5
 Vector operations in V arious Coordina te Systems Environmental Fluid Dynamics 1. Carte sian coordin ates: (x,y,z ) Coor di nate Symbol V el oci ty component Unit vector x  x u  i y  y v  j z  z w  k Φ =  i ∂ Φ x  + j ∂ Φ y  + k ∂ Φ z ∆Φ =  ∂ 2 Φ x 2  +  ∂ 2 Φ y 2  +  ∂ 2 Φ z 2 · v  =  u x  +  v y  +  w z v  = u x u y u z v x v y v z w x w y w z v  = w y   v z u z   w x v x   u y 2 v =  ∇ · v = v  = ∂ 2 u x 2  +  ∂ 2 u y 2  +  ∂ 2 u z 2 ∂ 2 v x 2  +  ∂ 2 v y 2  +  ∂ 2 v z 2 ∂ 2 w x 2  +  ∂ 2 w y 2  +  ∂ 2 w z 2

AD3

Embed Size (px)

DESCRIPTION

AD3

Citation preview

  • Vector operations in Various Coordinate SystemsEnvironmental Fluid Dynamics

    1. Cartesian coordinates: (x, y, z)

    Coordinate Symbol Velocity component Unit vector

    x x u iy y v jz z w k

    = ix

    + j

    y+ k

    z

    =2

    x2+2

    y2+2

    z2

    v = ux

    +v

    y+w

    z

    v =

    ux

    uy

    uz

    vx

    vy

    vz

    wx

    wy

    wz

    v =

    wy vzuz wxvx uy

    2v = v = v =

    2ux2 +

    2uy2 +

    2uz2

    2vx2 +

    2vy2 +

    2vz2

    2wx2 +

    2wy2 +

    2wz2

  • 2. Cylindrical coordinates: (r, , z)

    Coordinate Symbol Velocity component Unit vector

    radial r u = vr iangle v = v jvertical z w = vz k

    x = rcos, y = rsin, z = z

    i = er =

    cossin0

    , j = e = sincos

    0

    , k = ez = 00

    1

    Let be a function of x, y, and z ((x, y, z)) and let be the transformation of on cylindricalpolar coordinates ((r, , z)). Then utilizing the chain rule:

    x=

    r

    r

    x+

    x,

    y=

    r

    r

    y+

    y,

    z=

    z

    Knowing that r =x2 + y2 and using the equations for x and y above yields:

    r

    x=x

    r= cos,

    r

    y=y

    r= sin,

    x=sinr

    ,

    y=cos

    r

  • Hence becomes:

    =

    r cos sinrr sin+

    cosr

    z

    = r

    cossin0

    + 1r

    sincos0

    + z

    001

    =

    rer +

    1

    r

    e +

    zez

    The velocity components have to be rotated by the rotation matrix:

    vxvyvz

    = cos sin 0sin cos 0

    0 0 1

    vrv

    vz

    = vrcos vsinvrsin+ vcos

    vz

    Again applying the chain rule:

    vxx

    =vxr

    r

    x+vx

    x,

    vyy

    =vyr

    r

    y+vy

    y

    which yields:

    vxx

    =

    (vrr

    cos vr

    sin

    )cos+

    (vr

    cos vrsin v

    sin vcos)(sin

    r

    ),

    vyy

    =

    (vrr

    sin+vr

    cos

    )sin+

    (vr

    sin+ vrcos+v

    cos vsin)(cos

    r

    )and we obtain:

    v = 1rvr +

    vrr

    +1

    r

    v

    +vzz

    =1

    r

    (rvr)

    r+

    1

    r

    v

    +vzz

    = ir

    + j1

    r

    + k

    z

    =1

    r

    r

    (r

    r

    )+

    1

    r22

    2+2

    z2

    v = 1r

    (rvr)

    r+

    1

    r

    v

    +vzz

    v =

    vrr

    1rvr

    vrz

    vr

    1rv

    vz

    vzr

    1rvz

    vzz

    v =

    1r vz vz

    vrz vzr

    1rv +

    vr 1r vr

    2v = v = v =

    1rr

    (r vrr

    )+ 1r2

    2vr2 +

    2vrz2

    1rr

    (rvr

    )+ 1r2

    2v2 +

    2vz2

    1rr

    (r vzr

    )+ 1r2

    2vz2 +

    2vzz2

  • 3. Spherical coordinates: (r, , )

    Coordinate Symbol Velocity component Unit vector

    radial r w = vr ipolar angle v = v jlongitude u = v k

    x = rsincos, y = rsinsin, z = rcos

    i = er =

    sincossinsincos

    , j = e = coscoscossinsin

    , k = e = sincos

    0

    The rotation matrix for spherical coordinates is:

    vxvyvz

    = sincos coscos sinsinsin sincos cos

    cos sin 0

    vrv

    v

    = vrsincos+ vcoscos vsinvrsinsin+ vsincos + vcos

    vrcos vsin

    You can now utilize the equations above to calculate the different operations on scalars andvectors yourself following the examples given for cylindrical polar coordinates.

  • = ir

    + j1

    r

    + k

    1

    rsin

    =2

    r2+

    2

    r

    r+

    1

    r22

    2+

    1

    r2tan

    +

    1

    r2sin2

    2

    2

    v = 1r2

    r

    (r2vr

    )+

    1

    rsin

    (vsin) +

    1

    rsin

    v

    v =

    1rsin( (vsin) v

    )1

    rsinvr 1r r (rv)

    1rr (rv) 1r vr

    2v = v = v =

    2vrr2 +

    2rvrr +

    1r22vr2 +

    1r2tan

    vr +

    1r2sin2

    2vr2

    2vr2 +

    2rvr +

    1r22v2 +

    1r2tan

    v +

    1r2sin2

    2v2

    2vr2 +

    2rvr +

    1r22v2 +

    1r2tan

    v +

    1r2sin2

    2v2