120
loudspeakers transducer principles electrodynamic electrostatic radiation directivity radiated power velocity distribution on a membrane electrodynamic loudspeaker equivalent network cabinets electrical impedance sound pressure frequency response Thiele-Small parameters cabinet types optimizations horn loudspeaker electrostatic loudspeaker magnetostatic loudspeaker loudspeaker systems measurements Acoustics II: loudspeakers Kurt Heutschi 2013-01-18

Acoustics II: loudspeakers

  • Upload
    others

  • View
    18

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Acoustics II:loudspeakers

Kurt Heutschi2013-01-18

Page 2: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

loudspeakers: transducerprinciples

Page 3: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

transducer principles

membrane driver principles:

I electrodynamic

I electrostatic

Page 4: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic transducer

Page 5: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic transducer

drive mechanism: force F acting on a wire of length `carrying current I and located in a magnetic field B :

F = B × ` · I

the other way round, a voltage U is induced for a wiremoving with velocity u:

U = B × ` · u

Page 6: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrostatic transducer

Page 7: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrostatic transducer

drive mechanism: electrostatic force F acting on a platecondenser of area S and distance x and for a voltage U :

F =ε0SU

2

2x2

with: ε0: electric field constant = 8.85×10−12 AsV−1m−1

I non-linear relation between force and voltage makesbiasing necessary!

I ≈ linear behavior for small variations

Page 8: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

sound radiation by a movingmembrane

Page 9: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

sound radiation by a moving membrane

diffraction of plane wave at a circular opening (assumingKirchhoff approximation):

movie: diffraction at circular opening

Page 10: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

directivity

Page 11: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

directivity

Calculation of sound pressure p̌ for a piston

I of area S

I with velocity v̌nI in an ∞ wall

with help of the Rayleigh-Integral:

p̌ =jωρ

∫S

v̌n1

re−jkrdS

Page 12: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Far field directivity for circular piston

in larger distances: 1/r term can be assumed constant(= r0)

p̌(φ) ≈ v̌nr0jka2ρc

J1(ka sin θ)

ka sin θ

wherev̌n: velocity of the pistonr0: reference distancek : wave number = 2π/λa: radius of pistonJ1: Bessel functionθ: angle to the receiver position

Page 13: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Directivity

Directivity of the piston radiator in the ∞-wall:

ka = 1 ka = 2 ka = 5 ka = 10

Page 14: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

radiated power

Page 15: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

radiated power

Radiation of a membrane depends on:

I membrane velocity (usually piston movement isassumed)

I membrane area

I surrounding of the membrane

I medium

Page 16: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Radiated power

radiation impedance ZRo :

ZRo =p

v

wherep: average sound pressure at the surface of themembranev : velocity of the membrane (normal component)

I describes loading of the membrane

I calculation with wave theoretical methods

I often alternative definition with volume flow is used:ZR = p

Q

I radiation impedance is complex quantity → activeand reactive component

Page 17: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Radiated power

effectively radiated power W by moving membrane is

W = Q2Re[ZR ]

withQ: volume flow (product of velocity and membrane area)Re[ZR ]: real (active) part of radiation impedance

Page 18: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Radiated power

examples of radiation impedances (rel. to ρc):

piston in ∞-wall free piston

Page 19: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Radiated power

simulation of radiation impedances in equivalentnetworks (frequency range with f 2 dependency):

I often series arrangement of frequency dependentresistance (real part) and inductance (imaginarypart)

I approximation of the load in networks: parallelarrangement

I resistance R = ρc (dominates above ka = 1)I inductance L = ρa/

√2 (dominates below ka = 1)

Page 20: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

velocity distribution on amembrane

Page 21: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

velocity distribution on a membraneI investigation of the membrane movement of a 20

cm woofer

I measurement method: Laser vibrometer (Doppler)

Page 22: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

velocity distribution on a membrane

frequency: 218 Hzmovie: frequency: 218 Hz

Page 23: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Velocity distribution on a membrane

frequency: 656 Hzmovie: frequency: 656 Hz

Page 24: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Velocity distribution on a membrane

frequency: 2000 Hzmovie: frequency: 2000 Hz

Page 25: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker

Page 26: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker:principle of operation

Page 27: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

principle of operation

Page 28: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Electrodynamic loudspeaker:Equivalent network

Page 29: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Equivalent networkelements to consider:

MAR ,RAR acoustical mass and resistance of the air atthe rear side of the membranecorresponding to real and imaginary part ofthe radiation impedance

m, s mass of the membrane and the coil,stiffness of the membrane

Rm mechanical friction (suspension of themembrane)

MAV ,RAV acoustical mass and resistance of the air atthe front side of the membranecorresponding to real and imaginary part ofthe radiation impedance

RE , LE electrical resistance and inductance of thecoil

Page 30: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Equivalent network

I B × `: force factor

I electrical interface:I source current → force FI membrane velocity → induced voltage

Page 31: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Equivalent network

elimination of the gyrators by dual conversion withr = 1/A, omit the 1:1 transformers

Page 32: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Equivalent network

behavior of volume flow Q:

I low frequencies: capacitor dominates → Q ∼ ω

I resonance frequency: Q limited by resistances

I high frequencies: inductances dominate → Q ∼ 1/ω

Page 33: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Equivalent network

I radiated sound power W = Q2 · Re[ZR ]

I independent of frequency for Q ∼ 1/ω andRe[ZR ] ∼ ω2

I → operation above resonance

I → piston mounted in ∞-wall

I → upper limiting frequency: ka < 1

Page 34: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Electrodynamic loudspeaker:Nonlinearities

Page 35: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Nonlinearities

I for large amplitudes, the element values will varyaccording to the membrane position

I → nonlinear behavior

I critical:I stiffness of the outer and inner suspensionI inductance of the moving coil LEI force factor B × `

Page 36: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker:mounting in a cabinet

Page 37: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

mounting in a cabinetI Chassis in ∞-wall realized by mounting in a cabinetI alterations:

I no radiation impedance at rear sideI increasing stiffness due to enclosed air in the

cabinet → acoustical compliance CA

Page 38: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Mounting in a cabinet

consequences:

I total capacitance of series resonance circuit islowered

I increased resonance frequency

I the smaller the volume, the higher the resonancefrequency

I → cabinet volume not too small and:I filling with porous material → isothermal

behaviour → effective volume increased by 15%

Page 39: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Mounting in a cabinetequivalent network so far:

further steps:

I combination of elements of the same type

I dual conversion of the complete network withr = 1/A

I ignore real part of the radiation impedance (o.k. forlow frequencies)

Page 40: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Mounting in a cabinet

quantity of interest: volume flow Q appears as voltageU ′S :

U ′S =Q

A

Page 41: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Mounting in a cabinet

elimination of transformer by impedance scaling with(B × `)2

quantity of interest: volume flow Q is transformed intovoltage US :

US = (B × `)U ′S = (B × `)QA

Page 42: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Mounting in a cabinet

I potential problems introduced by the cabinet(compared to the ∞-wall):

I mechanical vibrations of the cabinet → boomingI diffraction at the edgesI standing waves (resonances) in the cabinet

Page 43: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker:electrical impedance

Page 44: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrical impedance

Page 45: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Electrical impedance

?

I characteristic impedance (typical values: 4 or 8Ohm)

Page 46: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker:sound pressure frequency

response

Page 47: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

sound pressure frequency response

I restriction to low frequenciesI → omnidirectional radiation

p(d) =

√W ρ0c

4πd2=

Q√

Re[ZR ]ρ0c√4πd

wherep(d): sound pressure in distance dW : radiated sound powerQ: volume flow of the membrane (velocity times area)Re[ZR ]: Real part of the radiation impedance

Page 48: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Sound pressure frequency response

radiation impedance (approximation for low frequencies,mounted in a cabinet):

Re[ZR ] =ρ0c

2(ka)2

1

a2π=ρ0ω

2

2πc

withk : wave numbera: radius of the membraneω: angular frequency

Page 49: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Sound pressure frequency response

determination of Q: US = (B × `)QA

neglecting LE :

US

U≈ jωLRRR

−ω2LRRRCRRE + jω(LRRR + LRRE ) + RRRE

Page 50: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Sound pressure frequency response

p(d)

U=

ρ0a2

d√

8B`

1

j

1

RECR

−ω2LRCR

−ω2LRCR + jω LRRR+LRRE

RRRE+ 1

frequency dependency → high-pass function 2. order:

G (jω) =−ω2T 2

c

−ω2T 2c + jω Tc

QTC+ 1

withTc = 1

ωc

ωc : lower limiting frequency of the high-pass filterQTC : quality factor of the high-pass filter

Page 51: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Sound pressure frequency response

p(d)/U for different values of QTC :

Page 52: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker:Thiele-Small parameters

Page 53: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Thiele-Small parameters

Thiele-Small parameters for the characterization of afree chassis:

resonance frequency fs in Hz : lower frequency end ofthe range of usage

compliance equivalent volume VAS in l stiffness of themembrane and suspension, expressed asequivalent air volume of equal stiffness

Page 54: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Thiele-Small-Parameters

mechanical Q factor QMS mechanical damping of theresonance (by RR)

electrical Q factor QES : electrical damping of theresonance (by RE and possible outputresistance of voltage source)

total Q factor QTS QTS = QMSQES

QMS+QES

membrane area A in m2

DC-resistance RE in Ohm

force factor B × ` in T×m

Page 55: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Thiele-Small-Parameters

I determination by two electrical impedancemeasurements

I case a): chassis free

I case b): chassis mounted in a cabinet oralternatively loaded with additional mass put on themembrane

Page 56: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Thiele-Small-Parameters: mounted in a

cabinet

free chassis specified by fS , QTS , VAS

behavior of chassis mounted in a cabinet of volume VB :

fc = fs

√VAS

VB+ 1

QTC = QTS

√VAS

VB+ 1

Page 57: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Thiele-Small-Parameters: mounted in a

cabinetexample → amplitude responses for different cabinetvolumes:

Page 58: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Electrodynamic loudspeaker:velocity and displacement of

the membrane

Page 59: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Velocity and displacement of the

membrane

I in the range of operation: membrane velocity v ∼ 1f

I → membrane displacement: x ∼ 1f 2

I → maximal excursion at lower frequency end ofrange of operation

Page 60: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker:bass reflex cabinet

Page 61: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

bass reflex cabinetI extension of frequency range of operation to lower

frequenciesI strategy: introduction of additional resonance:

I acoustical compliance: air volume in cabinet: CA

I acoustical mass: cylinder of air in tube: Mp

I around resonance strongest oscillations of aircolumn

I → relevant sound radiation

Page 62: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Bass reflex cabinet

Spice simulation:chassis: fs = 31 Hz; QTS = 0.3; VAS = 118 l

Page 63: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Bass reflex cabinet

Page 64: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Bass reflex cabinet

Page 65: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Bass reflex cabinet

possible problems:

I not satisfying transient behavior

I possible flow noise at end of tubeI overcome by passive membrane systemsI realization of mass by mechanical means

Page 66: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Electrodynamic loudspeaker:Bandpass cabinet

Page 67: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Bandpass cabinet

I sub-woofer with acoustical low-pass filtering

I bandpass cabinet with chassis mounted in theinterior of the cabinet

Page 68: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrodynamic loudspeaker:feed-back

Page 69: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

feed-back

I aim of feed-back systems:I controlling oscillation at resonanceI lowering of non-linearities (large membrane

excursions)

Page 70: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Feed-back

I observation of membrane condition:I measurement of membrane velocity by additional

moving coilI measurement of membrane position by capacitive

sensorI measurement of membrane position by optical

means

Page 71: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Electrodynamic loudspeaker:Control of membrane

velocity

Page 72: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Control of membrane velocity

I neutralization of driving coil DC resistanceI powering by amplifier with negative output

resistance

I → direct control of membrane velocity US ≈ U

Page 73: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Control of membrane velocity

I excellent transient behavior

I electrical 1/f -correction necessary to fulfill Q ∼ 1/f

I control effect gets lower for high frequencies as LEbecomes important

I caution: RE − RA > 0 → stability condition!

I |RE | ≈ |RA| is very delicate (temperaturedependency of RE )

Page 74: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Control of membrane velocityrealization example: Studer A723

I negative output resistance:I increase in output current → increase in output

voltage

Page 75: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Electrodynamic loudspeaker:Digital Equalizing

Page 76: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Digital Equalizing

I impulse response of loudspeaker: h(t)

I inverse filter g(t) where g(t) ∗ h(t) = δ(t)

I pre-filtering of audio signal with g(t)

I but:I physical limitations (1/0→∞)I h(t) depends on radiation angleI h(t) depends on membrane excursion

(nonlinearities)

Page 77: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

horn loudspeaker

Page 78: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

horn loudspeakerI improved impedance matching (membrane

movement → air)I significantly higher efficiencyI more pronounced directivity

Page 79: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

horn loudspeaker

common horn shape: exponential function:

S(x) = STemx

whereS(x): cross sectional area at xST : cross sectional area at the throat (x = 0)m: geometrical constant

Page 80: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

horn loudspeaker

wave equation for the exponential horn:

∂2p

∂t2−c2m∂p

∂x− c2

∂2p

∂x2= 0

guess for p(t):

p(t) = p̂eaxe jωt

with coefficient a:

a = −

(m

2+ j

√4(ω/c)2 −m2

2

)

Page 81: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Horn loudspeaker

determination of sound particle velocity:relation between p and v :

∂p

∂x= −ρ∂vx

∂t

in complex writing:

v = − 1

jωρ

∂p

∂x

with p inserted:

v =1

jωρ

(m

2+ j

√4(ω/c)2 −m2

2

)p

Page 82: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Horn loudspeaker

radiation impedance:

ZRo =p

v=

2jωρ

m + j√

4(ω/c)2 −m2

discussion of ZRo :

2(ω/c) < m ZRo is purely imaginary

2(ω/c) ≥ m ZRo has a real and imaginary part with

Re[ ZRo ] = ρc√

1− m2

4(ω/c)2

Page 83: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Horn loudspeakerexemplarily radiation impedance for m = 3.7:

I region of usage: constant impedanceI → volume flow Q has to be constant (operation at

resonance with strong damping)I caution: non-linear distortions due to high flow

amplitudes in the throat

Page 84: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Horn loudspeaker

I practical design rules (reflections at the end can beignored):

I length of the horn > 3λI circumference at the end > λ

Page 85: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Horn loudspeaker

compression driver (principle):

I acoustical transformer:I low velocity of large membrane → high velocity in

small throat

Page 86: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Horn loudspeakercompression driver (practical design):

I phase plugs:I suppression of cavity resonancesI guarantee in-phase superposition of velocities in

throat cross section

Page 87: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrostatic loudspeaker

Page 88: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrostatic loudspeakerI push-pull principle → sandwich structure:

I two perforated stationary electrodes (acousticallytransparent)

I lightweight stretched membrane in between (0.2g/dm2)

Page 89: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

electrostatic loudspeaker

I bias voltage needed

I excellent transient behavior (lightweight andhomogeneously driven)

I only small excursions possible → large membraneareas needed

I in tendency weak for bass frequencies

I focusing of high frequencies

I reflectors at rear side of speaker may cause problems

Page 90: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

magnetostatic loudspeaker

Page 91: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

magnetostatic loudspeaker

Page 92: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

loudspeaker systems

Page 93: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

loudspeaker systems

I radiation of the whole audio frequency range (20 Hz. . . 20 kHz) with one chassis is problematic as

I radiation at low frequencies requires largemembrane excursion or large membrane areas →low upper limiting frequency (kr = 2)

I Doppler distortions (frequency modulations of highfrequency signal components by low frequencies

Page 94: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Loudspeaker systems

I solution:I subdivision of whole frequency range into several

bands by frequency dividing network and radiationby different specialized chassis

I typical 2 and 3 way systems

Page 95: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Loudspeaker systems

potential difficulties:

I destructive interferences in the transition region dueto:

I differences in phase response of the chassisI differences in path length: chassis → listener

solutions:

I adjustment of phase response

I adjustment for equal path lengths by geometricalmeans

I optimal: concentric dual chassis

Page 96: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Loudspeaker systems

power handling:

I defined by:I max. membrane excursion → specified by peak

powerI heating → specified by average power

Page 97: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Loudspeaker systems

continuous power testing with standard third-octavespectrum according to IEC 268:

Page 98: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Loudspeaker systems

cumulated power for the spectrum according to IEC 268:

caution: maximum power handling of a chassis isspecified as power of the whole system!

Page 99: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

loudspeaker measurements

Page 100: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

loudspeaker measurements

I frequency response of the electrical impedance atthe terminals

I frequency response of sound pressure on axis

I impulse response of sound pressure on axis

I cumulative decay spectrum of sound pressure onaxis

I directivity of sound pressure for various discretefrequencies

Page 101: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

cumulative decay spectrum of sound

pressure

I description of the transient behavior as a functionof frequency

I experiment: excitation with tone burst signal

Page 102: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

cumulative decay spectrum

I post-oscillation of the membrane produces soundpressure signal sω(t)

sω(t) = Hω(t) sin(ωt)

withHω(t): modulation of amplitudeω: angular frequency of the excitation signal

→ waterfall diagram of Hω(t)

Page 103: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

cumulative decay spectrum

Page 104: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

cumulative decay spectrum

efficient generation by taking FFT of time-windowedimpulse response:

Page 105: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

cumulative decay spectrumexample of a measurement of a mid-range speaker:

Page 106: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

exotic transducers

Page 107: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

NXT - distributed mode -loudspeaker

Page 108: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Distributed mode - loudspeaker

history:

I 1991 first patent by Ken Heron of Britain’s DefenceEvaluation and Research Agency (DERA)

I British company NXT gets a licence on the principleof operation.

I further investigation of the concept anddevelopment of the corresponding technology

I today, NXT sells licences to other manufacturers

Page 109: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Distributed mode - loudspeaker: principle

I NXT speakers consists of large panels

I drivers excite as many partial oscillations as possible(bending waves) → panel oscillates with ’arbitrary’local velocity distribution

I local oscillation pattern leads to energeticsummation at a receiver → omnidirectionalradiation characteristics (figure-of-eight in case ofmounting in free space)

Page 110: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Distributed mode - loudspeaker

construction:

I large panels z.B. 60x60 cm

I excitation by one or several drivers

Page 111: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Distributed mode - loudspeaker

typical amplitude response:

Page 112: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Distributed mode - loudspeaker

typical impulse response [ms units]:

Page 113: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Distributed mode - loudspeaker

applications:

I invisible P.A. systems (e.g. speaker arrays mountedin a ceiling)

I in case of special requirements (fire retardant,cleanable)

I optical-acoustical double-usage (e.g. surface foroptical projection acts as speaker as well)

Page 114: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Air motion transformer

Page 115: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Air motion transformer

history:

I Oskar Heil, USA

Page 116: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

Air motion transformer: principle

I folded plastic foil between permanent magnet (largeair gap → strong magnet required

I conductors along the folds (up and down)

I force across the membrane surface → folds areopened and closed

Page 117: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

air motion transformer

advantages:

I small membrane movement → efficient volumevariation → high volume flow

I typical transformation ratio: 1:5

I excellent transient behavior

Page 118: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

air motion transformer

impulse response eton:

Page 119: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

air motion transformer

impulse response visaton tweeter:

Page 120: Acoustics II: loudspeakers

loudspeakers

transducerprinciples

electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution on amembrane

electrodynamicloudspeaker

equivalent network

cabinets

electrical impedance

sound pressure frequencyresponse

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostaticloudspeaker

magnetostaticloudspeaker

loudspeakersystems

measurements

exotic transducers

back

eth-acoustics-2