26
P. Denes STD6 Sep. 2006 1 Active Pixel Sensors for Electron Microscopy Monolithic CMOS Active Pixel Sensors are obvious for Transmission Electron Microscopy Why? Challenges Possibilities (Thinned) silicon subst rate T epi Diode Transistor SiO 2 Pixel Pitch epi s ilicon P. Denes, JM Bussat – Engineering Division Z. Lee, V. Radmilovic – National Center for Electron Microscopy Lawrence Berkeley National Lab

Active Pixel Sensors for Electron Microscopy

  • Upload
    sue

  • View
    66

  • Download
    0

Embed Size (px)

DESCRIPTION

Monolithic CMOS Active Pixel Sensors are obvious for Transmission Electron Microscopy Why? Challenges Possibilities. Pixel Pitch. SiO 2. Diode. Transistor. epi silicon. (Thinned) silicon substrate. T epi. Active Pixel Sensors for Electron Microscopy. - PowerPoint PPT Presentation

Citation preview

Page 1: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 1

Active Pixel Sensors for Electron Microscopy

Active Pixel Sensors for Electron Microscopy

Monolithic CMOS Active Pixel Sensors are obvious for Transmission Electron Microscopy

Why? Challenges Possibilities (T

hinn

ed) s

ilico

n su

bstra

te

Tepi

Diode

Transistor

SiO2

PixelPitch

epi s

ilico

n

P. Denes, JM Bussat – Engineering DivisionZ. Lee, V. Radmilovic – National Center for Electron Microscopy

Lawrence Berkeley National Lab

Page 2: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 2

Scanning EM

Scanning EM

e– Gun

Anode

CondenserLens and Aperture

Sample

ObjectiveLens

Detector

<30 keV Secondary or backscattered

electrons Analogous to metallurgical

light microscope

Scan coils

Page 3: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 3

Back-scattered electrons

Back-scattered electrons

10

m

S

i

20 keV e–

At energies used for microscopy, electrons really scatter!

Page 4: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 4

Transmission EM

Transmission EM

100 - 400 keV Transparent (thin) sample Analogous to biological

light microscope

e– Gun

Anode

Condenser Lenses

Condenser Aperture

SampleObjective Lens

Apertures

MagnificationandProjection

Detector

Page 5: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 5

Energy vs. …

Energy vs. …

Simple approximation:

Pe(>) ~ (t) (Z2/A) / E22

Pi(>) ~ (t) (Z/A) / E22

Pi(>)/ Pe(>) = 1/Z

A/Z ~2 for all elements

Pe(>) ~ tZ / E2

Higher Z more scattering Thinner samples or higher

energies

After Egerton

Biological samples:Z~6 – stain (e.g. UO2(CH3COO)2·2H2O) to increase contrast Materials: higher E, butdisplacement damage (e.g. ~150 keV in Si)

1 pA/nm2 6x1020 e–/cm2/s

Page 6: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 6

Traditional High-Performance EM Detectors

Traditional High-Performance EM Detectors

backingAgX + gelatin (emulsion)

sub-micron to sub-micron to few micron grainsfew micron grains

photo-sensitivephoto-sensitivephosphor grainsphosphor grains~5 ~5 mm

“Reuseable film”Scanned by laserLinear, eraseable

Page 7: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 7

Traditional “Digital” EM Imaging Detector

Traditional “Digital” EM Imaging Detector

e Phosphor must be thin to minimize e multiple scattering

Photons scatter Electrons scatter e CCD QE

Phosphor

Fiber Coupling

CCD

Page 8: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 8

The Problem

The Problem20 keV e– 100 keV e–

200 keV e– 300 keV e–

20

m

S

i

100

m

S

i

20

0

m

Si

30

0

m

Si

Page 9: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 9

Lens-coupled CCD

Lens-coupled CCD

UCSD

PhosphorCCD

Page 10: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 10

0

50

100

150

200

250

300

350

400

450

0 100 200 300

Incident Energy [keV]

Ran

ge [ m

]

In the Past 10+ Years

In the Past 10+ Years

Direct detection in CCDs – radiation damage Hybrid pixels

Fan et al. - 1998 Faruqi et al.

Medipix at 120 keVPixel size ~ “blob”size

CMOS APS

“Direct detection in silicon”

Page 11: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 11

Why APS?Why APS?

0

500

1000

1500

2000

2500

100200300400

Incident Energy [keV]

e/h

pai

rs g

ener

ated

per

in

cid

ent

e2 um Si8 um Si

SiO2 + metal

Si epi

300 keV e

40 µm

Page 12: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 12

An Example

An Example

Faruqi IWORID 2004

525 x 52525 m pixels0.5 m CMOSfrom RAL

Diffraction pattern from vermiculite

Page 13: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 13

Pros and Cons

Pros and Cons

Processing Linearity

Resolution Dynamic

range

MTF

MTF x S/N

“Digital” [Si]

Electronic

“ideal” n(e–) = QE x n()

Larger [smaller] pixels

CCDs – 16 bits

[APS – speed]

Regular pattern – aliasing

Better

Film [or I.P.]

Chemical

non-linear – n required to flip a grain; thermal fluctuations vs grain size;

linear

Smaller grains

Locally, ~4 bits; [16 bits]

Given by smallest grains, no aliasing

Worse; [best – at low rate]

Page 14: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 14

Who Wins?Who

Wins?“Silicon” Film

Regular array of pixelspitch p

Random collection ofdifferent grain sizes

For now film grains smaller than silicon pixels

Analog Digital

Page 15: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 15

Some Thinning Helps

Some Thinning Helps

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 50 100 150 200 250 300

Radius [m]

En

erg

y D

epo

siti

on

[ke

V/

m2]

Active

Active

8 mActive

50

µm

Tota

l

Active

35

0 µ

mTota

l

300 keV (Front-Illuminated)

Page 16: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 16

Tests on 200CX at NCEM

Tests on 200CX at NCEM

Assembly jig

HybridPlug

Modified GATAN bright field STEM detector housing at the bottom of the JEOL 200CX TEM

Page 17: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 17

An Example

An Example

Beamstop on 200CX

(imaged at 200 keV)

12x3640 µm Pixels

24x7220 µm Pixels

48x14410 µm Pixels

APS in0.35 m

Film

Page 18: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 18

Small Features Visible

Small Features Visible

~20 m features visible with 10 m pixels

PSF ~15 m (equiv. MTF at 40-

50 mm-1 ~ 20% - not as good as film, but close*)

S/N ~8.3 single e– sensitivity

Si Film 25

m

200 keV

*Zuo 2000

Page 19: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 19

vs. Prediction

vs. Prediction

PSF due to e– multiple scattering at 200 keV ~6 m

Diffusion dominant

Central pixel uniformlyilluminated at 200 keV

Page 20: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 20

“Specifications”

“Specifications”

Parameter Spec. Units CommentIncident energy 100-300 keVRadiation hardness 300 images/day min.

105 images/day desired~1 year lifetime

e-/pixel/image 500 “imaging”105 “diffraction”

Elements 12002 pixels 200Å field-of-view with pixel size

0.5/3 Å PSF 25% (value at ½ Nyquist)Resolution N i.e. “shot noise limited”Full scale (given by frame rate) e-/pixel/s x frame rateFrame rate <10 ms

Next-generation materials microscope

Biology not so different, except desire to have pixels

Page 21: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 21

Challenges

Challenges

High S/N is desirable, but need to accommodate 100 (bio) 500 (materials) 105 (diffraction) primary e– per pixel per image (readout rate dependent)

“Resolution” is not the issue (optics set field of view), just number of pixels

Readout speed helps in all applications Radiation damage!

Region of interest:1 – few x M.I. Fr

om

H. S

pie

ler

SEMTEM

Page 22: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 22

Radiation Damage

Radiation Damage

Displacement damage not significant Ionizing dose not negligible

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 10 20 30 40 50

Pixel Pitch [m]

Rad

s

Average doseper pixel forimaging

Peak doseper pixel fordiffraction

One image

Page 23: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 23

What We’ve Been Up To

What We’ve Been Up To

Two 0.25 m CMOS Prototypes (2005)

19 m pixelsin-pixel CDS

6 m pixels

on-chipdigitizers

Readout System

5 mm

Page 24: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 24

Now in Fab

Now in Fab

9 m pixels 512 x 512 Adjustable gain Same backend

(digitizers and readout)

Prototype for 2k x 2k

Page 25: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 25

What This Achieves

What This Achieves

Unprecedented speed Visualize catalysis Reduce beam-induced motion of

biological samples

High DQE Good single e– sensitivity and good

PSF DQE = 1 if variance of input signal

faithfully transmitted

Spatial resolution better than fiber-coupled phosphor + CCD Eventually approach film

Uniformity and linearity

Radiation hardness requirement not negligible

Atomic resolution image ofstacking faults in Gold

Page 26: Active Pixel Sensors for Electron Microscopy

P. Denes STD6 Sep. 2006 26

(An) Ultimate Goal

(An) Ultimate Goal