34
Active-Crop Sensor Calibration Using the Virtual-Reference Concept K. H. Holland (Holland Scientific) J. S. Schepers (USDA-ARS, retired) 8 th ECPA Conference 201

Active-Crop Sensor Calibration Using the Virtual-Reference Concept

  • Upload
    zea

  • View
    150

  • Download
    3

Embed Size (px)

DESCRIPTION

Active-Crop Sensor Calibration Using the Virtual-Reference Concept . K. H. Holland (Holland Scientific) J. S. Schepers (USDA-ARS, retired). 8 th ECPA Conference 2011. N-rich. other N rates. check. “ N-Rich ” Reference. Postage-stamp calibration Ramped calibration strip - PowerPoint PPT Presentation

Citation preview

Page 1: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Active-Crop Sensor Calibration Using the

Virtual-Reference Concept

K. H. Holland (Holland Scientific)

J. S. Schepers (USDA-ARS, retired)

8th ECPA Conference 2011

Page 2: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

“N-Rich” Reference

• Postage-stamp calibration

• Ramped calibration strip

• Randomized calibration block(field strips)

check

N-richother N rates

Page 3: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Modified Postage Stamp

• Combine-width plots

• Randomized except check plot

• Each block of treatments should have minimal soil variability

• Repeated replications

check

Page 4: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Modified Calibration Ramp

• Standard ramp of plots

• No randomization

• Each N rate in the ramp has a nearby check and adequate N reference

• Could randomize N rates in the ramp strip

check

N-Rich

Page 5: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Commercial applicators and large producers - - TELL US :

• N-rich strips are problematic– May be hard to locate (legal problems)– Need to move each year

• Can not expect operators to understand how the algorithm and sensor calibration work

• Need a “turn-key” approach that does not require N-rich strip or highly-skilled operator

• Algorithm needs to be simple, versatile, and easy to adapt for local conditions

Page 6: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Algorithms

1) based on predicted yield potential(Oklahoma State University) (GreenSeeker)

2) based on producer-set minimum and maximum N rates (Europe & Missouri)

3) based on extension of crop N-response function (Holland and Schepers)

Note: All algorithms use sensor data that are normalized to “healthy crops” .

Page 7: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

In-Season N Management

Crop vigor during the growing season

is proportional to

yield at harvest

Page 8: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

How to Characterize Healthy Crops ?

• N-Rich Strip (or Ramp Calibration Strip)average (as with plot studies)

programmed (highest 3 consecutive seconds)

• Normal Field Transectsidentify healthy plants from frequency distribution of all plants (histogram) (MS Excel)

Page 9: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept
Page 10: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

3-second Running Average

0

1

2

3

4

5

6

1 459 917 1375 1833 2291 2749 3207 3665 4123 4581 5039 5497 5955 6413

Number of Readings

CI re

d-ed

geMexico - White Corn, 2010 Crop Circle

600 m @ ~6 kmph

Page 11: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

0.60

70.

8158

1.02

461.

2334

1.44

221.

651

1.85

982.

0686

2.27

742.

4862

2.69

52.

9038

3.11

263.

3214

3.53

023.

739

3.94

784.

1566

4.36

544.

5742

4.78

34.

9918

5.20

065.

4094

5.61

825.

827

6.03

58

0

50

100

150

200

250

0%

20%

40%

60%

80%

100%

120%Histogram

Bin (vegetation index)

Freq

uenc

y

Mexico, 2010

Page 12: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

0.60

70.

8158

1.02

461.

2334

1.44

221.

651

1.85

982.

0686

2.27

742.

4862

2.69

52.

9038

3.11

263.

3214

3.53

023.

739

3.94

784.

1566

4.36

544.

5742

4.78

34.

9918

5.20

065.

4094

5.61

825.

827

6.03

58

0

50

100

150

200

250

0%

20%

40%

60%

80%

100%

120%Histogram

Bin (vegetation index)

Freq

uenc

y

Mexico, 2010

95%“Happy Corn”

Page 13: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Gustavo Field

0

1

2

3

4

5

6

7

1 453 905 1357 1809 2261 2713 3165 3617 4069 4521 4973 5425 5877 6329

Number of Readings

CI re

d-ed

geMexico - White Corn, 2010

600 m @ ~6 kmph

Crop Circle

95 Percentile

3-second Running Average = 5.057

95 Percentile = 5.206

3% lower

Page 14: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

0.60

70.

8158

1.02

461.

2334

1.44

221.

651

1.85

982.

0686

2.27

742.

4862

2.69

52.

9038

3.11

263.

3214

3.53

023.

739

3.94

784.

1566

4.36

544.

5742

4.78

34.

9918

5.20

065.

4094

5.61

825.

827

6.03

58

0

50

100

150

200

250

0%

20%

40%

60%

80%

100%

120%Histogram

Bin (vegetation index)

Freq

uenc

y

Mexico, 2010

95%50%Field Average

Page 15: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

0.60

70.

8854

1.16

381.

4422

1.72

061.

999

2.27

742.

5558

2.83

423.

1126

3.39

13.

6694

3.94

784.

2262

4.50

464.

783

5.06

145.

3398

5.61

825.

8966

Mor

e0

50

100

150

200

250

0%

20%

40%

60%

80%

100%

120%Histogram

Bin (vegetation index)

Freq

uenc

y95%50%

4.47

5.21SI = = 0.85

Page 16: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

N CreditsPreplant NEONR

Producer Optimum

N Accumulation(based on growth stage)

Sufficiency Index

Back-Off Strategy SI to start cutback SI to cut-off

Algorithm

SpatialSoil / Topography

Adjustment0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

Fertilizer N Rate, kg/ha

Yiel

d, M

g/ha

FieldReference

Page 17: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Holland K.H. and J.S. Schepers. 2010. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal 102:1415-1424.

S e e

Nappl = ( Nopt – Ncred )√

√ (1 – SI)∆ SI

Farmer Rateor NEONR

Page 18: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

6 3310

20

40

60

80

100

120

140

160

180

200

Distance or Time

N ra

te A

pplie

d, k

g/ha

Mexico, 2010

Page 19: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

6 3310

20

40

60

80

100

120

140

160

180

200

Distance or Time

N ra

te A

pplie

d, k

g/ha

Mexico, 2010

Uniform Rate

Page 20: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

N Rates (0, 50, 100, 150, 200 kg/ha)

Page 21: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

OptRx

Check Plot

SoybeanPrevious

Year

Page 22: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Histogram

0

50

100

150

200

250

0.271

0.384

3142

86

0.497

6285

71

0.610

9428

57

0.724

2571

43

0.837

5714

29

0.950

8857

14

1.064

2

1.177

5142

86

1.290

8285

71

1.404

1428

57

1.517

4571

43

1.630

7714

29

1.744

0857

14

1.857

4

1.970

7142

86

2.084

0285

71

2.197

3428

57

CI red-edge

Freq

uenc

y

0%

20%

40%

60%

80%

100%

120%FrequencyCumulative %

95 Percentile

Page 23: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

3-Second Running Average

0.0000.2000.4000.6000.8001.0001.2001.4001.6001.8002.000

1 372 743 1114 1485 1856 2227 2598 2969 3340 3711 4082 4453 4824

Sample Number

CI re

d-ed

ge

CI red-edge values : 95 percentile 1.9853-second average 1.889

5% lower

GreenSeeker

Page 24: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

200 N150 N100 N50 N0 N

Chlorophyll Index Bins (0.7 to 2.2)

Occ

urre

nce

Irrigated Corn - 2009

V9 Growth Stage

95 percentile

Page 25: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

10

20

30

40

50

60

70

80

90

100

Drive First

Drive & Apply

Plot Order (400 m)

N R

ate

(kg/

ha)

V12

Virtual Reference Strip (0-200 kg N/ha preplant)

check

Page 26: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

0 100 200 300 400 500 6000

20

40

60

80

100

120

140

160

180

200

VRS firstD&A (H to L)D&A (L to H)

Distance (m)

N R

ate

(kg/

ha)

Mexico, 2010 Drive and Apply

Page 27: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

There’s Probably a Lot More Information in a Histogram than We Realize !

• Where’s it at ?

• How to get it out ?

Page 28: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Mexico 2010 - Irrigated Corn

V5 Growth Stage

SI = 0.7

Page 29: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Mexico - White Corn, 2010

600 m @ ~6 kmph

Crop Circle

95%

Cut-back level

Page 30: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Conclusions• The virtual reference concept offers producers a convenient

approach to quantify the vigor and chlorophyll status of crops for in-season N applications.

• Histograms of active sensor data and related analyses offer a quick glimpse of where to focus management efforts.

New sensors and tools will be

needed to help fine tune

management decisions.

Page 31: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Jim Schepers402-310-6150

[email protected]

Page 32: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept
Page 33: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Historic Perspective

• N-Rich treatment was initially used to normalize data from plot studies and allow leaf N concentration comparisons across time, fields, cultivars, etc. (1988)

• Extended to normalization concept to SPAD meters. (1990)

• Adapted to field situations and N-Rich strips to accommodate crop canopy sensors. (~2000)

Page 34: Active-Crop Sensor Calibration Using the  Virtual-Reference  Concept

Historic Perspective

• N-Rich plot concept extended to postage stamp arrangement with multiple N rates. (2002)

• Ramped calibration strip with multiple N rates introduced. (2005)

• Need for active sensor calibration technique to accommodate commercial applications. (2007)