 0

* . .G3udG£+0 1 3. U J 3G 3E•O 3 1 . 2 C C 9 3 £ - 3 1 ooxoo <•. 8755CE -C 6 1 . 6 G 1 3 2 E + 0 0 -km29C18E* 00 H . O C C J 0 E + 1 1 3 . 0 3 9 0 J £ * 0 3 l.aooanE - 0 1 0 0 0 X 0 0 0 6 . 6 6 7 1 5 E - 0 6 6 . 3P<» «•<»£• OC -< • . 3 8787E + 0 0

. C COG + 0 1 3 . G J Q O J E + GO 1 . ? C 3 3 3 E - 0 1 0 0 0 0 X 0 0 0 0 9 . 2 1 6 2 6 c . - C 6 7 . 7 9 1 8 1 E * 0 0 - 3 . 9 2 0 2 8 E + 0 0 i».G00 0 u t * 0 l 3. G J 3 3 3 E * 0 : 1 . 2 C C 0 9 E - 3 1 0 0 X 0 0 X 0 0 1 . 2 6 6 4 1 E - 0 5 1 . 1 9 8 M » E * 0 1 -<». 00 758E »00 - . . . • 33 0GE + 0 1 3 . 0 J 003E + G 3 l . ' G G O O E - 0 1 0 0 0 X 0 0 0 X 0 0 0 1 . 7 0 0 6 7 E - 0 5 1 . 6 1 2 8 3 E + 3 1 - 3 . 7 8 5 9 8 E + 0 0 •».COGu'3"+2 1 3 . 0 j 30 G£ + C J 1 . 2 3 2 3 3 E - 0 1 0 0 X 0 0 X 0 0 X 0 0 2 . 2 5 3 i . wE - 0 5 2 • 1 3 6 8 9 £ » 31 - 3 . 7 9 3 3 9 E + 0 0 • . .CG303E + G 1 3. C 0 0 0 J E • C j l.arcooc - 0 1 0 0 0 X 0 0 0 X 0 0 0 X 0 0 0 2 . 9 8 2 1 3 E - O f 2.33<»17£ + « 1 - 3 . 5 6 3 7 5 E + 0 0

•». k GO 0C£ +01 3 . j w G 3 1 £ * C ? 1.UC 30 3 £ - 0 1 00X00 • . . 6 0 959E - 0 6 4 . 3 5 5 8 1 E + 3 0 - i » , 15942E + 3 0 <• # u 3 w u C ^ +G 2 3. j 2 Q 3 3s. • C 3 1 . 4 C ? C ? E - 0 1 0 0 0 X 0 0 0 o . 2 7 C 8 2 E -C 6 5 . 9 3 7 6 6 E + 0 0 - 3 . 9 < » 7 8 1 £ » 0 0 <», COOG CI+G 1 3 . g J J G J E + L * l . f »CC03E - 0 1 0 0 0 0 X 0 0 0 0 7.C- 9171E -C 6 7 . 2 9 5 2 i £ * 00 - 3 . 7 7 1 6 5 E + 0 0 -».»CJGCE*G1 3 . 0 J O C G E + C J 1 • <»0 CG j E - 3 1 0 0 X 0 0 X 0 0 1 . 1 8 7 8 4 E - 0 5 1 . 1 2 5 5 9 E • 3 1 - 3 . 8 6 8 9 3 E + 0 0 >.. 'J GOGGE * J * Cu 331E*G3 1 . u 3 0 0 0 L - 3 1 3 0 0 X 0 0 0 * 0 0 0 1 . 5 8-.5BF - C 5 1.5C"»8<»E* G1 -3 .6< .C»2E»0C •» .C jGCGE*01 3 . G J G C ? £ » 2 * i.wcao?E - 0 1 OCXOOXOOXOO 2 . 0 9 9 2 8 L - 0 5 1 . 9 9 3 4 3 E + 21 - 3 . 6 5 1 5 9 £ * 3 0 u . C C O G j £ * C i 3 . ojOJJc»rc 1 . 4 C 3 G 3 E - 0 1 0 0 0 X 0 0 0 X 0 0 0 X 3 0 0 2 . 7 5 6 8 1 E - 0 5 2 . 6 2 3 7 2 £ + 3 1 - 3 . i » 1 8 1 1 E » 3 0

• » . K J G G C E * 1 1 i . CICO 3£•G3 1 . 6 0 C 3 C E - 3 1 00X00 <•. 3 7 9 " & t - 0 6 •..1<.3<»8E + 0C - i » . 0 < . 0 1 5 e + 0 C •».».GCCCC*01 i . G30G3E+GC - 3 1 0 0 0 X 0 0 0 5 . 9 2 9 9 6 E -OC 5 . 6 2 G 8 4 E + " 0 - 3 . 3 2 C 6 8 E + 3 0 • » . C G « - j C £ * 2 i 3 . C 3 j j 3 E » C i i .oOOOCE - 0 1 0 0 0 0 X 0 0 0 0 7, 2<»0 1?E - C o 6 .87571.E+CG - 3 . 6 > » l 2 3 f + 30 • . . W G J O C E + H 3. o:CCJE*CC 1.6CG9CE - 3 1 0 0 X 0 0 X 0 0 1 . 1 2 0 2 2 E - C ? 1 . 3 o 2 7 9 E + C l - 3 . ' 4 3 9 8 E +0 3 •••v c c«u — ^ <* l 3. : : 3 : J E * G - 1 . 6 - 3 3 3 E 0 0 0 X 0 0 0 X 3 0 0 1 • 4850 6E -C 5 1 . i . l 2 1 3 " * 0 1 - 3 . 5 1 0 7 T = > 0 0

* C 1 3. G - u C 3 E + C j 1 . 6 f 0 0 3 C - 3 1 0 0 X 0 0 X 0 0 X 0 0 1 . 9 6 7 2 S E -G 5 1 . 9 7 3 3 ' . < > 3 1 - 3 . 5 2 5 1 1 £ + 3 0 •«« 3. 3 J O G J E + ' C i . 6 r o r i E - 3 1 0 0 0 X 0 0 0 X 0 0 0 X 0 0 0 2 . & 6 S 3 6 E - C b 2 • 2 7£ + 01 - 3 . 2 8 9 2 3 E + 3 0

86

Page 89: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

"I "■

RMMMMMMM.

mmmvmemmm .■■I.IH'P»I|»II»I.IH!IIU,II IIIWM'JI"!

T4iiL[ r.-u (rcNT) TYP? II &aGr, GPNtCAL n£ ;IGN

C

ut (LiTH .v I L r M

(IHCH^S) "Kl/SEC Pfi TTEHN

MUTUAL IKDUC (HENRIES)

oar,;: FACTOR

^)

ER"Oh TERM {PERCENT)

■J«.JO-J:

. + C! än-CCOüE + C 1 6... v,;:r" ♦::

3. L^o; jE + c:

3. C^ JT»C. i. c: Q o J E ♦ c ■

c.0rCOQ£-02

•1.CCCuCt-33

o.OCuCJE-na

OCX 00

oooxoon COOOXDOOC

CQXOOXOO

0C0X100X000 ouxüox onx co

oooxoacxoocxooo

>•, . ?». 3 3 ut. -C f:

^. 181b^t-rJE

?. 3lDl6c"-[it;

S.^WC^E + 'JQ 7.3707sEtOC 9.0fc633E*30 1.3t:)092E + Dl

?.5ie26E01

•2.a719'£*00 ■2.Sl'8cr+no ■a.7fl5i3E«-aO

•3,7flt*3F + 3r!

•2.bl*f-08c+013

*l . - 3 C a y - ♦ : 1 E . . C , j .. - ♦ ü 1

ö.c ;?;c E+J i b.ioo^j-: ♦: i

ut^j-ui-E + Cl

!. C J j J ]-tC J

^. 3 ; 3 u 31 ♦ t.

3. jjQ.^E-fO) 3. 0 JT3 >E*C :

3. 0 . J ; ) E + C j

3.;^ü>,ic»u? 3. er i:: £ + c 3

I.üCCO:E-OI

1.00CJ0E-31 l.CCGOOE-Ql i.D03Olt-Ql i.cc'a^E-(ji u:c:3 JE-31

00X00

000X000

ocnoxoooo OOAOOXOO

OOOXOOOXOOO OOXOOXOCXOO

onoxocoxoooxooo

7.e756CE-ü6 l.C5b^E-rE 1.3086:E-C5 2.:i?56£-C5 2.72381E-C5 3.t399?E-PE t.(k.2071£-C5

'..d9Q82r>Q0 6,77ri.äE*00 fc.3E699EtQ0 1.2ä<»61£+31 1.7'*C96c*lJl i. 3C728E + 01 3. Ü8552£»01

•2.97P27ct00 ■?. 852S2EO0 •2.7(,63i»£ + aO ^.'gg^E+TC ■2.66057E+0C ^.Sb^'t^E + 'JO •2.517i»9E*lQ

|

■b.. J C 0 0 E ♦ 0 1

6 . ^ - C Ü L E ♦ O 1

. t 1

3.: ncEt,. 3.:. K j.t., 7.uj ju -E + C J 3. jJOOJE*: j

3. c JD:.^*O'

T.C;J^JE + C ] 3.:: JC JE + C:

1.2C00JE-Ol I.?:;OOE-3I

l.2C*S0c-Ql i.?::cuE-ni

;.2C',a3L-ai

00X00 noox ooo

oconxoooo 00X00X00

0JÜXC00XOOO

OC.XOQX OUXOÜ

000X000X000X000

7.21259E-C6 i. 8692't£-C6 l^loa'E-CE 1.875116-0? 2.519dn-CE 3.i3e7fcE-C5 t.itZlS^E-C«1

"..^ccorEfjo b.30257i+cO 7.77931E+:0 1.19807E+C1 1.61227E+:i 2.15615£«-01 2.8330'»£*C1

•2.882S1E+0C -2.7i«933E*00 ^.e^oitjE+c: •2.69706Etir ■2.5521'^E+flO •2.537HEE+0C ■?.l.^8•♦9c♦0,;

b.wQQ JPE+'M ■. c o vi o t i ♦: i O.üÜO-JL+C 1

6. J a u G & E ♦: i 6.rG0.Cc+Jl

o.. 0 C 0 C " ♦ j J

3. a) :■: JL+I. '

:! ] o i E ♦ G : j . 3 C 3 E ♦ C C :;30 JE».3 G;CC3«I*C:

C3l3u1t*C.

LumcE-ai i.'.COOOE-Gl l.i«CC03E-01 i. ^:: j G E - 31 I.HCUQGE-31

U^'"-r3E-jl :.UC:G3E-üI

00X00 b,d219PE-C6 OOOXOOO

OOOOXOOOO

COXOOXOO

000X000X000 ooxonx ooxoo

000x000X000X000

9.28658E-CE 1.13973E-05 1.7595^E-CE a.3i»887E-CE 3.11171E-C5 i».')8932E-0e

(•.35i«57E + 0C 5.93E79£+nC 7.2^i79£+G0 1.12E21E*')! 1.5C'»28E+:i 1.992$9E+G1 2.62263E+G1

■2.79b'58E + 33 •2.6579'*E+I30 •2.5<.'.32E+TC •2.60677£*30 ■2.«♦57925+30 ■2.U653''t*3C •2.31396E+0Q

Ö.COJCG- »Gl o.CGt'iG'+GI 6.LGGGC£+C 1 6 . 3 C C C C - + ^ 1 b.-uiJv(CG+'ll

b.tJjutE+ll

3. C 3 303E + C3 3.:J033E+n3 3. a33C3E + C" •'.u3rir,i£; + c: 3.C303j£+03 3. GOOOTctGr 3. CCJOGE + CG

1.6CCCJt-01 1.6fCC:E-3I

i.ecTct-ai 1.6.C0QE-3t 1.6rC3Ji-(31 1.6C0J0E-Q1 1.6CG03c.-01

OOXOO

000X000

0000X0000

HOXOOOO

000X000X000

JOXOOXOOXOO OOOXOOOXOOOXOOO

6.'»8'.3bE-0^ 8.7837^E-C(:

1.G7322E-Q5 1.6«3tmt-(le

2.232'i.E-05 2.917l^E-0E 3.8Q6'«1E-CE

'•.li»223£ + C0 &.e.l897E*3C 6.8732<«E+:Q l.362t2E*31 l.t.llS%E+01 1.86959E+Q1 2.Ui.n5£+:i

■2.7ie36E+3C >2,57«»'S3E+1C •^.«•57^3E♦30 •2.5253«i':+30 •2.37327E+00 •2.38335E+00 •2.230'i7E*30

87

Page 90: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

"V'T ""TT.""!^*--!

■■■■■■■MBWWWMI^WtlWWWWWMWWaWWWi 1 !

P*0Gi<4H üSI^KINPJr.OjrPUI.PJi^H.rrt3

airttHSlÜN 4Q45J) •b«R(3u) ÜIM-.N5iON -Ul(15).-O2U3i«Hüm5)«Tir(a)tT<U(0) PI = J.I««15^26 A,1U=.0üüJäl25&b9

RtAO Hi (H31 (i) il 31 FORMAT (AotAbfA)»,

kiAO itf» (Ha2 (I) , l = l,o) 3^ FJKKAT (Ac,Uo,Aö,A>,M?,Ai,A2,A^>

KiAO J3» (H03 (I),1 = 1,2) 33 FORMAT (A^,A7)

1 CONTINUE. k-AO •», (TAT(I),I = 1,)) kcAO •«, (Tin i)fl*l,3»

■♦ FORMAT UALJ) K-AO =>,Y,X,_R,J< RwAO 6,ITfNMAX.iCR

5 FORMAT U(F9.5,1X)) o FORMAT (3(12,IX))

IF(IT-l)l.,lü,i9 lu CONTI^ÜL

PRINT 2Ü 2u FORMAT (1M1)

PRINT i»*,(TAT(I) ,I = 1,J) PRINT '♦'♦.(TIKI) ,I=li»)

*♦>♦ FORMAT (ÖAlu) PRINT 22 PRINT 22

22 "FORMAT '(* •) PRINT il,(-401(1)

7=IN3JI,TAPi9=0UTPJT)

91

92

93

1=1,12) FORMAT (<«XfA6,aX,A5,iiX,A^,lXiA7,2X,A3,3X,A3,2X,Ab,lX,A5,2X,A^,lX,A

16t2X,A3,lX,A4) PRINT a2,(H32(I),1=1,9) F0RMA^J3K,Ad,3X,Aö,?X,Aä,3X,4i,lX,A5,2X,A9,oX,A2,7X,A9) FäINT 93,1 rfÖ30) .1 = 1.2) FORMAT (6bX,A^,Ä7) PRINT 22 X=X»C(/ Y=Y»C\/ R=R»Cj/ ÖRsDR^üV " IT - CXIT T£ST NNAX - MAX NUMBER OF PRIMARY TURNS TO tic iOMSIU-RtiO liR - MAX NJMBiR OF TlNcS OR IS ADOiO TO R INTF - NUM3 TAT - TABL^ TIT GAF

ft OF PRIMARY/StiOMJARY _ HEADING

TABLE HtADINS GAGIL FACTOR U HlLLlVOuTS P_R

INTERFACES

4MP»l1M/hICR0SE£UN0

SET R DO 100 1=1.ICR PRINT 22 IFJ 1-1)16.15.17

17 R=R ♦ OR lb CONTlNUt;

SET S AND iALCULATE aa ANO E^R rOR. EACH M

88

Page 91: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

m.vwpHijißf^Typiwirvt. '■/ r.f% r- Ji^*'".""f«Ti,r'3l i"rfv» vf

■wm

flM-NHÄA-l üü eü M-l.il

M=saRr(K»A ♦ y»Y»

MM=sa'<T(x»x ♦ Y»r ♦ J'S)

1 y»AuJ^(BMlf*C)/(S»(V*A4))) ) PJli=(AMÜ/PI» »(ÜLO^C'CXfÖ)/(i'tX^a.*) )» ♦ X»lAA-Bi/l3»J)» QPL = lia(H)/X iRR(H» = (pja-uPL)/p.n

i CONTINUE.

ia j

7i

2ij

94

Uü 2QJ N=2tNMAX J'H-l H?-U Ni=N-l Ji=N-l INTF=2»(N-1) UX=u. QY = 3. L0wF=INTF ÜO 3JI] J = 1»JÜ UX = ax ♦ CJ£F»au(J) (1Y = QY ♦ GüiF»aQ( JM(l.-cRR{ J)) u0^F=i0iF-2. C0NII>JUi Q=UX t<=l. - Qx/^Y oUF=lOüüG-o.»Q/(X»(l.-cR))

X = X/L;»/

Y = r/Gy/ R=R/Gi/ PRINT 71,X.V^jNP.MStiiGAF.i^ FORMAT {lX,3(£12.5,lX»,2X.I2,i»X,I2,2X,i(£l2.5flxn X=X»^»/ y=Y*i;(/ R=R»C\/ CONTlNJi C0NTINU£ GO TO 1 CONTI^O- GALL EXIT cNO

89

Page 92: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

P*OG*AH OSINZdNPUr«OUTPUTfPUMuHtTAP£rsiNPJTiTAPrLft'OUTPJT) DIMENSION (ja(20»,£RRC2a» DIMENSION H01(15)«H02U5)«H03(15) DIMENSION NPATTdO» .P*TT (101 »TERNNC ta> »NMAXXili) DIMENSION TIT(8)tTAT(8> PI«3.1<*15926 ANÜs.00aCul25&69 C«**.a25<i READ Jl, CH01CII f Utt LI)

31 FORHAT (Ab.AS(Ai»fA7,Ar.A6,A5,Ai»,Ab.A5,A<*) R£A0^32,JHD2 (IJ ,1*1,7»

32 FÖRMAT ( AÖ, At», Ä8 ,Ä7', A9, A2, A9) READ 33,(H03(I),1*1,21

33 FORMAT (A<»,A7) READ 3<*, (NPATT(I),I»li7)

3<» FQRHAT (8IIÜI READ 35,^PATT(I) ,1 = 1,71

35 FORMAT (7Ä9) READ 36,(r£kNN(I),I=l,7)

36 FORMAT (7A7) RcAO 37,(NMAXX(I),I*1,7)

37 FORMAT (712» READ 6,10^

6 FORMAT (12» i CONTINUE

READ '«, (T^ril) ,I*l,d) READ <*,(Tir(I) ,I*l,d)

i» FORMAT (bAlü) R-AO 5,Y,X,k,[)R

5 FORMAT (<»{F9,5,lX») RtAO 7,IT

7 FORMAT (12) IF(IT-1»1^,10,9^

lg CONTINUE PRINT 20

2ü FORMAT (1M1> PRINT <*. (TAT (I) , 1 = 1.0) P<INT <♦, (TIT (I» ,I = l,(J) PRINT 22 PRINT 22

22 FORMAT (♦ »» PRINT il , (ROKI) ,1 = 1,11)

91 FORMAT (<,x,A6,oXt4S'»X,Ai,,lX,A7,6x,A7,5X,Ao,lX,A5,2XfA'4(lX,A6,2X,A

PRINT 92,(rt02(I»,1=1,7) 92 FORMAT ( 3X,Mo,9X,A&, 5X , AÖ, 4X,A7,7X,A9,oX,A2,7X. A?)

PRINT 93,(H03(I) ,1 = 1.2) 93 FURMAI (71X,A*,A7)

PRINT 22 PRINT 22 X = X»C>/ Y=V»CJ R=R»C; üR=OR*:V IT - EXIT T-ST NMAX - NU.i3£K OF LOOP INTERFILES ä£TXE=.N z*l<iHz PXl AND 5E3 T0RN5 IiiR - MAX NJMBER JF TlMoS DR 13 AUQ^J TO R NPAT - Pki/Sci PATTERN

90

Page 93: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

] PAT.Td^N - PKl/Sdi PATTiRN TAT - FABLE H£ADINS TIT - FABLE HcAOI^; UAF - liAUr. FACTOR IN HILLIVOLFS P.R AMP»MM/HICi*OS£SOMO

btT R 00 IJi] 1 = 1,IC« IF(I-l)löilD,l/

l^ R=R ♦ JR lo CONTINUE

00 2Gu J=i,7 NPAT=SPATI(J) PAT=PATr(J) TERN=Fc:RNN(J> NHAX = N/1AXX( J) ScT S AND :AL^JLAIE Ui AND tR< FOK EACH M

Nal.NiAX

m*

'■■■

if

00 oü P = rt S=P»R A = saRTU*X ♦ Q=SQRT(X»X ♦ C=SQRT(r»V f AA = S(iRT(X»X QO(M)=(AMU/:>

i r*AL0&(6*(ir PDU=(AMU/PI) QPL = CU(MWX tRR(M»=(Paa- CQNTiNuE IF(212-NPAT) IF(31J-NPAT) IFUl^-NPAT) 1F(21212-NPA IF(3lili-NPA iF(2121212-^ IF(31il313-M U=2.MQ(m)

liO TO ?u Q=2.MUCm) [.R=l.-(Q/2.)

D) GO TO 7Ü

S-» U = 2.*(iQ(l) £t=l.-(Q/2.)

1)+QQ(-»)/ (1.- ijü T ■ j 7 Ü

5o Q=t.»(QQtl) tR=i.-ra/ (^.»

&Q TO 7Ü 53 ^-♦.♦uau)

LR=1.-U/ (<♦.♦ 1)*2.#(UQ(3l/

GO TO 7u

du

51 53

57 3=« bl 50

5^

S»S) 3»S»

♦ Y»Y f S»S) :)»(2.»S-2.»C-2.»3*2.»AA»X»AL0G(C»(X*8)/(S»(X»AA)>) ♦ ♦C)/(S»{Y*AA))) ) MALOJCMX+BI/CSMX + AA) >» ♦ X*(AA-di/(B»a))

UPD/PDJ

51,5J ,51 pi,52,53 55,5^,55 T» 5 7 , 5 b, 5 7 1)59,50,5^ PAT)bl,bü,ol PAr)62,b2,62 ♦ iQ(2») /UQ(imi.-ERR(in *CU(2)/ (l.-tRR(2)) )

«■ 3Q(2» ♦ U(l(3) ) /(aQ(l)Ml.-£RR(l))»QU(2)/(l.-cRk(2))*QQ(3)/(i.-t.RR(3)

♦• aQ(2) t aa(3) •■ aac»)) /(JQ{l)/(J.-cRR(l»)fQa(2)/(l.-ERR(2))*Qa(3)/(l.-iRR(3) LR^C»)))

♦ QQ<2)> *■ I .♦(Qai*) * Qat5) ) (Ua(t)^(l.-cRR(in*aQ(2»/(l.-£RR(2n) ♦g.^tUQC'fJ/Cl.- J/tl .-iR-<(3) > n

♦ aQ(2) ♦ ii(i)) ♦• 2.»(Q(i(5) ♦ aatb) ♦ ua{7n (aU(l>'tl.-£RR(in*QQ(2) /(l.-ERR{2))*QQ(3)/(l.-£RR(3)) (l.-£RR(5))taa(ö)/(i.-iRR(b»)♦Ua{7)/(l.-ERR(7) )))

♦ 'aQ(2)) «• «♦.♦(oac») * ciut5)) ♦ 2.»((10(7) ♦ aii(dH

91

Page 94: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

r

£«-l.-Q/(3.»{Q0(l)/(l.-cRi<(lH*aQ(^»/(l.-tKT(2)) )♦■».» (UQ( «)/(1.- l£RR((»n»Qa<5l/(l.-£RR(5) ) > tZ.» (QU< 7» / (1.-£K-i( ^) * iQuls) / (I.-cR<( i H 1))

GO TO fO 62 Qs6.*(QQ(l> ♦ QQC2I ♦ QQiJH ♦ «.»(JQCi?) f QUCi) ♦ CU(m ♦

i 2.»(aQ(9» ♦■ QQ(iu) ♦ QQ(il)) £R=l.-Q/(o.»(a^(ll' (l.-ERR(l)»»Qa(2)/(l,-r.«R(2)) ♦QÜUä) Ml.-tRR( 3) )

l)f<».*(QQ(3)/(l.-£R<(5MfQQ(6)/(l.-^RR(b) i*(iH7i/ (1.-iRk( 7)) ) « 22.*(Qll(9)/(l.-£RR(9n»QQ(ld)/(l.-£'tR(läMtaa(ll)/(l.-£RR(lin))

Ti CONFINUc GAF*l00 0ßJö.»a/(X»(l.-£Rn ERsläfl.'ER XsX/Crf

RsR/C«/ PRINT 71,X,rfR,PAT,Tc^NtQ,GAF, = ^

/i F0RH4T (lXf3(£12.JtlX),lXtA8tA7,lX,j(£12.5,lX)) X=X»C^ YsV»C R=R»Crf

200 CONIINUL PRINT 22

103 uONTINUd GO TO 1

99 CONTINUE. CALL EXIT ENO

92

Page 95: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

»WWW^iW^^WWWWWUMIIllJ ■* ■

AFWL-TR-74-205

APPENDIX B

COMPUTER CODE LISTING--D 1VI:

9 3

Page 96: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

i.piiwnviiMPPii ***** mil i " *w«V' ■ T-T—■

C c c c

c c c Ml

c c c c c c a c c c c c

PROGRAH 01VE(INPUT,OUTPUT,PUNCH,TA?E7«INPUT,TAPE«»OUTPUT) COHHON kXdZlS) .YV(i20ü) ,0(630),ER(6aO) ,SR(600) COHrtON XC0(12Ja),YCO(l2aC>,X(1200),Y(1230)•ALFA(120 0),SEGRC(1200) COHHON AY(1203) •AX(120 0),E (600)«OHITA(600) COHHON XC(12J0) ,VC(l2Qj),OSX(1200),OSY(1200) COHHON J,CüR,PItAHU,O,U,CV,C,0T,XS,YS,ZS,R,RArj COHHON N1,N2,N3,N<»,N5,JHAX,NSHK,HSHK,T(60J) COHHON XXCO(12JO),YYCO(120J),ZZCO(1230) ,ZCO (120G) ,Z (12 09), 7Z (1200) COHHON OSZdZOO) ,OSXX(1200),OSYY (120Q),OSZZ(12C0),ZC(1230) COHHON XXC(12QÜ),YYC(1201) .ZZC(1203),AZ(120 0) COHHON ALFAA(12oJ),SEGAA(12Q0),BETAA(1200),BETA(12C0)

THIS PROGRAH COHPUTES THE TOTAL RESPONSE OF THE HUTUAL INDUCTANCE PARTICLE VdLOCXMETER IN A DIVERGENT, OFF-AXIS FLOW FIELD. THE IOEAL RESPONSE OF THE GAGE AS DEVELOPED THEORETICALLY IN THE OASA 1*31 REPORTS CORRESPONDS TO ON-AXIS, ONE-OIHENSIONAL FLOW. THE IDEAL FLOW RESPONSE IS CALCULATED AND COMPARED WITH THE TOTAL GAGE RESPONSE AND PRESENTED AS A PERCENTAGE ERROR. INCLUDED IN THIS ERROR IS ALSO THE EFFECT OF THE CHANGE IN GAGE LENGTH UPON THE GAGE SENSITIVITY. ^

THE SHOCK SOURCE IS LOCATED AT THE POSITION (-XS,-YS,-ZS) AHEAD OF THE GAGI CENTER. THE SHOCKFRONT PROPAGATES SPHERICALLY FROH THIS SOURCE.

THE UNOISTUR^D GAGE IS DIVIDED INTO N5 SEGHENTS. TIHE IS STEPPED IN DT TIHE INCREMENTS AND THE SHOCKFRONT POSITION CALCULATED. EACH GAGE SEGHENT POSITION IS CALCULATED AT EACH TIHE STEP. PERIODICALLY THE TOTAL GAGE MUTUAL INDUCTANCE IS CALCULATED. THE GAGE RESPONSE IS THEN CALCULATED AS THE NEGATIVE TIHi 0£RIVATIVE OF THE CURRENT TIHES THE HUTUAL INDUCTANCE.

C C c c

C c c c c c c c c c c c c c c c c

c c

C IS SHOCK VaOCITY U IS PARTICLE VELOCITY

XCO, YCO, Z30, XXGO, YYCO, AND ZZCO ARE INITIAL SEGHENT INTERSEC POSITIONS

GAMHA IS ANGLE OFF OF SOURCE IN THE X,Y PLANE RELATIVE TO THE GAGE CENTERLINE

THETA IS ANGLE OFF OF SOURCE IN THL X,Z PLANE RELATIVE TO THE GAGE CENTERLINE

THZ ANGLES ALFA AND BETA DEFINE THE SHOCK PROPAGATION DIRECTION IN THE X.Y.Z LOOP

THE ANGLES ALFAA AND BETAA DEFINE THE SHOCK PROPAGATION DIRECTION IN THi XX,YY,ZZ LOOP

SUBSCRIPT I IDENTIFIES SEGHENT IN SECONDARY LOO? SUBSCRIPT < IDINTIFIES SEGHENT IM PRIMARY LOO0

SUBSCRIPT J IDENTIFIES TIME INCR'iHENT PDMX IS PARTIAL DERIVATIVE OF ThE HUTUAL INDUCTANCE WRT X AS DERIVED iN DASA 1-31 REPORTS QD IS HUTUAL INDUCTANCE DERIVED IN OASA 1-31 REPORTS

94

Page 97: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

rfWJJ'f^w^'fU^i^ T ' r j—Wsl^TOJCTI^r» 1wy»i»iTO?PTT'1-,.F»W'TOW7^' ''-r^'W'w^»rf7;y^w!TT»rii«w^ ™^«iFyi".' '^rrir- F^lfl^H-

ONITI IS DERIVATIVE OF MUTUAL INDUCTANCE WRT TIHE - IDEAL FLOW

_C_ _C_ C

_C_ c

c _c_ ^_ c_ c

DMITA IS DERIVATIVE OF NUTUAL INDUCTANCE HRT TIME FOR ACTUAL DIVERGENT/OFF-AXIS FLOM

ER IS PER3ENTAGE ERROR IN_G*GE RESPONSE DUE TO NON-IDEAL FLOM OSO IS INITIAL SEGMENT LEMCTH" Yjj IS INITIAL GAGE WIDTH, HETERS XL IS INITIAL GAGE LENGTH, METERS VNSEG IS NUMBER OF SEGMENTS ACROSS GAGE WIDTH XNSEG IS NUMBER OF SEGMENTS ALONG GAGE LENGTH YNSEG MUST BE AN OOP WHOLE NUMBER RATIO MUST BE_ AJt OOOlWHOLE NUMBER, TYPICALLY BETWEEN T N1,N2,N3,NW IDENTIFY CORNERS N5 IS NUMBER OF GAGE SEGMENTS

AND 15

T

c_ c

JJ AND INTl DETERMINE INITIAL VALUE AND INTERVAL IN J FOR CALCULATING MVP

1 CONTINUE READ ♦JLtiEXlT

kk FORMAT (III

C IF JEXIT « l._REAO DATA IF JEXIT = 0, CALL EXIT

IFUEXIT - ll8««,s»5,%5 »5 CONTINUE __

READ 17,JDIA6 JLlJrQRMAT_JJjX ,

C IF JOIAG a 1, PRINT OUT DIAGNOSTICS C IF JUIAG g Q, OHMlf DIAGNOSTICS

PRINT 9 9 FORMAT llHlj

READ <»0,RS kü FORMAT CtFlO.O)

READ Vl,YW,D,C,U,OT,GAHMA,THZTA,RATIO kl FORMAT (8F13.0)

READ <»2,YMSEG,JMAX,JJ.INT1 k2 FORMAT <F10_. Ob7i5)

READ ^3,QATE »3 FORMAT 1A_9J

INITIALIZE

CV*l»/_.025'* ANU=.300001256bk PI=3.1415926 CUR=

■-57, RAO« 295779 DTs=oT»iaaoaao.

95

tuuMMMy^üidUM ■^.A-■,.,-...■„., "■-■-'ift '•■"■iliiifriitftiiiii in " •'■miiimf-^iiiBiiiit--'-'-—imi-i

Page 98: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

HW imppHiiippi, wmnw^" mirm pppnpnip m wanftfiw ^' '^r*™™imimmmwmmmmp*^w™rT«m<Frin '.*■"'! ■Hn"V'lT"W?*f" ^/T^'

C

JGRI1F = JJ

PRINT i»90 »♦9L FORMAT (• Ocl/ELOPMENT OF HUTüÄL INOUCTAMC: PARTICLE VTLOCT^TEP ♦)

PRINT 53 PRINT <m

♦ 91 F^RHAT (♦ INVESTIGATION OF OFF-AXIS/lDlVERGENT FLOW RtS?0N?? •) >RINT 53 PRINT i>92

492 FORMAT <• PROGRAM OIVE •) PRINT 53 PRINT i*3Z

-►93 FORMAT (♦ AFML/OIX ♦) PRINT 494,0ATE

^9- FORMAT (15H DATE OF RUN - ,A9) PRINT 53 PRINT 53 PRINT 53

♦" • V # '»♦»♦♦»♦»»♦♦»♦•»♦»♦♦#»♦• »»♦♦»»

XL=YH»RÄTIO OSOsYM/YNSEG XNSEGMXL/YMJ'YNSEG NY=VNSEG NX-XNScG N1=CNY ♦ l»/2 N2=M1 ♦ NX N3=N2 ♦ NY NV« N3 > NX N5 = N<» ♦ CNY - t)/2 GANMA = GA"iMA/RÄO THETAsTHETA/RAO OENOM = l ♦ (TAM(THETAn»»2 ♦ (TAN (GAMMA) ) ♦•2 XS=SQRT(CRS*»2)/QENOM) YS=SQRT((RS»»2)*((TAN(GAMMA»)»»2)/OENOM) ZS=SQRT((RS*»2)M(TAN(THETAn»»2)/OENOM) GAMMA=GAiMA*RAO TH£TA=THcTA^RAO

XS=-XS YS=-YS zs=-zs__ PRINT 53 3

600 FORMAT <• GAGE GEOMETRY •) PRINT 53 PRINT 501,XL

5(11 FORMAT (5X,1-»H GAGE LENGTH =,F5.1,7H INCHES) PRINT 5 3 2tYH

502" FORMAT (5X,13H GAGE WIDTH =,F-».1,7H INCHES) PRINT 5(13,0

503 FORMAT (5X,15H LOOP SPACING =,F'».2»7'H INCHES) PRINT 51'*.N5

5lt FORMAT i5X,2lH NUMBER OF SEGMENTS =,15) PRINT 53 PRINT 53 PRINT 53%

50H FORMAT (• SHOCK SOURCE POSITION ♦)

96

mmUtoaaamtM rnuintHtUatäämUämvuaäu^ii.^,.,.^.^ '!■ mr I I

Page 99: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

:

i Co

^7

31..

512

51J

19

2L

21

22

do

FORrtAT PRINT FORMAT PRINT FORMAT PRINT FORMAT PRINT FORMAT PRINT FORMAT PRINT PRINT PRINT FORMAT PRINT PRINT FORMAT PRINT FORMAT PRINT PRINT PRINT FORMAT PRINT PRINT GAMMAs TH:TA= XL=XL/ YM=YM/ Ü = Ü/C\/ OS0=0 5 xs=-xs ys=-YS zs=-zs 00 19 XCO(I) YG0I1» NA = N1 no 2: IA=I ♦ YCOCIA NA=N1 00 21 YCO(I) XC0(NA N9=N2 00 22 IA^I + XCOJIA DO 23 IP=N5 XCOdP YCOdP NCsN3

(5X,3^ RS =,F9.'.,''H MtTERS) 5-5.XS

(3X,5H XS =,F9.<*,7H M£TERS) 5J6,YS

(5X,5H YS =,F9.>*t7H M£T£RS) 537,ZS

(iX,5H ZS =,F9.^,7H METERS» 503,GA.HA

(5X,8H GAMMA =,F5.1,3H JtGREES) 5Ü9,THITA

(3X,8H THETA =,F5.1,8H DEGREES) 53 53 51J !• SHOCK PARAMETERS »I

53 511,C

(5X,17H SHOCK VELOCITY =,F6\0,11H METERS/SEC) 512,0

(5X,2jH P4RTICLE VELOCITY =,F&.ltllH HETERS/SEC) 53 53 513,OTS

(2X,17H TIME INCREMENT =,F5.2,9H MICROSEC) 53 53 GAMMA/RAO THITA/RAO :v CV

O/CV

1=1.Nl = j •

=0S0/2. - 1 1=1,NÄ

1 )=YCO(I) + OSO * 1 I=NA,N2 = Y30(N1) )=OSü - 1 I = NA,NT

1 )=<CO(I) ♦ OSO 1=1,N3 ♦ 1 - I )=XCO(I) )=-YCO(I) - 1

I

97

ti^^mmtutt JMUlMmimliiiii nn '■ ira^ '-'-"■■■"■■' ■■' .-,..,..■■ ..-. r,- ■ ■■■ij

Page 100: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

HRjnpqiPiqpPKpR^^ -ww." itl'»wwiiW«.w^(i|.Hiwwi*Wt;""«Wfl>ra"»«i"!«lWPP«mi< ,i)iigji«iwijii •'

00 18 IsNZ.SC IA=I ♦ i XC0(IA> = )(C0(N2) YC0(I«)»YCO(I> - 0S0

10 CONTINUE 00 25 1*1.N5 XXC0(I>=XCO(I) YYC0(I)»yC0(I) ZC0(I)=O/2. zzcom=-o/2. ALFA(I)=ATANl(VCO(I) ♦ YS)/(SORT(«XCO(I) ♦ XS)»»2 ♦ IZCOfl) ♦ ZS)»

i»2n» ALFAA(I)=ATAMt(YYCO(I» ♦ YS) /(SORT((XXCO (I) ♦ XS)*»2 ♦ (ZZCO(I) ♦

1ZS»»»2))) BcTA(I>=ATAM{(ZS ♦ ZCO(I))/(XS ♦ XCO(I>?> a£TAÄ(I)=ATAN((ZS *■ ZZCO(I))/(XS + XXCO(I))) S£GRC(II=SQRT((XS ♦ XC0(I))»»2 ♦ (YS ♦ YC0(I))*»2 ♦ (ZS ♦ ZCO(I))»

1*2» S£GAA(I)=SQRTllXS ♦ XXC0{in»"2 + (YS ♦ YYC0(I))»»2 ♦ (ZS + ZZCOd

in**2) 2i CONTINUE

IF(YS ♦ YCOJN-») »89, 89t90 89 CONTINUE

S:?(1) = SQRT(XS»*2 ♦ ZS»*2) - .032 GO TO 91

9. CONTINUE SR{1)=SQRTUYS + YC0(N<»))»»2 ♦ *S**Z ♦ ZS»»2) - .002

91 CONTINUE T(l»=3.

c 00 2ÜJ J=1.JHAX JA=J+1 JC=J-l T(JA)=T(J) ♦ OTS S^(JA)=SR(J)*3*ÜT NQ=N3 ♦ 2 IF(SR(J) - SEGRC{NQnilJ,110,999

ii: CONTINUE Q(J)=3.

i

CALL COPOS IF(J - jj) ii.u.ia

1. CONTINUE

c JJ=JJ t INT1

CALL COM\/P

PRINT 9 PRINT 239. TU)

239 FORMAT (IX.^H T =,F6.1.9H MICROSEC) PRINT 2-»J.NSH<

Zk^ F3RHAT (IX.7H NSHK =,!*) PRINT 2'»1,.,1SH<

24i FORMAT (IX,7H MSMK =,I-t) PRINT 53 PRINT 53

98

bttUtüt „..^aim^.^,-. ^^„^ (HI irnrmiilihllr ' - -'—-■

Page 101: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

gjjpppiiwppi m$mmm W"" WWPPWipwiBlMWHIWiWPIIIWPlIHgWHWWIWPIW! »VWBIIIIIIBlUMl.millili, i"

231 PRINT 231 FORMAT" ("♦'

1 XXC PRINT 53

XC m

YC ZZC •»

ZC

c c c

XC, YC, ZC, XXC, YYC, AMD ZZC PRINTOUT IN INCHES

67

39

8b

3- 3^

00 307 1=1 X3(I)=XC(I YC(I)=YC{I ZCm=ZC(I XXC(I)=XXC YY3<I)=YY3 ZZC(I)=ZZC 00 67 1=1, PRINT 36,1 FORMAT C1X IF(SR(J) - CONTI.^Ut N;=Ni+l 00 88 I=^£ PRINT 86,1 NF=NSHK-? NG=NSHK*5 00 i* I=NF PRINT 86,1 CONTINUE MH=MSHK - NlslSHK ♦ 30*31 I = NH

86,1 I=M 86,1 I = N^ So,I

31 P^INT 10 32

32 F^INT 00 3 3

33 P^INT IF(JQIAG)5

;99 CONTINUE PRINT 9 PRINT 6QJ

6C. FORMAT (♦ 1 lETAACH oRINT 33 oo eai i=i ALFA(I)=AL ALFAA(I)=A ^£TA(I)=^c a£TAA(I)=3 P^INT 5C2,

iic F0R1AT (IX 4LFA(II=AL ALFAA(I)-^ BITAdlslä liTAA(I»=l

ojl CONTINUE ^RINT 9 ORINT ^9

>.i FOrMAT (• PRINT 5 3

,N5 )*Z\I )*C>I ) »cv (I)»CV (I)»CV (I)^CV Nl ,XC(I),YC(I),ZC(I),XXC(I),YYC(I),ZZC(I) ,I^,lX,7(£15.8,lxn

S£GRC<1)»38,39,39

,NSHK,5 ,XC(I),YC<I),ZC(I),XXC(I),YYC(I»,ZZC(I)

, NG ,XCtI),YC(I),ZC(I),XXC{I),YYC(I) ,Z7C(I)

,NI ,XC(I),YC(I),ZC(II,XXC(I), YYC(I» ,ZZC(I) , N>t5 ,XC(I) ,YC(I).ZC(I),XXC(I),YYC(I),zz:{i) ,N5 ,XC(I> ,YCtI),ZC(I),XXC{I),YYC(I) ,ZZC(I) 98,593,599

I ALFAOEG) G) SdGRC(1ET:RS»

ALFAA(OEG) SEGAA(^ETERS) •)

9ETA (OEG)

,N5 FA(I) LFAA( TA(I) ETAAt I.ALF ,15,2 FA(I) • TAAC TAd) .r4A(

♦RAO i)»Ra •RAO I)*RA A(I), X,6(£ /RAO I>/R4 /RAO I)/RA

a ALFAAd) ,9£TA(I) ,9ETAA(I),SEGRC(T) ,SEGAA(I) 1H.7,2X»)

I

.1

PRINTOUT FROM COMVF •)

99

-■ - ■ ■'-' ■' ■'■ • ■ ' ■ -- - iiiuUtiuk iiii«inmiiMiir<«iiiiiiiiiiMii i

Page 102: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

. wmm IP1 'WW'WWillWWWII^ppillllipilipii wimmmmmm 'Jiui.Wi^iu.iiipi.mnin

53 F3R1AT (♦ ♦) PRINT 239,T(J) PRINT 53 PRINT 3 3 PRINT 55

5^ FORMAT (♦ I AX PRINT t3 DO 5J 1=1,N5

5. PRINT 5l,I«ÄXm ,AY(T) ,AZII) 51 FORMAT (lX,I-»,lX,7(£l<,.7tlX>)

AY ÄZ ♦)

•.9h CONTINUE

00 96 1=1,N5 9-. o(j)=o<j) *• Axm'nsjni) + äY(I)»OSY(I) * AZ(i)*nsz(i) 11 CONTINUE

2: CONTINUE

999 CONTINUE JJ=INT1 ♦ 1 00 3CJ j=ja, JCINTl JA=J - INTl J3=J ♦ INTl TINT1=INT1 ÖTT=0T»2.*TINT1 E(J)=-{Q(J91 - Q(JA))/0TT 1MITA(J)=£(J)/CUR AA=SORT(XL*XL + YW'YM) 3^=SQRT(XL*XL ♦• 0*Q) CC=SQRT{YM»YH ♦ 1*3) OJ=SQRT(XL*XL ♦ YH»¥W + D»01 FÜ«X=(AMU/PI)»(AL'DG(CC»(X1. ♦ 33)/(D»(XL ♦ DO))) + XL'COO - 99»/(gq

1»31)) OMITI=U»?ÜMX ':R( J) = (D:'1ITA( J)- 3MITI)»1CJ./0HITT

3C' CONTINUf QQ=(A»1U/DI)M2.»l-2.*CC-2.*33*2.*0'DfXLML0G(CCMX«,. + B3) /(0»(XL*DO) ) l)*YH*AL0Gte8»(YM+CC)/(O"(YH+OT) ) )> JRCAL=1J^.♦(1(1) - QQ)/QÜ PRINT 9 PRINT 788,QQ

76a FORMAT (1X,32H THEORETICAL MUTUAL INOUCTANCE =, IX, El^». 7, IX, H HENR 1HS) FRTNT 53 PRINT 736,£RCAL

78': FORhAT (1X,31H £RR0R DUE TO FINITE ZLEMINTS =, IX ,E1^. ^ , IX, 8H PERCE INT! TRINT 63 PRINT 53 PRINT 793

79c FORMAT (• TIM£ PRINT 791

791 FORMAT (♦ (MIGROS£C) PRINT 33 00 792 J=JGRMP,JrtAX,INTl

792 PRINT 891,TU) ,Q(J) PRINT 53

MUTUAL INO

(HENRIES)

♦)

•)

100

■MMMMM

Page 103: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

o nnwpillllppilVPi

TIME JM/JT IDEAL

(MICROSEC) (H^MRIES/SEC)

•1UTUAL INO NORMALIZEH

(HENRIES) VELOCITY

•)

PRINT 53 PRINT 53 PRINT 53 ORINT 53 PRINT 831

ftd: FORMAT (• 1CTUAL PRINT 881

881 FORMAT (♦ IS/StC) (H^MRIES/SEC) VELOCITY ♦! PRINT 53 PRINT 53 00 89Ü J=J0,X.INT1 VNORM=OMITA(J)/OMITI PRINT 891.T(J),Q(J),ER(J),0MIT4U),0MITI,VN0RM FORMAT (IX,6(£1^.7,2X>) CONTINUE PRINT 9 GAMMA=iAM1A»R*0 TH£TA=THETA»RAO YW=YM»CV XL=XL»CV 0=0*CV GO TO 1

88ö CONTINUE CALL EXIT ENO

ERROR

(PFPCENT)

OM/OT A

(HENRIE

69w i9l 996

101

mmäk UMk ■■--"■■'■-■■'■ ■ - »I I'i ii Oil'■^■"'■"-•—"■"-

Page 104: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mm mmimm^vf ". •> IWWpWPWBpwpt rnrnm/r ■-»nrw- F'*~jrnt*rp*?> »WWy,l«i,lit,)HWH>H»ini.iJi>li,.i,li,<lw,,w„ ■r^rT^rwMwr,Tr^,7Wff ' ^ TfT'ffTpjM|t»'^»rfl(J^i7Tw

3EGRC(12CC)

SU8R0JTINE CO?OS COMMOM XX(12Jj),YY(l2u3),Q(6ai),£R(6;0)»SR<6i3) COMMON Xw0(l2;w;) ,YCO(123J),X(120C),<(1200) .ALFAdZüü). COMON 4Y(12:3) , 4X(12Ca> ,i(60:)«OMITft(61J) COMMON XC(12J:) ,YC(120'Jl ,33X1120:) ,OSY11200) COMMON J,CU^,oi,AMU,0,U,C\/,C,OTfXS,YS,ZS,R,RA'D COMMOM Ni,N2.N3,N4,N5,JMAXtNSHK,MSHK,T(63:) COMMON XX:O(l2Jü),YYCO(120Q),ZZCO{12J0» »ZCO (12CC)tZ(1233)♦ZZ(1200) COMMON 0SZC12JÜ)«OSXX(12C3),OSYY(123:) .OSZZ(12CC).ZC(l?0C) COMMON XXC(123 J) .YYC(12a•:) ,ZZC(12QC) ,AZ(12J0) COMMON ALFAA{l2wl) ,SZGAA(12CJ) iB£TAA(1230> ,BETA(12C0>

C c c c c c c c

NSHK INDICATES FIRST INTERSECTION POSITIO." IN UPPER HALF MHICM IS UNSHOCKtO

MSH< INDICATES FIRST INTERSECTION POSITION IN LOMER HALF WHICH IS UNSHOCKED

C c

MX=3 MY = Ü MSHK=N--2J

HIGH 3IO£ CALCULATIONS OF XC, YC, AND ZC

61

8v 81 67 55

C C c

NA=N2 - 1 00 S>5 1 = 1,NA IFCSRCJ» - S£5RC(I))6G,60,61 CONTINUE SEGRCII)=SEGRCII) ♦ U»0T XC(I)=SEGRC(I)»COS(ALFA(I))»COS(BtTA(I)) - XS YC(I)=S£GRC(I>»SIN(ALFA(I)) - YS ZC(I)=ScGRC(I)»COS(ALFA(I))*SIN(OETA(I)) -ZS GO TO 67 YCJXlsYCOd) xc(n*x"cö("i> ZCII)=ZC0(I) MX=MX ••• 1 IFIMX - udu.sj.ai NSI K=I C0^TINUE _ CONTINUE CONTINUE XC(^2)=XC0(N2) YC(N2)=YC0(N2) ZC(N2)=ZC0(N2>

HIGH "STOE CALCliLAtlONS OF XXC, YYC, AND ZZC

= 1»NA • SEGAAdM 160.160,161

NA=N2-1 00 155 1= IF(SR(J)

161_ CONTINUE _ 'SE'GAÄ(n=SEGAA(i") > U*OT XXCII)=SE6AA(I»»C0S(ALFAA(I))»C0S(BETAA(I)) YYC(I)=S£GAA(II»SIN(ALFAA(I)> - YS

XS

102

tmM I HIM—^M— _J

Page 105: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

^P^^PWPWI^w r- ,11. ii)i|i. JUIIIP|II^»W»^PWW^.'.MIII .i^unM|ii>,i,,iW,iiiiiiLfiiiiiiiii>i i -w/ IXUiiunaiWKiiiiiu

16.

is; 15:

c c

71

9.

/; 7,

c c

ZZCm=SE_GAMI)»C0S(ALFAA(imSIN(3ETAA{in - ZS 'GO T0"l67' Yrcm=YYco(i) XXC(I)=XXCO(I) ZZC(I)=ZZGO(;) CONTINUE CONTINUE XXC(N2)=XXCO(N2) YYC(N2)=YrCO(N2) ZZC(N2)=ZZCO(N2»

LOH A^O ^IGHT SIOE CALCULATIONS OF XC, YS, ANO ZC

N3=N2 *~ l~ 00 7u I=NB,N5 IF(SR(JI - SZG<CII))7l,71,72 x:(I>=X30(I) VC(I>=YCO(I) ZCII)=ZC0(I) GO TO 77 CONTI^Uc S£GRC(I)=S£G(<C(I) ♦ U'OT XC«I)=SEGRC{I)»C0S(ALFA(I))»C0S(8ETA(I)) - XS YC(I)=S£GRC(I)»SIN<ALFA(I)) - YS ZC<I>=StG^C(I)*C0S(ALFMI))»SIN(9ETA(I) ) -Z'J f1Y = MY ♦ 1 IFIMY - 1)93,9J,91 «SHK=I-1 CONTINUE CONTINUE CONTINUE

LOW 4^0 RIGHT SHE CALCULATIONS OF XXC, YYC» »NO ZZC

17;

17; 17.

c C

Na=N2 - 1 00 17J I=N3,N5 IF(SR(J) - SZGAAd) ) 171, 171,172 XXC(I)=XX:0(I) YVC(I)=YYC0(I) ZZC(I)=ZZCO(I) GO TO 17^ CONTINUE 5£GAA(I)=S-:GAA(I) + U»OT XXC(I>=S£GAAII) •C0S(ALFAA(in»C0S(8£TAA(I) ) YYCfI>=SiGAA(I)»SIM(ALFAA(I)) - YS ZZ3{I)=S£GAA(n»:0S(ALFAA(I))»SIN(Q£TAA(I) ) CONTINUE CONTINUE

7S

CALCULATIONS OF X, ftNO Z

NC=N3 - 1 03 57 1=1,MC ia=i ♦ 1 X(IA)={X:(IA» Z(IA)=(ZC(IA)

xccin/2. ZC(I))/2.

VCIA» = lYCtIA) t YCtin/2. X(1)=(XC(1) ♦ XC(N5))/2.

103

L_ H^MMMyMMItt i mnjnajj^aMmiiMa

Page 106: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mm*** *m WÜWPBT^^ n. mnipiiiiwwwimwwp in mm im HHIIIIJHPIIJWWII

■MMM WW(P>I^M.HMIL.IIW

c c

c c c

15",

C c c

15.

Y(l)«(VCCll ♦ Z(1)=(ZC(1) t

TC(N5)»/2, ZC(N5))/2.

CALCULATIONS OF OSX, OSY, AND OSZ

3SX(1)=XC(1) - 0SY(1)=YC(1J - 'DSZ(i>sZC(l) - 00 50 1=1.NC U=I ♦ 1 0SX(IA)sXC(IA) 0SZ(IA)sZC(IA) 0SY(IA)=Y3CIA)

XCIN5» YC(N5I ZCIN5)

- xcm - ZCd» - YCCII

CALCULATIONS OF XX« YY« AND ZZ

NC=N5 - 1 00 157 1=1,MC IA=I ♦ 1 XX(IA,«<XXC(IA» YY{IA1=(YYC(IA» ZZ(IA)=(ZZC(IA) XX(1)=(XXC(1) ♦ YY(1)=CYYC(1) ♦ ZZ(l)»(ZZC(l) ♦

* xxccin/2. ♦ YYC(I))/2. ♦ ZZC(I))/2. XXC(N5>)/2. YYC(N5n/2. ZZC(N9))/2.

CALCULATIONS OF OSXX. 0SYY, AND OSZZ

0SXXII>=XXC(1) - 0SYY(1)=YYC{1» - 0SZZ(1)=ZZC(1) - 09 150 1=1,NC IA=I ♦ 1 QSXX(IA)=XXC(IA) OSYY{IA)=VVC(IA) OSZZ(IA»=ZZC(IA) RETURN END

XXC(N5) YYC'N5> ZZCCM5J

XXC(I) YYCd» ZZC(I)

10^

L MMM,

Page 107: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

^•S»!*»*»,»,«««^.», mw. ■ mi ^ii in i. i ■ a

SUBROUTINE COHVP COHHOM XmZJjl »YYIlZaai »QC630>f£Ri630>»SRC600) COMMON ICCO(i2}j)fYCOfi20J) «XCIZQC) f Y (1200) . ALFA f 1230) .S^GRCC 1200» COMMON AY(12JJ)VAX(12C0)«£(6aG)tOHlTA(603) COMMON XC(l2üJ)vYC(12Qa)«OSX(1200)tO5;Y(12C3) COMMON J,CUR*PI«AMU*O«U«Ctf«C«0TvXStYS«ZS,R(RAO COMMON Nl,N2tN3tN<»tN5«JMAX,NSHK«MSHKtT(6j:) COMMON XXCO(12JG)f VYCO(12C 3). ZZCOt 1230) fZCO(12CG) •.2(1210 )t 72 (1209) COMMON OSZ(123J)*OSXX(12CJ)tQSYY(120])tOSZZ(120C)tZC(1200) COMMON XXC(123j)«YVC(123C)tZZC(1203)«AZ(1230) COMMON ALFAA(123J)«S^GAA(123i>)«e£TAA(1203) vBbTA(1200)

C c c

THIS SUdROUTINi CALCULATES THE MA&NcTIC VECTOR POTENTIAL AT EACH ScGMZNT IN TH£ X,V,Z LOO?

AX IS X C01PN£^T OF MVP AY IS Y COMPONENT OF MVP AZ IS Z COMPONENT OF MV» A IS MAGNETIC VECTOR POTENTIAL (MVP)

9,

FATs(AMU*CUR)/(^.»PI) OO 90 1*1.N5 AX(I)»Ü. AY(I)=G. A7(I)=J. OO 91 K=l,N5 '»s3QRT((X(I) - XX(K»)*»2 ♦ (Yd) - YY(<))»»2 ♦ (Z(I) AXX=FAT*OSXX(<)/R AYY=FAT»3SYY(<)/R AZZ=FAT»OSZZ(<)/R 4X(I)3AX(I) t AXX 4Y(I)=AY(I) ♦ AYY AZ(I)*AZ(I) ♦ AZZ CONTHUt CONTINUE RiTUSN END

ZZ(K))»»2)

105

■■-'-»^■Mtfrp J

Page 108: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

wwim ' i m.im ^ i i—«mmiju.,!! , .„.i ■f'^'WFTrTWrTT7"li!,',!J,«,7'-A-'WWT--- .oR^^^r^^p^j-^,,^...

AFWL-TR-74-2Ü5

AFPENÜIX C

SLLLCTION OF OPTIMUM GAGH ^UINI/JCTOR

The analysis in section IV identified the manner in which the

shock-induced resistance changes cause errors in the gage output.

As indicated in section IV, these error? are controller! with a

large ballast inductance in the primary circuit. It was also

evident that these errors were influenced by the ballast resist-

ance, though not to the same extent as the ballast inductance.

Since there are many metals which can be used as conductors in the

M1PV and each has its own resistivity, resistance-pressure, and

shod; impedance characteristics, it is of interest to compare these

characteristics. This information is required for gage design and

must be considered along with other factors such as radiation cross

section and the practical aspects of availability, cost (beryllium

cost- approximately $2000 per pound), and compatabi 1 ity with

fabrication techniques in selecting the optimum conductor

material.

1 Till-; IDEAL CONDUCTOR

The characteristics of the ideal conductor are identified by

considering the total gage environment. The gage must rapidly

equilibrate with the shock-loaded geology in which it is embedded,

and it will be exposed to extreme pressures and an intense radia-

tion environment. The ideal conductor would, therefore, have a low

resistivity and exhibit little or no change in resistance with

change in pressure, have a shock liugoniot which is identical to

that of the media in which it is embedded, present a low neutron

cross section, and present no insurmountable fabrication problems

in its use. Several metals and their alloys have some of these

characteristics, but none exhibit all.

For the moment, if the radiation cross-section characteristics

are ignored, and it is assumed that no fabrication problems will be

encountered, the criteria for selecting the most favorable gage

106

»MdMMHHiHM ^-.ij.-...^«..^^,—nm....... t....i...i;|rfni)jjn

Page 109: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

■ •I|IHM:.*PHII

yWHwtnmimu*,»

Püü pppi nin.j.n!iiiiiii)i>ifnnij,iinniii» ii i ii>m.i,iiiiinn)i.ii.

AFWL-Tk-74-205

conductor material is reduced to that of determining which material

would result in the minimum resistance change while meeting equi-

libration time requirements. The materials under consideration may

be ordered in this respect and the radiation and fabrication

characteristics considered separately.

2. CANDIDATE CONDUCTORS

The candidate conductor materials and their important charac-

teristics are listed in table C-l. For the analysis, a shock

pressure of 200 Khar will be assumed. It is further assumed that

the results obtained at 200 Khar would not differ in terms of which

conductor material was most favorable from results obtained at

higher pressures. Three columns in table C-l require comments.

The resistivity data assumes a high purity metal. Alloying

and impurities will increase the resistivity in varying amounts.

For instance, several magnesium alloys have a resistivity of

12.5 \i9. • cm, a 300 percent increase over the pure metal, while

both aluminum and copper alloy systems exhibit increases in

resistivity of only a few percent over that of the pure metals.

If a pure metal is not used, the particular alloy should be

considered. For this analysis, a pure metal is assumed.

The column headed "(R/R ) 200 Khar" indicates the resistance

of the material at 200 Kbar pressure relative to the resistance

at zero pressure. The data is based upon the extrapolation of

Bridgeman's static data (ref. 27>) ihown in figure C-l. Since

Bridgeman's data above 30,000 kg/cm2 is itself corrected, it must

be recognized that some uncertainty exists in the table C-l data.

However, the relative magnitudes in R/Rn between materials are

preserved, and the results are probably affected insignificantly

by the uncertainties. Nevertheless, until high-pressure dynamic

resistance-pressure data become available, the R/R0 data must be

considered, at best, an estimate for pressures to 1 Mbar.

The column headed "(p c) 200 Kbar" is the slope of the shock

loading path in the stress-particle velocity plane at 200 Kbar.

The intent of this column is simply to indicate the relative magni-

tudes of the shock impedances.

107

BMBiliiMMBl tttrt -JA^ai**.*....^***^ .....^ ■^.L^.^-^..-,.' -■'-„ihy ■

Page 110: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

1 jpppnPTCMpinpp

AFWL-TR-74-205

^ffTTirv« t> ^rvi^\i7^^^'giwwTT,"'tW;irT"!ni,i^^ '^^^^▼^r^rf^w^ 1

1 e

o

c o

• H ^J i-H

• H re W 4->

C a> re B M H

u

re

re

o o

CO

< i—i

OS Ui s-

o H U

a o u UJ H < Ö

a is < u

o

u H ^ CO

CJ X3 O Ui

>x ^-s

•M m

■ l-l g l/l u C\ (Ü w o ^.—'

^^ re o x

o r- •-D LO r~- 00 IS) o i-H .-* rj «*

o O LO r- o '* LO 00 i-H to h~ 00 (-■ LO en

r-t i-H n «tj- 00

LO 00 1-0 O r^ r- Ol r~- LO 00

« r- \D 00 t~-

IX

H u

< u

>> •»-■ /—\ •H e > u

•H ■P • [/)

• H a (^ a. 0) —/

OJ

K) vO i/) r*- ^r O '-> o vO

^r LO (^i >—t

>—t 3 3 e s re •H •H 3 3

•H IA i-H c •H !H

^ 01 r-H • H c a> 01 ß r-^ e re a 4-> oo u 3 p cu re re <D i-H ■H o S S 03 < H u

108

HMMfeaMH i^MMMttMIIII ■Mm ^ ■•■ - ■

Page 111: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

300

200

CO

100 -

i r Aluminum

Copper^. Magnesium ^\ \

1 ■Beryllium

■Titanium*

Extrapolated Data

* Transition Not Considered

_L J_ .7

R/R .9 1.0

Figure C-l. Change in Resistance as a Function of Stress for Several Metals (Bridgeman, ref. 23)

109

■MMMMMI - —-'- I ~-^^.

Page 112: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

**— Wmmmm mmmm 1*m«„mm,,« - ■ r^-TTIW»

AFWL-TR-74-205

3. COMPARISON OF CANDIDATL CONDUCTORS

The conductor material characteristics listed in table C-l

interact in a straightforward manner to influence the change in

conductor resistance per unit length, AR/9,. The problem begins

with a specified equilibration time, t , and concludes with a

calculated AR/2,.

A one-dimensional analysis of the conductor shock response- is

performed to determine the minimum cross-sectional area that is

required for circular conductors to meet the equilibration time

requirements. The geometry is shown in figure C-2. In general,

the conductor will be stiffer than most geologies; therefore, for

this analysis it is not necessary to consider many geologies, only

a representative one. The chosen Ilugoniot approximates a saturated

tuff with a density of 1.96. The Ilugoniot in the stress-part ic le

velocity plane ii shown in figure C-3. The states in the conductor

during equilibration with the geology arc determined by the inter-

actions at the conductor-geology boundaiics. fin reality, an

insulating material electrically isolates the condutor from the

geology. Here it is assumed that the insulation and geology

Hugoniots are identical to simplify the one-dimensional analysis.!

In figure C-3 the equilibraLion of copper is shown. Due to the

large difference in Hugon^ot between copper and the geology, a

large number of transits are required, seven in this case, to reach

a conductor particle velocity of 0.99 times that of the geology.

A lesser number of transits is required for the other conductor

materials; five for titanium, three for aluminum, three for

beryllium, and two for magnesium.

Having defined the number of transits required for equilibra-

tion, the conductor thickness, or diameter, may be determined if

the time required for equilibration, t , is defined. Several cases

will be considered to observe the variation of LR/I with t . The

conductor diameter may be determined from the expression for the

equilibration time

t = d e \ i 2 n'

110

•MM^MMMMMMMMI „MMMIMM

—"■'■■■ — ■ i ! l

Page 113: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

m^^^mm mmmm- 1ijHI)ij,i;HiH«iiinigiBliiii|iiui,iiliii;»lifiTW|ii.mii|i mntwnm^ I " |

AFWL-TR-74-205

Shock

C u ^ l" w • • t »

_L . / ^

Conductor

^ <• " 6 .* ' o .c ^ o ro^. . .^ Geology «f <> < *

C b ft ♦ _ u

Figure C-2. Geometry for One-Dimensional Shock Response Analysis

500

400

« 300

in m

u is; 200

100

Copper Hugoniot

Copper Reflection^ Hugoniot

^-Saturated Tuff Hugoniot

= 1.96

Assumed Tuff Reflection Hugoniot

_L

12 3 4

Particle Velocity, mm/ysec

Figure C-3. Shock Equilibration of Copper in Tuff

111

taM - - ■ ■ ■- - ■--■-' UM - I l^———1——m I

Page 114: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

BBMWMBMMHMWIilWWI wnts' ■ ■ ■vOT/i^.iwxf.iwiv'»' »''«•* wmymtmHmmm.

AFWL-TR-74-205

where

d is the conductor thickness, mm

n is the number of shock transits required for equilibration

c is the shock velocity for the first, second, ... nth shock transit

The cross-sectional area is determined from the diameter. The

resistivity and area provide the resistance-p^-unit-length, and

from R/R0 data of table C-l, AR/Ä, may be determined. The results

are summarized in table C-2 and presented in figure C-4 on a semi-

log plot.

In figure C-4 magnesium, beryllium, and aluminum all indicate

values of AR/fc an order of magnitude less than copper and two

orders of magnitude less than titanium. They also aie more favor-

able with respect to radiation cross section with beryllium being

the obvious choice because of its low atomic number.

4. SUMMARY

The results of this study identify the relative merits of

several conductors and provides insight into how they would respond

in the problem of section IV.

Magnesium, beryllium, and aluminum are the most favorable of

the materials considered. Aluminum would be the preferred choice

in the high explosive environment due to its availability and ease

of use. However, at low pressures copper has been shown (ref. 16)

to exhibit better survivability characteristics. In the nucleai

environment beryllium would be preferable due to its low thermal

neutron cross section (n.0085-Be, Ü.22-A1, 0.063-Mg) (Ref. 24).

Also, beryllium's relative high melting temperature of 12780C is

more compatible with the softening temperature of glass systems

under consideration for use as insulators.

112

r"1 ' I" H'li I I II II II KK^B*

Page 115: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

I 'I. 'fWfipiipWWiWWIiViiWPmWrW11'1 »imw'vtmvwmn.v WP

AFWL-TR-74-205

Table C-2

SUMMARY OF CONDUCTOR RESPONSES

te d R/H ARM

Mtl Transits (ijsec) (in) (mil/in) (mfi/in)

Mg 2 0.5 0.067 0.4980 0.1618

1.0 0.134 0.1250 0.0406

2.0 0.269 0.0310 0.0101

5.0 0.672 0.0049 0.0016

Be 3 0.5 0.061 0.7950 0.1606 D V

1.0 0.122 0.1990 0.0402

2.0 0.244 0.0500 0.0101

5.0 0.611 0.0079 0.0016

Al 3 0.5 0.045 0.6560 0.2145 r\ x

1.0 0.089 0.1680 0.0549

2.0 0.178 0.0420 0.0137

5.0 0.446 0.0067 0.0022

Ti 5 0.5

1.0

0.023

0.045

39.8

10.4

5.970

1.560

2.0 0.091 2.54 0.381

5.0 0.228 0.405 0.0607

Cu 7 0.5

1.0

0.013

0.026

4.96

1.24

0.1056

0.2641

2.0 0.052 0.310 0.0660

5.0 0.130 0.0496 0.0105

113

m

Page 116: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-205

10.Or

es E

001

te> usec

Figure C-4. Resistance Change Per-Unit-Length as a Function of Equilibration Time, t0, for Several Conductor Materials, 200 Kbar

114

IHMilMr»li 111 mi id-aim lOMmi

Page 117: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

AFWL-TR-74-Z05

APPENDIX I)

COMPUTER CÜDF. L 1 STING --liLMIiK

^ :;:.

I

i

us

- • - - - - ■ - ■ - — — , mi jMiaiaa——M

Page 118: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

PROGRAH ELHEK(INPUT*OUTPUTtPUNCH,TAP£7sIKPUTfTAPF.6sOUTPUT) C C DIFFERENTIAL EQUATIONS INTEGRATION ROUTINE -C C RUNGE-KUTTA-GILL / AOANS-HOULTON METHOD C VARIABLE STEP-SIZE INTEGRATION ROUTINE C C H SIHUTANEOUS EQUATIONS C

C HAIN PROGRAH OF THE SU3R3UTINE /OR DRIVER C c

COHHON y(2(»), Yl(2(»); Y2(2l»)t Y3C2%), YH(2(»), Z(2<*), Zl(2<») COHHON Z2(2<i)* Z3(2«il, ZkiZk), YI(2^)« E(2«»l, XI, XC, X, XI, X2 CflMMOILJllt X<», DXI, OX, DXH, EHIN, tMAX, KONT, LC, HP, HC, Hl, H2

COHHON H3, HI», N, HT COHHON CPO,RSatR90,XQ,YQ,R,AK, AH ,AL<»0, ALSO ,CP, ALII,NZ.OHOX.V COHHON U,CAP1,R2,R3,CAPD,CAP7,R10,CAP12,R13,NHAX COHHON UO,CO,CURRI,NCI,ZAP,RSEC COHHON RHKl(6)fRHK2(8)

_a__ C READ INITIAL CONDITIONS AND CONTROL DATA 1 READ lOa, N, XI, XC, OXI, DXH, EHIN, £HAX, HP, HC, HT, NZ 100 FORHAT (I3,6E10.3,312,13)

IFIN-990)3,3,50 : IF N GREATER THAN 990, CALL EXIT

3 READ iOi.{Yl(Ii,I*l,NI 101 FORHAT (5E1<».7)

READ 30ü,C0,UQ,AK,CP0 300 FORHAT UFIO.O)

READ 310,NHAX,XQ,YQ,R 310 FORHAT (12,8X,3F10.0) REAJl_32fli£ API,RZiRS^L^O.ALSO,CAP6,CAP?

READ 320,RaO,R9G,CAP12,R13,RSEC READ 320,R13,AL11,XPRT

. 320 FORHAT (8^10.3) READ 330,COND

330 FORHAT (A10) BEAU.-ikiUiRHKlCI) .1 = 1.»)

READ 3<»d,(RHK2(I),Isl,S) 3<ia FORHAT (6A10)

READ «tO»ZAP kkO FORHAT (F5.0)

C NCi*fl-

co«ca/iaoQ. UQ = U0/1000.

c C CPU INITIAL SHOCK POSITION, HETERS (-10 HcTERS FOR TURN-ON) C CP SHOCK POSITION C Ctca SHOCK VELOCITY, icTERS/SECONO C U,U0 PARTICLE VELOCITY, HETERS/SECOND C AK RESISTANCE CHANGE FACTOR C C NHAX NUHBER OF PRIHARY TURNS C XQ INITIAL GAGE LENGTH, INCHES C YO INITIAL GAGE WIDTH, INCHES

116

Page 119: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

c c c c c c c c c

c c c c

c c

R UP V

Cl ?2

Amo AL50 C6 C7 R89 RSuC «43 Rlü Ai.ll Cl^ R13

N XI XL OX NZ XPiiT

SPACING BETWEEN LOOPS» CAGE OEFORMATIOM DEFORMED GAG£ LENGTH

INCHES

PRIMARY LINE CAPACITANCE (CAP1) POHER SUPPLY SHÜHT RESISTANCE SECONDARY LINE TERMINATION, 50 OHMS INITIAL SECONOARY SELF INDUCTANCE INITIAL PRIMARY SELF INDUCTANCE POHER SUPPLY CAPACITANCE (CAP6) SECONOARY LINE CAPACITANCE (CAP7) INITIAL RtSISTAN^t, GAGE SECONOARY SECONOARY LINE RESISTANCE, LUMPED WITH R8 INITIAL RESISTANCE« GAGE PRIMARY PRIMARY LINE RESISTANCE BALLAST INDUCTANCE IN PRIMARY POHER SUPPLY CONTROL CAPACITANCE (CAP12) POHER SUPPLY CONTROL RtSISTANCE

NUMBER OF STATE EQUATIONS INITIAL TIME CUTOFF TIME TIME INCREMENT NUMBER OF V VALU£S TO BE PRINTED OUT PRINTOUT CONTROL, TIME INTERVAL

C c c w

c c c

c c

501

395

W96

50 a

1*00

(»01

*»02

MP=0 PKINT COMPLETE OUTPUT MP=1 PRINT INITIAL AND FINAL RESULTS ONLY MC=0 AUTOMATIC STEP SIZE CONTROL MC=1 NO STEP SIZE CONTROL MT=0 RKG PLUS A-M METHOD MT=1 RKG METHOD ONLY

iUKRI INITIAL VALUi OF CURRENT NCI COUNTER IN OERV, CURRI CALCULATION ZAP DETERMINES CALCULATIONAL MODE

ZAP= -1. INDUCTANCE CHANGES ONLY ZAP= 0. NORMAL ZAP' ♦!. RESISTANCE CHANGES ONLY

NPRI«NMAX NSJ.C=NPRI - 1 DO 777 LU=1,2 PRINT 501 FORMAT (1H1) PRiNT 395 FORMAT <♦ PRINT <»96 FORMAT (♦ AFML/DEX •) PRINT 5Ü0 FORMAT (♦ *) PRINT i»J0 FORMAT (• GAUE DESIGN M PRINT <»01,XQ FORMAT (5X,9H LENGTH s,F7.3,lX,7H INCHES) PRiNT <»02,YQ FORMAT (i>X,«H HIOTH =,F7.3,lXf7H INCHES) PRINT <»a3,R

MUTUAL INDUCTANCE PARTICLE VtLOClMETER DEVELOPMENT •)

117

i U ii Mi -"•-'

Page 120: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

(»03 FORrtAT (5X.15H LOOP SPACINv« *7TW7TTTT77* INLHb^) PkINT i*ik,HPRl

«»01* l-O^MAT (6XtIliiX,iUH PRIMARY VURNS) PRI.IT HOS.NSEC

«♦05 FORMAT (6X« I1V1X,1SH SECONDARY TURNS) PKINT HJOtCONO

W30 FORMAT (5X^1H CONOUCT3R HATtRIAL -,A10) PRINT 500 »RiNT ktb

•♦06 FORMAT (• SHOCK PARAMETERS ♦) PRINT ^07,CO

i»07 FO-iMAT (sXfl7H SHOCK VELOCITY = ,F6.3,1X ,15H MM/MlCROSECONO> PRINT <»0 8,U0

UL6 FOKMAT (5X,2bH PARTICLE VELOCITY = ,F6 .3,lXf 15H MM/I1ICROSECONDI PRINT <»09,AK

1,09 FORMAT (5X.27H RESISTANCE CHANGE FACTOR -tFV.2) PRINT «»iU.CPO

«.10 FOKMAT (5X,25H INITIAL SHOCK POSITION =,F9.5.1K,7H METERS) PRINT 5üü PRINT kil

Wil FORMAT (• ELECTPICAL PARAMETERS ♦) PRINT m2,CAPl

»♦12 FORMAT (5Xt*H Cl = ,l X ,£14,7 ) PRINT (»13,R2

♦ 13 FORMAT (5X,*H R2= , I X ,Eli».7 ) PRINT <*U.R3

hlh FORMAT (5X»(#H R3=f 1X,E1>».7) PRINT i»15«AL<t3

♦ 15 FORMAT (5X,6H AL«»0= . IX , ElV. 7 ) PRINT ,16tAL50

♦ 16 FORMAT (5X,6H AL50= . IX.El-^. 7) PRINT (♦17,CAP6

1.17 FORMAT (5X,i,H C6=, IX , Ell*.7» PRINT *18,CAP7

Wlö FORMAT (SX.WH C7= , IX ♦£!■♦ .7) PRINT (»l^.RSO

♦19 FORMAT (5X,5H ReC=,1X»L1W.7» PRINT «♦J2,RS£C

«♦32 FORMAT (5X,6H RSEC= «IX, Ell». 7) PRINT <t2C,R90

«♦2J FORMAT (5X,5H R90= , 1 X,£l«».7 ) PRINT ^21,CAP12

«.21 FORMAT (5X,5H C12=, lX,ili».7 J PRINT «♦22,R13

•.22 FuRMAT (5X,5H R13=,. ,.li-.7) PRINT 5J0 PRINT «»23

♦23 FORMAT (• TIME PARAMETERS •) PRINT *»2^,XI

W2-* FORMAT {5X,13H START TIME. = ,E1«». 7,IX ,dH SECONDS) PRINT ■♦25,XC

'♦25 rORMAT (5X,lnH CUTOFF TIME s.ElW.? ,1X ,aH SECONDS) PRINT i»26,0Xl

kZb FORMAT t5X,llH TIMcSTEP =,E1H.7,IX,«H SECONDS) PRINT 50C PRINT i»27

U27 FORMAT (* VARIABLES •) PRINT I*?* ,R1C

118

•MMiMaaaMa Ma^MB J

Page 121: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

«128 FORHAT <5X,5H RIO», PRINT %29«AL11

lX,Elb.7)

i»29 rORHAT (ÖX«6H ALU« »1X.E1<*. 7 1 PRINT 500 PRINT 500 PRINT 540 PRINT 5Ü0 PRINT <*31f(RHKl(Il, 1=1,8> PRINT «♦31,(RHK2(I»i I>1,8)

hii FORHAT (1X(8A10) 777 CONTINUE

XQsXQ*.025<» '

YQ»YQ».025<» R»R».025<» UO=UO*1000. C0=C0»ia60. IRK»N ♦ 1 DO 17 I«IRK,NZ ZIII«J.

17 Ecij*a. C INITIALIZE FOR STA1T-ÜP 2 KONT » 1

HI a 2 H2 » a M3 « 0 H% « 0 LC s d

C c

£F » i.OEll

CHECK ALL INPUT OPTIONS IF (OXH) 11*10,11

19 OXH s lO.Q • oxi 11 IF (EHAX) 13,12,13 ik EMAX - 10.0E-06 13 IF (EHINI 15,1%,15 Ik EHIN * EHAX / 11.0.9 15 X = XI

DO 16 1 * 1, N Yd» = YI(I)

IB CONTINUE OX » OXI XXX«XI ♦ XPRT - OX

C OBTAIN THt OERIVITIVE OF FUNCTION AT INITIAL CONDITIONS CALL OERV

C PROVIDE OUTPUT OPTION ON INITIAL CONDITIONS CALL PRNT (1)

C

c C HQtfE DATA IN ARRAY PRIOR TO NEXT POINT 23 CALL HOVE

C C TEST CONDITION OF SYSTEM 2 RKG ON START-UP (4 POINTS) AND AFTER CHANG:. IN INTERVAL C A-H ON ALL OTHER

119

Page 122: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

IF IHT) 22,21,22 21 KONT s KONT ♦ 1

IF UONT • ki 22,22,23 C : PERFORH RKG INTEGRAFION TO PICK UP POINT N+l FROH N

22 CALL RKGI 00 2<» I s 1, N Ed) • 0.0

21» CONTINUE GO TO 25

C L PERFORM A-M INTEGRATION FOR POINT NU USING N THRU N-3

23 CALL AOMI C CHECK FOR START UP ERR3R

IF (Z2(l) - tF) 25,25,(»0

C

3 PROVIDE OUTPUT 0PTI3N FOR PRINT N 25 CONTINUE

IFIX-XXX)77,88,88 88 CALL PRNT(2)

XXXsXXX ♦ XPRT 77 :ONTINU£

C C STEP INDEPENDENT VARIABLE X AND INTERROGATE CUT-OFF

CALL iTRO (HCO) IF (HCOI 30,20,30

C OUTPUT FINAL VALUES FROH INTEGRATION ANÜ REINITIALIZE 3i CALL PRMT (3)

GO TO 1 WD PRINT 2^0

PRINT 2J1, (Ed), I = 1, N) PRINT 2d2 DXI s OXI / 2.0 GO TO 2

C 50 PR*NT 203

GO TO 51

200 FORMAT (35H INITIAL INCREMENT UNSATISFACT0RY/1ÜX15HERR0R RANGE M IAS)

231 FORMAT (d£l5.n 232 FORMAT (3X21HHALVING THE INCREMENT/) dD3 FORMAT (1«»HA1A*ENO OIF^EQ)

51 CALL EXIT ENO

C

120

I ! H'lfc^'1 --■■■■--■■ ■■■■ ■■ ■ J

Page 123: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mm Mi i ujiniiwpiiqppppippppii mmm 11 "'■'"'■^'■^ Jim

t,l^*^^^mmm*m»m»-v^.>ivmnmnm<^' IMIWMIMWMRItrMMMMwmHnnNM irMIIHmMMHBMMMHBi ^ ^ ' ' M'*,'«WVi-^V(w-MWWtrW^ ■*w»w^^,>t«»»'-*W(ilÄ irrWWfft^wTtw iWWWBIWIWgWBMWWWWIW ■■

c c c c c c c C c c c c c

c c c c c c c c c c

SUBROUTINE 0E«V SUMMON Y(2<*), Yl(2l*), V2(2<*)* V3(2<»)t Yi*(2V» t Z(2<»». Z1C2'») COMMON Z2(2W)t Z3t2^1, Z<*(2^), VI(2<*), E(2<*)« XI, XC, X, XI, X2 COMMON X3, XI», 0X1, OX, DXM, EMIN, EMAX, KONT, LC, MP, MC, Ml, M2 COMMON M3, HU, N, MT COMMON CPü,P.80,R90,XQ,irq,K,AK,AM,AL<»0,AL50,CP,ALll,NZ,OHOX,V COMMON U,CAP1,R2,R3,CAP6,CAP7,R1(.,CAP12,R13,NMAX COMMON UO,Ca,CURRI,NCI,ZAP,RSEC COMMON RMKi(6),RMK2(6)

PARAMETER LIST

y(i) - LAMOA k r(2) - LAMDA 5 Y(3» - Q6 YC«,) - U7 Y(5) - Q12 Y(6) - 15 Y(7» - AM Y(8) - Lk Y(9> - L5 YdOl - Rö ^ Y(ll) - R9 Y(12) - CP Y(l3) - UP Y(l^) - 15 DOT Y(i5» - £3 UBSOLUTt VALUE) Y(16» - t3 IDEAL (ABSOLUTE VALUE), INCLUDES SECONDARY ATTENUATION AND IS CALCULATED UTILIZING THE CALCULATED VALUE 0.f CURRENT, Y(6», AT EACH IIMt STEP Y(17) - E3 IDEAL (ABSOLUTE VALUE), INCLUDES SECONDARY ATTENUATION AND IS CALCULATED UTILIZING THE INITIAL VALUE OF CURRENT, CURRI, PRIOR TO SHOCK ARRIVAL Ydd) - NORMALIZED £3, E3/E3 IDEAL, BASED ON Y(6) Y(19) - NORMALIZED E3, E3/E3 IDEAL, BASED ON CURRI Y(20) - AMOUNT OF CURRENT CHANGE DURING SHOCK TRANSIT

C = C0 C1=CAP1 C6=CAP6 C7=CAP7 C12=CAP12 CHECK ON SHOCK CP=CPa ♦ C*(X • IF(CP)22,33,33

22 :ONTINU£ v=xu CALL MUTI DMOX0=OMOX U = ö. DMOT=ö. ALtsÄL^O AL3=AL5a ^LOT^=0. L)LOT5 = 0. R8=Rö3 + RSEC ^9=R9 3 UP=0.

POSITION XI)

121

tmm tUtämum - afahiBXifäiim J

Page 124: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

»1.11.1'WIMWHWUIII"!'1!. ' -rf^WK-W (■■Il"t 'Jfm 'VT^mrv mil,, w < ■ 1,11, fff, , .^

GO TO 99 33 CONTINUE

UsJO 0T=CP/C up=u»or V=XQ - UP

CALL NUTI aMOT=-OMDX*U OLOX4sAL^0/xa DL0X5=AL5a/XQ AL4 = AmJ - DL1}X1»*UP AL5=AL50 - DL0X5»UP OLOT^s-OLOX^^U 0L0T&=-0L0X5»U R8aCR60/(2.»(Xü ♦ Y(1»))»(YÜ R9= <R90/(2.»(xa ♦ yamMYCi

c c

♦ 2.*<X(i - CP» ♦ AK»(Y(J ♦ 2.»CPn*RSEC ♦ 2t*(XQ - CP) ♦ AK»(YQ ♦ 2.»CPn

CHECK CALCULATION'^ IF (ZAPl4'*f 99,66

hi* CONTINUE

MODE

INDUCTANCES CHANGES ONLY

66

R8sR60 ♦ RS£C R9=R90 GO TO 99 CONTINUE

♦ R10»/DET)»ULVY(2I- - Y(l»»DMOT) - «(ALU*

\ I

RESISTANCE CHANGES ONLY

ALt^AL^O AL5=AL5a DLDT«f=0. DLDTSsQ.

99 CONTINUE OETsAL^ALS - AM»AM 0ETDT=AL*»#0L0T5 + AL5»DLOTi» - 2.*AH»DH0T Zll)*Ui*i/C7 -(R8/DtT)»(AL5*YCl) - AH*YC2)I ZC2)s{0ET/<0ET ♦ ALll»ftL«»)»»(Y(3)/C6 - ((R9

lAM»y(l)> - (AL11/DET)*CY(2I»ÜLDT<* - AM»Z(1) 20tTOT)/(0ET»0ET)»*{AM»Yll) - AL«»»Y(2))) Z(3)=- (C6/(C6 ♦ Cl»)»(Y(3)/(R2»C6»+ (1./R13)»CYC3I/C6 - Y(S)/C12)

1 + (l./0tT)»(ALi»*Y(2) - AM»Y{l>n ZC^Is - Y(«»)/(R3»C7) - {AL5*YC1) - AM»Y(2>)/DET Z(5) = (1./R13)»(Y(3)/C6 - M5)/C12) Y{6)=(AL*»*Y(2» - AM»Y{l)»/DET IF(NCI)30,50*51

50 .URRI=Y(6) 51 :ONTINUE

NCI=NCI ♦ 1 Y m=AM Y(SI=AL<* Y{9»=ALö Y(10»=RB Y(11)=R9 Y(12)=CP Y(13)=UP

122

jteumn^, -HMMIMMM«^

Page 125: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

wmmm «!

■PPWR IIPMIiWIWIIllHII ^ 'l.|lww^pwwlWl.|^,llw^l■-"IW'■ w^nwn^mmupwipwi^Tw;. »m ■ wupwmnp»

r(iW»=(l./DET)»(AL«4Z(2) ♦ Y(2»•DL0T^ - AM»Z(l) 1 (üeTQT/(DtT»OtT))»(AM»y(l» -AL<«»V(2)) YC15)=YU)/C7 YU5> =A8S(r(15> ) Y(lbl=Y(6»*DM0X»U»(R3/(i<3 ♦ RdC ♦ ÄStO) Y(iöi-ABS(Y(X6t » iF(Y(i6)»loitiae.iai

101 CONTINUE Y(17)=CUR9I»0M0X3»Ü»(R3/(R3 + R60 ♦ RStC)) Y(i/)=ABS(Y(17» ) Y(ia»=r (15)/Y(16) Y(19)=Y(15)/Y<17) GO TO UJ

102 ;0NTINUc Y(16)=0. Y(17)=0. Y(i6)=0. Y(19)=0.

10 3 CONTINUE Y(20)=r(6»/CURRl n£TURN END

Y(1»»ÜMDT) ♦

aOMHON COMMON COMMON COMMON COMMON COMMON COiMO.'l

HZki, ZHZk) Xlf XC, X, XI« X2

LC, MP, MC, Ml, M2

*iQ

303

SUBROUTINE MUTI COMMON Y (2^) , Yl(2'i), Y2(24), Y3C2**), iHlZki,

Z2(24), Z3(2%», ZU(2<»), YI(2<,), HZk) , X3, XI«, OXI, bX, OXM, EMIN, EHAX, KONT, M3, Ml», N, MT CP3,RoO,R90,XQ,YQ,R,AK,AM,ML>«0,AL£J,CP«ALll,NZ«OMOX,V U,CAPl,R2,R3,CA'»6,CAP7,R10,CAF12,Mi,NMAX Uu^T^URRI.NCI^AP.RSEC RMKKö) ,RMK2(6»

DIMENSION QU(5&) ,ERR(51) PI=3.mi5926 flMU = .30 JUJ1<;»6P'9 Z=YU MM=NMAX-1 DO 80 M=1,MM P=2»H-l S = P*R A=SQRT(V*\/ ♦ Z*Z) 3=3URT(V»V ♦ S*S) C=JQRT(Z*Z <■ S*S) AA=S^RT(V»V + Z»Z + S»S) QQ(M)=<AMJ/Pl)»(2.»S-2.»C-2.»B + 2.»AA*\/»ALOÜ(C»<V + B>/<S»(V+AA)»)

1 Z'ALOG(B»(Z>C)/(S»(Z+A4)»») PiU=(.'■1,J/PI»MALOG(CM\/ + B»/(S* (V+AA) )) ♦ V* ( A A-B) / (B*B) ) JPL=Qü. ■*> /V £KR(M)=(POQ-QPL)/P0Q CONTINUE JC = NMAX-1 INTF=2»(NMAX-1) QX=0, aY=a« CÜEF=INTF 00 J03 J=i.JC uX = ax * COt.F»QU(J) QY=QV ♦ C0EF*QQ(J)/(1.-£RR(J») :0^F=CO£F-2. "ONTINUE ÄM = QV

iRs.l <X/QY DMÜX .. 'Jrf*<l.-ER»)

ETUf. :ND

123

hi MOMMMIki tauu! MM«« ■ÜHMi^ttii ... ._-.-.. .■■„,..-■■*..

Page 126: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

m\»mm "«"»>"« " mm ■m^mr-- -rrrrr. i ii, mp,.,,,, , ,, j.,,,,, .^j,, ■■» '< """»»I"-- mwnii li "

■jtwi'W'-J',«;»^«1«'>wwwi»«iiiiiiiL»i»»K>v.t>...,

53 52 *1 1

C C

10

12

11

7

2D

3 33

5:

71

72

ZC2^)f Zl(2<») XI, XC« X« XI, X2 LC, HP, HC, Hi, HZ

XI, OXI, OXH, XC, EMIN, EMAX . NZ I, VCII, I, zm

SUBROUTINc PRNT (K) PROVIDE OUTPUT AS REQUESTED BY OPTIONS

CÜHNON YtZl»l, VKZi»), Y2(Z^), Y3(2<>), Y(»(2<»), CONHON Z2(2<»), Z3I2<*), Z«t(2<»), YIUUI, E(2<»), COHHON X3, XV, DXI, OX, OXH, EHIN, EHAX, KONT, COHHON H3, H<», N, IT COHHON CPO,RAO,R90,XU,YQ,R,AK,AH,AL<»0,ALSO,CP,ALII,NZ,DHDX,V COHHON U,CAPl,R2,R3,CAP6,CAP7,RlO,CAPi2,Ri3,NHAX COHHON UO,CO*CURRI,NCI,ZAP,RSEC CONHON RHKl(tt),RMK2(B)

TEST PRINT ON INITIAL AND INTERHcOIATE POINTS IF (K - 3) 30,3,60 IF (K - 1) 52,1,52 IF (HP)60,5i,60 IF (K-l) 1,1,2 IF (HT) 10,10,11

PRINT 2J0 PRINT 206 PRINT 206 LF = 1 PRINT 231, DO 6 I = 1 PRINT 208, :0NTINUE PRINT 209 LC=11*NZ 30 TO 60 PRANT zaz PRINT 206 PRxNT 206 LF = 2 GO TO 12 IF (LC ♦ NZ - :>RINT 203, X, 30 <t 1=1,NZ PRINT 235, I, CONTINUE PRINT 206 LC = LC ♦ 2 ♦ GO TO 60 IF (LC ♦ NZ - PRINT 20^, XC ÜO 5 1=1,NZ PRINT 2i.C, I, CONTINUE PRiNT 207 RETURN GO TO (71, PRINT 2w0 PRiNT 239 LC = 0 GO TO 23 PRiNT 202 LC = 6 PRiNT 209

58) OX

20,20,73

Yd), i, zm

NZ

56) 30,33,73

y(i), I, Zd)

Ed)

72), LF

124

tM ..-.„.. ^^^nj, ■lUHiitaiiHNaaMWMiiiMwaB

Page 127: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

um ^p^PPpp^ppmiy,,,,,^,^^- l.-.TT-t- II IIIHII WPIJP^JII I lUBII^mW.I "■"■I1IWM"T^ 'I l»*»l"l *■ " I. !■■ II ^^ ■"'■ ■ I

^^J,^W'm^w^fmt^^^^m'^r■■ ^^^ 1 ■ .^-'. •*'•> ■ ■ ;»*( ■ ■ ,- '"' >i>. ,-,*« .•■,v-,.

9 GO TO 2a H 73 GO TO ( 7*,

1 7k PRINT 2üC GO TO 30

1 75 PRINT 202 GO TO 30

1 HL GO TO (Alt 1 ei PRiNT 200 PRINT 20 9 LC = 6 GO TO 63

82 PRINT 202 PRINT 209 LC = o JO TO 60

75) , LP

82), LF

20C FORMAT (5oHl RUNGE-KÜT TA-GKL / ADAMS-MOULTON INTEGRATION ROUTIN If»

?01 rORMAT (23H INITIAL CONDITIONS/16X1HX ,17X5HOEL Xt12X9HMAX DEL X, 113X,5rtCUT X,12X,9HMIN £«RüR,10X,9HMAX tRROR/5X,6E19. 7)

2D2 FORMAT UJH1 RUNGE-KJTTA-GiLL INTEGRATION ROUTINE) 2C3 FIMMAT (2E15.7) 2:«» FORMAT (/3«*H FINAL RESULT AT A CUT-OFF X OF,tl5.7) 2i5 FORMAT (lQX,2rty (,I2,i»H) = , E15 .7 .UX^HOERV (,12 ,<»H) = ,E15,7,<»X,

15H£RR0R(,I2,'»H) = ,tl5.7) 216 FORMAT (1H I 2u7 FURMAT (1H1/1H1) 2ifl FORMAT (9X,3Hiri (,I2,i,H) = , E15 . 7 ,3X ,6HOEkV I (, 12 ,<,H) = ,E15.7) 219 FORMAT < / 12X19HlNT£GkATI ON RESULTS/ ÖX, IHX ,13X , 5HDEL X/2ÜX ,«»HY ( i ) ,

123X,7HOERW(I),2 3X,dHERROR(I)/) 210 FORMAT (iax,2Hf (,12,«*MI = ,E15 . 7 ^X SHOERV (, 12 ,<»H) = ,£16.7)

ENJ

SUBROUTINE MOVE TC REPOSITION DATA ARRAY FJK NEXT POINT

COHMON y(2'»), Yl(2i»), Y2(2(»), Y3(2H), Y<*(2<*), COMMON Z2(2>«), 23(?<*), Z^(2<i), Vllch), E(24Jf CO.IMOM X3, Xi,, DXI, OX, DAM, EMIN, EMAX, KONT, COMMON 113, Mi», N, IT COMMON CP0,Rö0,R9C,Xt(,Ya,R,AK,Ah,AL«»C,AL60,CP,ALll,NZ,OHOX,V COMMON U,CAPl,R2,R3,C«D6,CAP7,Rin,CAP12,Rl3,iNMAX COMMON Uü,C1,CURRI,NCI,2AP,RSEC COMMON RMKKo» ,RMK2(8)

Z<2W», 71(2'+» XI, XC, X, XI, X2 LL, MF, MC, Ml, M2

Kk - X3 = X2 = XI = OO i Yi»{I) = Y3(:) = Y2(I) = YKI) = 7MI) = 73(1) = Z2(I) = ZKI) = CONTINUE RETURN ENO

X3 X2 XI X I = 1, N = Y3(I) = Y2(I> = YKI) = Yd) = Z3(I) = Z2<I) = ZKI) = Z(I)

125

i i tf.n^iMMlMiilitlii

Page 128: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

'"" "I' ■ ' ■ ■-••■— »" II' " -l.^. ■■-.— r.i'Pvwii "i in!'

c c

n c c

SUBROUTINE RKGI OBTAIN VALUE OF NEXT POINT VIA RUNGE-KUTTA-GILL INTEGRATION

COMHON Y(2^l, Yl(2l»)f i2{2k) * Y3(2<»)* Y^(2<»>, ZiZki , ZHZk) COMMON Z2(2HI, Z3iZk) , ZklZki, YI(2<»), E(2<»), XI, XC ♦ X, XI, X2 COMMON X3, X^, 0X1, OX, OXM, EMJN, EMAX, KONT, LC, MP, MC, Ml, M2 COMMON M3, M(», N, HT COMHON CP3,R80,R90,XU,YülR,AK,AM,AL<tO,AL50,CP,ALll,NZ,DMDX,V COMMON U,CAPl,R2,R3,CAP6,CAP7,R10,CAPi2,R13,NMAX COMMON UO,CO,CURRi.NCI,ZAP,RSEC COMMON RMKliai,RMK2(8) DIMENSION A(2<»)

RKG Di * 02 « 03 - Cl = C2 * C3 = Ok = C5 = C6 = 00 1 A(i) CONT

INTEGRATION CONSTANTS SORT 10.5QC0)

(2.0C00) 01 01 02 03 01 02 03

1, N

SQRT 3.0 ♦ l.J - 2.0 - 2.J - 1.3 ♦ 2.0 ♦ 2.0 ♦

0 1 = = Z(I)

INUE

♦ » #

00 1 I = 1, N Yd) = Y (I) ♦ CONTINUE X = Xi ♦ OX / 2.0 CALL OERV 00 2 I» 1, N Y(I) = Y(II ♦ Cl Ad) = C2 ♦ Zd) CONTINUE CALL OERV DO 3 I = 1, N Yd) = Yd) ♦ Ok Ad) = C5 • Zd) CONTINUE X = XI ♦ OX CALL OERV DO <» I = 1, N Yd) = Yd) ♦ OX CONTINUE CALL OERV RETURN END

OX • Zd) / 2.0

OX C3

OX C6

(Zd) Ad)

(Zd) Ad)

- Ad) )

- Ad) )

Zd) / 6.0 - OX * Ad) / 3.0

126

lirtiiiiir ...Jvli^.l-^.---..^

Page 129: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

m*m^mww»m*~~™~~~~~r~m*m<»m ipi»!'-"^M ll|lllll«lmw•l<■■l«pw)>f■ll|li>l"l,l■l ii wwup^iniMipiw^w^w^nwn i. ■« i - -^miwmmr^rrrw^m

I 2 3

SUBROUTINE ITRO <K)

TO INTERROGATE »URR£NT VALUE OF X FOR CUT-OFF X

COMMON COMMON COMMON COMMON :OMMON COMMON COMMON COMMON IF (X ♦ IF (Mt) < = 0 RETURN

lidki* nuki, iziZh), mzku tkUkit z(2<>)« nizki Z2(24). 23(2«*)« Zklik), YHZkl* EiZki , XI, XC, X, XI, X2 X3, *kf OXI, OX, OXM, EMIN, ENAX, KONT, LC, MP, MC, Hl, H2 M3, Ml», N, MT ÜP0,R80,R90,XQ,rQ,R,AK,AM,ALV0,AL&a,CP,ALll,NZ,OHOX,V U,CAP1,R2,R3,CAP6,CAP7,R10,CAP12,R13,NMAX UO,CO,CUKRI,NCI,ZAP,RSEC RNK1(8),RMK2(6)

OX - XC) 2*1,1

OX s XC - KONT s i Hk - I GO TO 3 K = 1 GO TO 3 END

127

•«^MMHtfMHt „.^■^a^:... fcmaih ^.■.■■.^...,:..^..^^ a^y tüa J

Page 130: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

m ■ i "< wmm mm " mtmm Mam mi iiiiiiwif)m|in)iinj| i^umiwi III.U'IHI^ i.i. p.iMpin^mci

WW—W ——— i Hin Hi«— iw,

SUBROUTINE AOMI OBTAIN TENATlVc VALJE OF NEXT POINT VIA AOAHS-MOULTON INTEGRATI LHctK ERROR FOR POSSIBLE CHANGE IN SUP-SIZE

Z(2(»)t lliZk) XI, XCt X« XI, X2 LC, MP, NC, Ml* M2

COMMON U2%), Yl(2i*)f r2(2t»), Y3(2<*), Y<»(2W), COiMON Z2(2<*), Z3(2t), Z<*(2H), Yl(2<f), E(2^», COMMON X3, X(>, 0X1, OX, OXM, EMIN, EMAX, KONT, COMMON M3, Mt», N, MT COMMON OPa,R0]*k?O,XU,YQ,R,AK,A*,AL*O,AL5O,CP*ALll,NZ,OHOX,V COMMON U,CAP1,R2,R3,CA'6,CAP7,R10,CAP12,R13,NMAX UOMMON üO,Ca,CURRI,NCI,ZAP,RSEC COMMON RMK1(8) ,RMK2(6) DIMENSION YY(2<»)

IF (KF) 50,51,5C 5Ü IF (KFF> 52,53,52 52 KF = ü

<FF = 3 GO TO 5i

53 KFF = 1 51 CONTINUE

C STEP X AND PREDICT A Y X = XI ♦ OX MM = 0 ji = ox/21».a Oc s 19.0/270.0 DO 5 I = 1, N Y(I) = YHI»*01»(55.0»Z1(I)-59.0»Z2(I>*37.0*Z3(I)-9.0*Z'»(I)»

YY(I) = Yd) 5 CONTINUE

CALL OERV

C c

c c

CORRtCT Y AND PREDICT CHECK ON ERROR DO 6 I = 1, N Yd) = Yld) ♦ Dl*(9.0*Z(I»-d9.0»Zl d)-5.0*Z2CI)+Z3d) ) CONTINUE CALL OERV

00 7 I = 1, N Ed) = ABS (02 ♦ (Yd)

CHECK ERROR RANGE IF (EMAX - Edl )l»5,l,l

I IF (t(I» - EMIN ) 8,7,7 !»E MM = MM ♦ 1

GO TO 7 S M3 = M3 ♦ 1 7 30MTINUE

IF (HM) i»ö,^6,3 «b IF ( M3 - N ) 1C,2,2

« « » » 4

- fYCI) ))

; ERROR LESS THAN MINIUM - DOUBLE THE STEP-SIZE 2 IF (MC)10,21,i0 21 IF (X ♦ k,Q »OX - XC) 22,22,10 22 IF (DX+ÜX -OXM) 23,23,10 23 CALL PRNT (2)

128

■■^•M. mum

Page 131: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

•: iwmmffi-wtv w ^tfßv^^^irm^^imvm^ßm^trmtvt **wfv}nfnmmmw*,w****www*> •■»" ■ ' ^w*r IWH P VW W w^

«r»

i

2Ö1 250

?u

25

26

OX = ÜX ♦ OX IF (LC ♦ N " CALL PRNTC») PRINT 2J1 10 tLU I - 1, PRINT 20J. i» CONTINUE PRINT 20»» LC = LC ♦ 2 XI = X 00 25 I Z3(I) = ZKI) = mi» - CO^TINUL

♦ ♦ OALL liK&I HO 26 I = It Hi) = J .o CONTINUE Ml = 1 &0 TO 13

581 230,230,231

N E(I>

♦ N

= 1, N Z4(I) Z(I) Yd)

3 3u 31 3i 33

j

351 350

37

Wl

36

31.

IF IF IF IF IF

TX IF

iRROR GREATER (M2) 30,<,C,3C (MG)ia,31,10 (Ml)3<4,32,3^ (X fjX -fOX - XC) (KFF)3b,35,36 » » » *

= OX / 2.Q (LC ♦• N - 36)

:ALL PRNTH») PRINT 2i2 00 37 I = 1, N PRINT 2Ü3, I, Ed) CONTINUE PRINT 231. LC = LC + 2 + N ÜO ^2 I = i, N Yd) = Yl (I) Z(I) = Zld) CONTINUE CALL RKlil DO 36 I = 1, N '(I) = 0.0 CONTINUE KONT = 2 <F = 1 <FF = 0 GO TO 13

♦ » »

XI = X2 f'i = a OÜ 39 I = 1, N Y(I) = Y2d) YKI) = Y2(i)

THAN rAXiMUM - HALVE THE STEP-SIZE

33,33,10

asc-iSi^si

129

——Xft—I - n IM - ■•'■■■'-—'■

wft^w>»ti*niNt'/aiW

Page 132: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

r

^Ml^w mmmm** -«rr-- 1. iilUKIIil ■I l«"" "I "«I^FWnFWPFfll

3b

II 13

36

hi

'«0

231 232 ?C3 2D4

zm s Z2(i) ZKI) s Z2(I) COWTlMUb GO TO 35

s 1 (Mill!,13,11 = 0

IF Ml M3

= 1. N Y4(I) Y<»(I) Z<*(I) Z<*(I)

RETURN •

KFF = 0 XI = X<» 00 ki I Yd» =

YKI) = Z(I) =

ZKI) = CONTINUE GO TO 35 Z2(i) - 1.QE12 GO TO 13

♦ ♦ »

FORMAT i51H FORMAT (50H FORMAT FORMAT END

DOUBLING THE INTERVAL« HALVING THE INTERVAL,

(8X,6HERR0R(,I2,5H) s ,E15.9) (1H )

ERROR ERROR

ARkAY ARRAY

AS AS

FOLLOMS) FOLLOWS)

130

MMMMM ■ I -

Page 133: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

mmmt^imimmmmmm " '•'■■'Pi ip i ii i nil. mtmwm i mmw 1" "•■"» -

AFWL-TR-74-205

RLFERLNCES

Bunker, R. B., Doran, J. A,, Impedance-Mismatch High Stress Transducer (IMHST) . AFWL-TR-73-45, AF Weapons Laboratory, Kirtland AFB, NM, March 1J73.

B

>

I

Baum, N. , Shunk, R. , Bunker, R, • (T3) Development, AI tory, Kirtland AFB, NM, April 1973,

Thermoelectric Thermopile Transducer (T3) Developmentj AFWL-fR-73-24 , AF Weapons Labora-

Danek, W. L., Jr., Schooley, D. L., Jerozal, F. A., Particle Velocimeter for Use Close-In to Underground Explosions, DASA Report 1431-3, Defense Atomic Support Agency, Wash, DC 12 October 1967.

Liberman, P., Newell, D., Piezoresistive Dielectric/Dielectric Microwave Waveguide, AFWL-TR-73-37, AF Weapons Laboratory, Kirtland AFB, NM, February 1973.

Specification Sheet for Velocity Transducer, Crescent Engineer- ing and Research Company, 15 November 1964.

Perret, W. R., Wistor, J. K., Hansen, G. J, "OX Pendulum Velocity Gage," in Four Papers Concerning Work on Ground Motion Measureme n tj , SC-R-65-905, Sandi Albuquerque, NM, pp 2 5-^8, July 1965.

Palmer, D. G., Recent

a Corp.

7. Liberman, P., Theory and Operation of the IITRI Pressure-Time Gages in the 20-2 00 Tn"loba'r Region, DASA Report 2161, Defense Atomic Support Agency, Wash, DL , November 1968.

8. Barker, L. M., Laser Interferometry in Shock-Wave Research, SC-DC-70-5465, Sandia Laboratories, Albuquerque, NM, December 1970.

9. Danek, W. L., Jr., Reily, D. M., Gushing, V. J., Particle Velocimeter for Use Close-In to Underground Explosions, Phase I, DASA Report 1431, Defense Atomic Support Agency, Wash, DC, 30 November 1963.

10. Danek, W. L., Jr., Particle Velocimeter for Use Close-in to Underground Explosions, Phases II and III, DASA Report 1431-1, Defense Atomic Support Agency, Wash, DC, 29 October 1964.

11. Danek, W, L., Jr., Dargis, A. A., Particle Velocimeter for Use Close-In to Underground Explosions, Phase IV, DASA Report 1431-2, Defense Atomic Support Agency, Wash, DC, 31 December 1965.

12. Uanek, W. L,, Jr., Private Communication.

13. Danek, W. L., Jr., Schooley, D. 1.., Jerozal, F. A., Close- In Particle Velocity, Operation DISTANT PLAIN, Event 6, Project 3.09, DASA Report 2021, Defense Atomic Support Agency, 15 November 1967.

131

,■,1. ■if.i'.ni.>6ilV M ■■^-.. l.] ,, | . HllBllMBMII

Page 134: AD/A-004 219 ANALYSIS OF THE MUTUAL INDUCTANCE …

PPP^WIPI^W»"^«^"'^ "^P ■ I' I

REFERENCES (cont'd)

Keough, ü. D., Constitutive Relations from In Situ Lagrangian Measurements of Stress and Particle Velocity, DASA Report 2685, Defense Atomic Support Agency, Wash, DC, 27 January 1972.

15. Smith, C. W., Grady, D. E,, Seaman, L., Peterson, C. F., Constitutive Relations from In Situ Lagrangian Measurements ot Stress and Particle Velocity, DNA Report 28851, Detense Nuclear Agency, Wash, DC, January 197 2.

16. Grady, D. E., Smith, C. W., Seaman, L., In Situ Constitutive Relations of Rocks, DNA Report 3172Z, Defense Nuclear Agency, Wash, DC, January 197 3.

17. Garcia, P. R., IMHST and Particle Velocity Gage Measurements, MIDDLE GUST IV and V, Report No. AL-881, EGSG, Inc., Albuquer- que, NM, 3 November 197?.

18. Renick, J. D., et al., Close-In Ground Stress Measurements, MIXED COMPANY III, Project LN -SjM, Report No. TÜR 6633, AF Weapons Laboratory, Kirtland AFB, NM, November 1973.

19. Stern, T. E., Theory of Nonlinear Networks and Systems, An Introduction, Addison-Wesley Publishing Company, Inc., Reading, MA, 1965.

20. Seshu, S., Reed, M. B., Linear Graphs and Electrical Networks, Addison-Wesley Publishing Company, Inc. , Reading, MA, 1961.

21. Terman, F. E., Radio Engineers' Handbook, McGraw-Hill Book Company, Inc., New York/London, pp 53-57, 1943.

22. Test Facilities Handbook (Tenth Edition), Arnold Engineering Development Center, Arnold AFS, TN, May 1974.

23. Bridgeman, P. W., "The Resistance of 72 Elements, Alloys, and Compounds to 100,000 kg/cm2," in Proceedings of American Academy of Arts and Sciences, 81, 1952.

2 4. Neutron Cross Sections, Vol I, Resonance Parameters , BN L 325, National Neutron Cross-Section Center, Brookhaven National Laboratory, Upton, New York, June 1973.

132

v....^,. ^-*—a-^.. I f,^-^"-"——■-—"-■■■ jMMdjuai i nil