26
lukas nordström abstract of portfolio 2010 Chalmers University of Technology, Delft University of Technology

abstract of portfolio 2010 - lukas_nordstrom of Portfolio 2010 lukas... ·  · 2013-08-24abstract of portfolio 2010 ... Project type Two person teamwork Tools Rinhocerous 4.0 AutoCAD

Embed Size (px)

Citation preview

lukas nordströmabstract of portfolio 2010

Chalmers University of Technology, Delft University of Technology

abstract of portfolio 2010

What would architecture be without engineering and what would engineering be without architecture?

The Architecture and Engineering program at Chalmers University of Technology in Gotheborg Sweden crosses borders between architecture and engineering. As an student you are trained to bridge the two sides. In project orientated studios we combine engineering courses like mathematical analysis, geometry and structural mechanics with architectural subjects like passive houses, large span buildings and bridges. Theoretical knowledge effects the projects from an early stage. The mix between logic calculation and artistic expressions is central in the education.

Process. The creative process is most important to me in all projects. Entering the projects from a broad perspective trying to think outside the box, the obvious solutions might not be the best. Sometime structural ideas shapes the project. In my project PULSE the bridge construction with pistons and wires gave a strong, flexible and transparent architectural expression. Also new theoretical knowledge can be used in the architectural projects. For example in the project 30o, energy calculation influenced the building shape from an early stage. Working in groups with other people always adds different viewpoints to the working process for example in my bachelor’s degree project I worked with students from the acoustic master program in the design process.

Concept is a key issue for me to decide focus for the project. What is important and what is not? A strong concept helps making decisions and create a strong character. Projects like CRYSTALLINE, MAX, TRICEP and PULSE all have concepts that give them a strong character where architecture and construction act together.

Context. Nature has always been close to me. With my interests in hiking, wildlife and skiing and with a father as a landscape architect nature has been important to me from early age. That is something that has continued to influenced me during my education. The relationship between site and building

name Lukas Nordström

university Chalmers University of Technology Delft University of Technology

program Architecture and Engineering Materialization Studio

year 4th (1st master year)

age 23

mail [email protected]

phone +31 617039566

address Zusterlaan 268D 2611 MP Delft Netherlands

is something that has been important in all my projects.Tools. I like working and thinking with both pen, the computer and physical models in my creative process. The pen and physical models are effective at an early stage. Later in the process I prefer surface based programs like Rhinoceros and SketchUp that are fast and easy to combine with parametric-design programs like Grasshopper.

Future. Working with architecture and engineering is inspiring. It is definitely something I want to continue doing. To me that means exploring new areas and possibilities. I want to add new experiences from different parts of the world by continue my studies and working abroad.

PULSE

Could you construct a bridge with the same structural ideas as a muscle?

Optimized structures and dynamic structures were focus in this project. Concept, parametric design and biologi-cal studies were important.

Connected engineering course:Structural mechanics

MAX

How could you get the maximum out of a tight site?

A urban planning project with10 000 m2 housing in a tight site. A solid was cut into pieces to create interesting shapes and spaces, to find a balance between the private and public.

30O

Does an energy effective building have to lack architectural qualities?

Passive house project with focus on energy effective building and architectural qualities. A interplay between landscape, environment and living.

Connected engineering course:Building physics and materials

TRICEP

Can a biologic shell construction become the load-bearing structure in a building?

Architecture and construction go together when you designing large span buildings like sports halls.

Connected engineering course:Solid mechanics

KUNGSTORGET

How can light be transferred?

When creating a subterranean garage light is an important factor. By transparent staircases the garage was connected to the square above.

Connected engineering course:Geometry

NINETY DEGREES

What is architecture?

Designing a sauna was the first project. Architecture is complex and does not have absolute answers.

20072010 2008

projects

13 17 18 22 23 24

CRYSTALLINE

How does sound affect architecture?

This opera house project in Kansas City was influenced by how sound affects architecture. The building became a sound journey from the rational cube to irrational glimmering crystal.

Connected engineering course:Architecture and systems design for sustainable development

2009

6

Olympiastadion i München – En formstudie

”Alla materiella objekt har en form” – Frei Otto

Olympiastadion i München är inte är lik någon annan byggnad i världen, samtidigt har den en form som är långt ifrån unik. Det stora spindelnätet i München som det brukar kallas är Frei Ottos mest kända byggnadsverk. Byggnaden, som är ett tak över läktarsektionen på arenan, ritades för de Olympiska spelen 1972 och har ett formspråk som även i dag är högaktuellt. Genom Olympiastadion hade Otto skapat en byggnad med ett ursprung i biologin och naturen, ett mästerverk av Form-finnaren.

Hur uppstår form? Vilka för och nackdelar har olika former? Från vad härstammar en viss form? Vad påverkar uppkomsten? Kan man prata om mode när det gäller former?

XX-Olympic GamesFrei Otto-Form FindingKonstruktionsanalys-Krafter ger formForm genom teknikForm till funktion/funktion till formFrei Otto – En del av dagens arkitektur

2468911

courses, workshops, study trips and internships

workshopparametric design Chris Williams

field tripswitzerland

essay- Frei Otto Münich arena formfinding

course structural mechanics

field trip london wales

workshophorizontal vertical-Björn Gross

workshopphysical models-John Cramer

2009 2008

field trip turin

coursecroquis

workshopfriction pavilion

workshopgeometrypatterns

external work-internship TEMA arkitekter

workshoprandom pattern-Ture Wester

2625200720082008

16

Konkurerande handelsplatser

Farmandstredet

Kommunens utveckling som regioncenter

Nuvarande konkurenter

Tolvsröd senter

Kilen Korten

Bellevuesentret

Tornsberg torvTorvgården

Farmandstredet

Stensarmmen

Det etableras fl era nya handelsplatser i närområdet, Kilen Korten Jarlsberg och Stensarmen. En framtida förlängning järnvägen genom och förbi Tönsberg innebär att stationen inte längre kommer att vara slutstation.

external work-internship White arkitekter

courses, workshops, study trips and internships

CRYSTALLINE

Project Bachelor’s degree project

Site Kansas City, USA

Time 6th semester 2010

Professor Morten Lund Mendel Kleiner Project type Two person teamwork

Tools Rinhocerous 4.0 AutoCAD Grasshopper Adobe series V-ray

Crystalline was our a proposal to the international student competition announced by the Acoustical Society of America. The project was about designing an opera in the central Kansas City in USA. The site was located in a rough industrial neighborhood and faced several busy highways so noise protection was a important issue in the design.

We took influence of the industrial context and made Crystalline a contrast between everyday life and opera, between industrial and glamour. Crystalline is a transformation from the rational, repetitive and regular to the irrational, irregular of the crystalline. Crystalline is a journey into sound and light from surrounding buildings to the glimmering crystal of the opera hall.

During the design we made continously acoustical calculations in collaboration with an acoustical master student. The results affected the design and vice- versa. We also came up with several detail solutions for noise protection and adjusting the reverberation time in the opera hall.

AWARD: SECOND PRICE in the international student competion by Acoustical Society of America

6lukas nordström [email protected] +31 617039566

Approaching the opera. Walking through a acoustically changinglandscape towards the shimmering main entrance.

12

23

4

5

4

6

SITE ANALYSIS - CONDITIONS

Noise from roads and air craftsaround the site, mostly from the northwest.

Visible contact with surrounding roads and the city center.

The site is sloping from the northwest.

An orthogonal pattern of the surrounding building area.

SITEPLAN

1. Main entrance from the southeast.

2. Separate entrances for restaurant and café.

3. Loading entrance.

4. Entrance to underground parking.

5. Stairwells from parking in several places create walking paths through the acoustically varying landscape.

6. Possible campus buildings.

A facade which varies in openness. It is open towards the campus in the south and exposed but closed to the north.

Placing the opera on the highest part of the site gives a visible contact to the city, roads and campus.

SOLUTIONS

Closed facade with concrete walls behind metal stripes

Open facade with glass behind metal stripes

CONCEPT

The shape of the opera hall is carved out from a box.

The facade is closed in the day and the core shines through when the show starts.

Transformation from cube to crystal.

The orthogonal city grid is transformed into the irregular crystalline shape.

site plan 1:3000

N

business district downtown

downtown east

west side north (residential area)

campus buildings

opera building

convention center

highway 670

highway 35

entrance to underground parking

loading entrance

expected ways to the site

Jens Olsson Lukas Nordström AT3

6 7lukas nordström [email protected] +31 617039566

The south facade

The north facade

Opera hall with the mechanical equipment room placed underneath. It provides the opera hall with air from beneath the seats.

Side stage, L-shape to be able to have a deep stage and good communication possibilities.

Dressing rooms are placed close to the stage and the orchestra pit.

Rehearsal room is situated to be able to work as rehears-al room and a stage for small performances in the lobby.

Restaurant and café is placed with direct access from both the lobby and outside.

Boxes with various functions create a landscape around the opera hall.

The lobby stretches in different levels to create nice sight lines and a good acoustic environment. It also can be used for temporary art exhibits.

The scene shop is placed with close access to the side stages. And the wig shop is close to the stage and dressing rooms

performances

22. Main entrance

23. Bar

24. Restaurant

25. Café

26. Kitchen

27. Stair to orchestra pit

28. House manager office

29. Box office

30. Pistons which can heighten and

lower the stage

31. Backdrop

32. Glass corridor

33. Adjustable acoustic panels

34. Extra seats for concerts

35. Box seats, similar placement at

the other side of the performance

hall (marked in gray) total 60 seats

36. Outside terrace

37. Walls for concert

38. Foldable wall

1. Performance hall

2. Stage

3. Side stage

4. Back stage

5. Orchestra pit

6. In house mix position

7. Rehearsal room

8. Green room

9. Scene shop, prop shop and

electrical repair

10. Wig shop

11. Electrical repair

12. Chorus dressing room

13. Solo dressing room

14. 4-person dressing room

15. Orchestra dressing room

16. Lobby

17. Mechanical equipment room

18. Wardrobe

19. Stair to underground toilets

20. Entrance to performance hall

with nearby wardrobe

21. Space for occasional

The facade is designed to give the building a coherent expression despite the various needs of sound insulation at the site. Whether it is a thick, well-insulated wall or a glass facade behind the steel stripes the facade expression remains the same. By bending the steel stripes differently a variation of openness is achieved, and as the day and the season changes, so does the facade. The steel stripes function as sun protection for the glass facades and create diffusive reflections to avoid flutter echoes on the site.

22.

22.

1.2.

7.

22.

23.

23.

18.

23.

18.

18.

21.

20.

20.

20.

20.

20.

20.

20.

20.

plan 1:400 +14.0 m/ 46 ft - 0.0m/0.0ft

0 5 10 20m

0 16 33 67ft

Plans and seCTions N

Plan showing the lobby, the performance hall and the rehearsal room

36.

18.

Conceptual elevation of the lobby landscape with entrances to the performance hall at different levels

22.

22.

38.

8lukas nordström [email protected] +31 617039566

The rehearsal room during a small performance.

The lobby landscape.

Due to the high diffusiveness of the sound in the opera, a high spaciousness is achieved. The sound is perceived to be more direct for the opera performances, focusing the audience’s attention on to the stage.

Reverberation time. By raising the walls from below the stage, pulling a roof from the side stage, and raising the glass panels in the corridors, the opera hall can be changed into a concert hall.

Clarity for an Opera setting. Direct sound fraction is slightly bigger during opera than musical performances providing a clearer sound of the singers.

C-80 [dB] 1 kHz

Strength. The sound is strong and evenly distributed to the audience.

G [dB] 1 kHz

Clarity for a Musical performance when the opera has been transformed to a concert hall.

C-80 [dB] 1 kHz

The lateral fraction gives both a highly enveloping sound perception and a good spaciousness.

LF [%] 1 kHz

oPera and ConCerT- aCousTiCal CalCulaTions

Musical performancesMusical performances absorptive

Opera performances absorptiveOpera performances

Rehearsal roomRehearsal room absorptive

Hz

T30

[s]

REVERBERATION TIME FOR DIFFERENT CONFIGURATIONS

Hz

1 - IACC FOR DIFFERENT CONFIGURATIONS

1 - IACC Opera1 - IACC Musical performance

8 9lukas nordström [email protected] +31 617039566

The performance hall seen from the stage.

1. Changeable glass corridor panels2. Fractal balcony pattern3. Light and sound reflector

1

2

3

LIGHT AND SOUND REFLECTOR

The reflector in the roof is made out of frosted glass panels and provides an increased clarity of sound on the upper balconies. Lights are placed in the ceiling above the saucer and shine trough the saucer to make not only the stage but also the room part of the show.

PerForManCe Hall

The performance hall is the core of the building, the crystal cave and the center of focus. When entering before a performance the whole room glitters by the reflections in the glass panels in the corridors. As the performance starts the lights in the room is turned down and some soft light is turned on

in the corridors to reduce the reflections from the glass.

The shape of the room has been conceived through an iterative process of acoustical calculations.

1. Concrete 6”2. Steel beam3. Concrete 4” 4. Mineral wool 2”5. Moveable laminat-ed glass panel 0.5”6. Springs7. Hanged gypsum board 8. Thick carpet

12

34

56

7

8

9

10

12

11

13

Detail of the glass corridor in the performance hall.

9. Concrete wall10. Oak wooden floor 1”11. Gypsum board12. Mineral wool 4”13. Concrete 6”

0 0.5 1m

0 1.64 3.28 ft

FRACTAL BALCONY PATTERN

The balcony fronts are built with a fractal pattern of triangles to give diffusive reflections. The angle of the balcony fronts provide increased clarity on the parquet and reflects the sound to the reflector in the roof to increase the reverberation time.

CHANGEABLE GLASS CORRIDOR PANELS

Changing the reverberation time. Some of the glass panels in the performance hall can be lowered into the wall section below. The corridor is covered in absorptive materials hence the reverberation time can be changed.

glass panel

corridor wall

10lukas nordström [email protected] +31 617039566

A section cutout of the connection between the walls, roof and floor in the scene shop.

Estimated STC 94

1

Estimated STC 76

23

4

56

78

910

1213

14

11

0 0.5 1m

0 1.64 3.28 ft

1. Concrete 4”2. Elastic layer3. Concrete 6”4. Steel beam5. Spring6. Gypson board 1” 7. Mineral wool 2” 8. Rubber joint9. Plaster10. Concrete 8”11. Mineral wool 4”12. Concrete 6”13. Elastic layer 4”14. Concrete 15”

ConsTruCTion and MaTerials

1. Truss connection to wires carrying the facade.

OUTER WALLS AND ROOF

1

2

Metal truss and concrete creating the load bearing structure for the other shape

Section cutout of the roof in the foyer with light slits combined with absorbers. Using the construction height to space to maximize the absorptive area.

15. Concrete 16. Glass 17. Steel plate18. Mineral wool 19. Steel truss20. Porous absorber 21. Steel plates carrying the absorber

00.5

1m

0 1.64 3.28 ft

2. Truss free suspended connection to columns.

Cutout section of the facade.

Bent metal stripes

Steel triangles supporting the stripes Wires holding the glassepanels

Glass panels and joints

Steel column

1516

1718

1920

21

MATERIALS AND INSPIRATION

The core of the building the opera hall is inspired by the crystal. The material is mostly white concrete making it possible to create irregular and unique shapes.

The outer structure is rational and steel is the dominating material.

FACADE

A section cut out of the facade with the glass panels behind. To increase the sound insulation the glass panels are separated with an air gap. To achieve a transparent impression the outer facade layer has a load bearing wire structure.

2

4

6

1

3

2

5

78

0 0.5 1m

0 1.64 3.28 ft

9

10

1. Metal plate2. Mineral wool3. Steel truss4. Steel stripes 5. Wire6. Steel column 7. Glass panel8. Glass-Wire attachment 9. Steel bar10. Steel triangle

10 11lukas nordström [email protected] +31 617039566

CONSTRUCTION PERFORMANCE HALL - STRUCTURAL OPTIMIZATION WITHIN THE DESIGN CONCEPT

The initial shape of the concert hall is very irregular and at a first glance it is difficult to understand how it works as a load bearing structure. Hence the first step in the structural design is to simplify the geometry into only quadrangles and reduce the most extreme angular shapes.

Calculations has been made assuming the structure to function as a frame system with beams of circular hollow cross section (radius 0.1 m thickness 0.02 m). The load applied in the calculations is only the self weight of the beams.

The load bearing steel structure of the concert hall supported by the stage tower on the short side.

The plot show the relation between deformation in the structure and size of the pretension forces. The red spot shows the lowest value for the deforma-tion hence the best size of the pretension.

XY

Z

23 m

0.6 PT0.6 PT

0.75 PT

1 PT0.85 PT0.85 PT

0.75 PT

0.6 PT0.6 PT

0.75 PT

1 PT

0.85 PT0.85 PT

0.75 PT

XY

Z

23 m

0.6 PT0.6 PT

0.75 PT

1 PT0.85 PT0.85 PT

0.75 PT

0.6 PT0.6 PT

0.75 PT

1 PT

0.85 PT0.85 PT

0.75 PT

Estimated size distribution of the pretension forces. The size of PT is determined by testing a wide range of values as shown in the plot on the right side.

XY

Z

23 m

0.6 PT0.6 PT

0.75 PT

1 PT0.85 PT0.85 PT

0.75 PT

0.6 PT0.6 PT

0.75 PT

1 PT

0.85 PT0.85 PT

0.75 PT

Calculation model where the blue dots rep-resents fixed connections and the red dots connections free to move in y-direction to allow pretension.

PT (Pretension force) [n]

Tota

l def

orm

atio

n in

th

e st

ruct

ure

[m]

0 0.5 1 1.5 2 2.5 3 3.5 4x 105

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

The first model is very irregular and has no systematic geometry.

A two shell structure uses the distance between the shells to increase the stiffness.

Adding 60 beams to the initial 743 beams means a structural mass increases with ap-proximately 10 %. Placing the beams at the weakest points gives a 52% decreased total deformation.

PRETENSION

OPTIMIZATION

Concrete plates encloses the steel structure.

Front view

A simplified model is conceived with a logical geometry and similar shape. Calculations are analyses and the result shows that the structure acts like a com-bination of a semi dome and an arch.

The double shell can more efficiently take care of the deviation from the optimal shape.

Big deformationssmall deformations

Results from the optimization process. 60 of the diagonal beams has been added to the structure.

Starting out with 269 diagonal beams, colored in green in the figure above given zero stiffness. The program calculates which ones are exerted to the greatest deformations, hence would make a great improvement for stiffening the structure.

The plot shows the relative extension of the beams subjected to tension. Dark red members are exposed to greater deformations and green-blue members the least deformation.

Maximum deformation in the structure decreases when the optimization routine is executed.

0 10 20 30 40 50 600.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

1.61.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 10 20 30 40 50 60

Max

imum

def

orm

atio

n [m

]

number of added diagonal beams in the optimization process.

Maximum structural deformation

The total deformation in the structure decreases when the optimization routine is executed. Finally 60 beams has been added and the total deformation is decreased by 52%.

Total structural deformation

0 10 20 30 40 50 600.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

1.61.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 10 20 30 40 50 60

The

sum

med

def

orm

atio

n fo

r the

who

le s

truc

ture

[m]

number of added diagonal beams in the optimization process.

Calculated deformations before and after the optimization process. Scale factor 100.

Sectional cut describing the principle behind the optimization routine for the steel structure. The doted line represents the optimal shape created with pretension. To make the structure more efficient it is stiffened where the deviations from the optimal form are the greatest. This is done by adding diagonal beams subjected to tension.

IDEA

PROCESS

RESULT

12lukas nordström [email protected] +31 617039566

PULSE

Project Complex rooms and optimized structures

Site Möndal, Göteborg

Time 5th semester 2009

Professor Morten Lund Jessica Wren

Project type Individual

Tools Rinhocerous 4.0 Grasshopper Adobe series V-ray

Could you construct a bridge with the same constructional ideas as a muscle, the symbol for strength?

Complex rooms and optimized structures was focus in this project. The subject for the course was to design a 500 meter bridge across the Möndals valley in Gothebourg. The bridge should work as a link between the two sides, city and nature.

A muscle is dynamic and strengthens itself when it needs to support heavy loads. It can also relax when necessary. What advantages could this have on a bridge? Could you use the exact amount of tension to support the specific load for the moment?

12 13lukas nordström [email protected] +31 617039566

A new bridge every day. PULSE is a dynamic bridge which, like a muscle can take many different shapes. An aesthetic expression as well as a construction principle. An interpretation of a biological structure transferred in a new context. ‘A hint of the future?

Many small muscle fibers create strength and spatial variation. The bridge can also be a transparent link instead of a barrier across the valley of möndal. Through its motion, the time adds a new dimension to the bridge.

By increasing and reducing the dimension of the rings the bridge’s height changes. This will allow the bridge to adapt to changes in the surrounding environment.

midpart of the bridge seen from below

14lukas nordström [email protected] +31 617039566

Future attractive housingaround the river

The valley of möndal is dark and should not be obscured further

Expansion possibilities for Liseberg

Communication with the valley

the bridge is like a twisted rope

small cross-section gives a slack bridge-path

as the forces in the wires enlarges and the brige rises

What will happen to the valley of möndal in the future. Different possibilities require different communicative options. A height adjustable bridge deck can connect to the ground as well as rooftop and become an urban park for future settlements without being a barrier.

PUSLE can also be adjusted according to its load. For example, when a heavy vehicle must cross the bridge can temporary raise the tension in the bridge by enlarging the rings. As a pulse passes through the bridge, the part that carries the

biggest loads is the largest in dimension.

Thus the burden of the bridge is reflected in it’s visually expressions.

flexibility

15lukas nordström [email protected] +31 617039566

14

lengthways wires

adjustable rings

assembled construction

forces

The wires are stretched out by the rings which makes them work only in tension. The rings are working in compression.

The bridge’s construction uses its location between two hills. These are essential to create strong foun-dations that the bridge is stretched in between.

The primary system in the structure consists of lon-gitudinal wires that work in tension. The bridge’s secondary system consists of pressure-rings and is connected to the path. The force in the wires can be changed by adjusting the dimension of the rings, which consists of oil pressure pistons.

Detail 1:20

Interconnection between two pistons and a longitudinal line. The meeting takes place in a seamless link.

wiresOli pistions

wire attachment

Section 1:300

The brigde’s secondary system is linking the brigde-path with the rings. The path takes tension and prevents the rings to deform to ellipses. The ring is composed of oil pressure pistons which can be extended and shortened. Thus magnified and reduced the radius of the ring and the tension in the wires change.

0

1

5m

construction

16lukas nordström [email protected] +31 617039566

MAX

Project Urban Planning

Site Kapellplatsen, Göteborg

Time 2009, 5th semester

Professor Anders Hagson Mikael Ekegren Martin Clase Project type Individual

Tools Rinhocerous 4.0 AutoCad V-ray Adobe series

How could you get the maximum out of a site?

Located in central Göteborg the site is a place where different architecture typologies meet. An old square with surrounding stores, a lot of public activ-ity and an old park.

The program consisted of a minimum of 10 000 m2 in a mix with housing and offices.

The big issue in this project was how to connect to the different architecture styles in the area and how to fit in over 10 000 m2 in the narrow site without loosing architectural quality.

Questions like light conditions and the relationship between private and public spaces was important.

AWARD: SELECTED PROPOSAL for represent Architecture and Engineering

17lukas nordström [email protected] +31 617039566

30 o

Project Passive Housing

Site Bergsjön Göteborg

Time 2008, 4th semester

Professors Ola Nylander Pekka Leppänen

Project type Group work

Tools Rinhocerous 4.0 AutoCad Adobe series V-ray

Does a energy effective building have to lack architectural qualities?

Bersjön in Gothenburg, a suburb 20 minutes from the city centre surrounded by nature. At the site 25 low-energy houses were to be built. The typography was dramatic with big height differences. We wanted to connect the houses to the site, to make them a part of the existing landscape.

We wanted to experiment how passive houses could be designed. Passive houses have not to be predictable squares. With inspiration from Austrian passive house architects like Walter Unterrainer, who have pushes the limits, we tested how different shapes and detail-solutions effected the energy effectiveness and the architectural qualities.

AWARD: INVITATION TO SWECO architects as the only student project at thier future housing symposium

30 °Tänk dig volymer som svävar fritt ovanför Bergsjöns kuperade landskap ...… och landar fritt på den böljande marken… och tar sin form efter naturen.

Tänk dig att landskapet inte tar slut så fort du stiger inomhus utan är lika närvarande i huset.I hallen ser du ljuset som får trappan att sväva.I vardagsrummet anar du ”klippan”, en abstrakt avbildning av berget bakom. Klipporna väller inomhus och blir en del av bostadens rum.Tänk dig en slumpartat fasad som inte är

bara till för att skådas utan också utmanar till samspel.Den sammanhållna fasaden byter skepnad om nätterna till små ljusa rutor som är lika rastlösa som naturen själv och söker sig upp för berget.

Tänk dig att arkitektur och teknik vävs samman och skapar en bostad som både är rumsligt upplevelserik och tekniskt innovativ.

30 ° speglar naturen i arkitekturen. Det är ett samspel mellan teknik och estetik. Projektet förenar landskapets lutning med optimal vinkel för solfångare och trappor. Byggnaden blir på så sätt en del av landskapet istället för att motsätta sig naturens estetik. Tack vare formen bibehålls platsens vertikala känsla i huset.

Målet med projektet var att visa att passivhus trotts de höga tekniska kraven även kan vara spännande bostäder med rumsliga kvalitéer.

KONCEPT

Byggnad och klimatVT 2009

Jens OlssonLukas Nordström

Pedram SeddighzadehAT2

18lukas nordström [email protected] +31 617039566

30 °Tänk dig volymer som svävar fritt ovanför Bergsjöns kuperade landskap ...… och landar fritt på den böljande marken… och tar sin form efter naturen.

Tänk dig att landskapet inte tar slut så fort du stiger inomhus utan är lika närvarande i huset.I hallen ser du ljuset som får trappan att sväva.I vardagsrummet anar du ”klippan”, en abstrakt avbildning av berget bakom. Klipporna väller inomhus och blir en del av bostadens rum.Tänk dig en slumpartat fasad som inte är

bara till för att skådas utan också utmanar till samspel.Den sammanhållna fasaden byter skepnad om nätterna till små ljusa rutor som är lika rastlösa som naturen själv och söker sig upp för berget.

Tänk dig att arkitektur och teknik vävs samman och skapar en bostad som både är rumsligt upplevelserik och tekniskt innovativ.

30 ° speglar naturen i arkitekturen. Det är ett samspel mellan teknik och estetik. Projektet förenar landskapets lutning med optimal vinkel för solfångare och trappor. Byggnaden blir på så sätt en del av landskapet istället för att motsätta sig naturens estetik. Tack vare formen bibehålls platsens vertikala känsla i huset.

Målet med projektet var att visa att passivhus trotts de höga tekniska kraven även kan vara spännande bostäder med rumsliga kvalitéer.

KONCEPT

Byggnad och klimatVT 2009

Jens OlssonLukas Nordström

Pedram SeddighzadehAT2

18 19lukas nordström [email protected] +31 617039566

120 GRADERS VY

uTSIKT

LJuS

TAKFöNSTEr VäGGFöNSTEr 30 ° FöNSTEr

SOLAVSKärMNING, SOMMAr SOLAVSKärMNING, VINTEr

PANOrAMAVY

LJuS

VErTIKALT SAMBAND

OFFENTLIGT och PrIVAT

OPTIMAL LuTNING För SOLPANLEEr OPTIMAL TrAPPLuTNING

? !? !? !

30 ° 30 °

KANTIG FOrM Mycket köldbryggor

KOMPAKT FOrM Färre köldbryggor

20lukas nordström [email protected] +31 617039566

Energibalansberäkning

Qtot=Qt+Qv+Ql+Qtvv+Qdr,el-Qvå-Qtillskott

Qtotmax 55 kWh/årm²

Area 150 m²Omvandlingsfaktor W till kWh 8,76Qv 21,89124 kWh/årm²Qläckage 5,116424 kWh/årm²Qtvv 24 kWh/årm²Qvå 0 kWh/årm²Qtillskott 35,04 kWh/årm²Qdr 5 kWh/årm²

Qtrans 25,48346 kWh/årm²Temp diff medel 18,42 ˚C *

Qtot 46,45112 kWh/år

Qtot<Qtotmax

* Temperaturdifferans mellan innetemperatur och medeltemperatur utomhus för uppvämningsmånaderna nov-mars. Data hämtad från tabell 3.1 i Byggnaders klimatskärm.

BERÄKNING AV RF I VÄGGKONSTRUKTION

Indata Enheter

Lägsta månadsmedeltemperatur (göteborg feb) -4 ˚CMedelånghalt (göteborg feb) 2,1 g/m³Temperatur inne 20 ˚CRelativ fuktighet (inne) 50,00%Area-andel isolering 0,900990099Resistans isolering 11,375 m²K/W

Area-andel betong 0,099009901Resistans betong 0,029411765 m²K/W

Beräkningar (temperatur mellan skikten)

Konduktans (temp) för isolering 0,078312916 W/mKKonduktans (temp) för betong 1,426413828 W/mK

Temperatur mellan isolering och betong -2,75092937 ˚C

Beräkningar (RF mellan skikten)

Mättnadsånghalt 20grader 17,28 g/m³ tabellvärdeÅnghalt inne (g/m³) 8,64 g/m³

Ångpermabilitet isolering 0,000015 m²/sÅngpermabilitet betong vct 0.5 0,00000015 m²/s

Ånggenomgångsmotstånd isolering (Z) 30333,33333 s/mÅnggenomgångsmotstånd betong (Z) 333333,3333 s/m

Konduktans isolering 2,9703E-05 W/mKKonduktans betong 2,9703E-07 W/mK

Ånghalt mellan isolering och betong 8,575247525 g/m³Mättnadsånghalt mellan skikten 3,76 g/m³ tabellvärdeRF mellan skikten (utan plastfilm) 228,07%

Lägger till plastfilm

Ånggenomgångsmotstånd (Z) fuktspärr, HD-polyeten 0.5 mm 1,00E+07 s/mAreaandel fuktspärr, HD-polyeten 0.5 mm 9,90E-04Konduktans fuktspärr, HD-polyeten 0.5 mm 9,90E-11 W/mK

Ny total konduktans (Isolering + fuktspärr) 9,90E-11 W/mK

Ånghalt med fuktspärr 2,10E+00 g/m³Ny relativ fukthalt 55,91%

FEB APRIL

Tjocklek (m) Inifrån och Ut Ånghaltsvariation Ånghaltsvariation

0 7,5 80,02 7,498455484 7,9987428360,09 7,49720414 7,99772430,09 3,206882391 4,505601946

0,475 3,2 4,5

Temperaturvariation Temperaturvariation

0 20 200,02 19,54018048 19,734208370,09 15,89757725 17,628657370,09 15,89757725 17,62865737

0,475 -4,22 6

RF-variation RF-variation

0 43,40% 46,30%0,02 44,66% 47,11%0,09 55,33% 53,32%0,09 23,67% 30,04%

0,475 92,22% 61,90%

JULI OKTOBER

Ånghaltsvariation Ånghaltsvariation

14 1113,99892243 10,99856324

13,9980494 10,997399211,00480167 7,006402224

11 7

Temperaturvariation Temperaturvariation

20 2019,95253721 19,7835696719,57654596 18,0690495719,57654596 18,06904957

17,5 8,6

RF-variation RF-variation

81,02% 63,66%81,48% 64,39%82,93% 71,13%65,19% 45,32%73,78% 81,40%

Ånghaltsvariation

Temperaturvariation

RF- variation (Antag att RF varierar linjärt mellan punkterna)

0

2

4

6

8

10

12

14

16

0 0,1 0,2 0,3 0,4 0,5

Feb

April

Juli

Okt

-10

-5

0

5

10

15

20

25

0 0,1 0,2 0,3 0,4 0,5

Feb

April

Juli

Okt

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

Feb

April

Juli

Okt

(meter)

(meter)

(meter)

g/m³

energy calculations

sammansättning av grund och möte med vägg:Cellplast 3*100mmBetongplatta 100mmKantbalk cellplast 100mmFuktskyddisoleringsyllTvärgående regel

Vägguppbyggnad inifrån och ut:Gipsskivainstallationsskikt 70 mm isoleringPlastfolieobrutet isolerskikt 170mmisolerskikt med reglar 170mmisolerskikt med tvärgående reglar 45mmVindskyddluftspaltFasadmaterial betong

Takuppbyggnad inifrån och ut:innertak (gipsskiva)70 mm installationsskikt med isoler-ingPlastfolie170 mm isolering170mm isolering170mm bärande isolering, cellplastTjärpapp

CONSTRUC-

20 21lukas nordström [email protected] +31 617039566

TRICEP

Project Building and Structure

Site Backaplan, Göteborg

Time 2008, 3rd semester

Professors Gunilla Murnieks Oskar Arnklitt

Project type Individual

Tools Rinhocerous 4.0 SketchUp AutoCad Adobe series V-ray

Can a biologic shell construction be a load bearing structure for a building?

Architecture and construction has to go together when you designing large span buildings like sports halls.

I soon became interested in biological structures. Insects and fruits have throughout history developed efficient, light and very strong shells for protecting. I wanted to connect the strength of both sport and construction in the building.

AWARD: SELECTED PROJECT to spring exibition at Chalmers architecture

22lukas nordström [email protected] +31 617039566

subterranean parking-Kungstorget

Project subterranean parking

Site Kungstorget, Göteborg

Time 2008, 2nd semester

Professor Magnus Persson Oskar Arnklitt

Project type Teamwork

Tools AutoCad SketchUp Adobe series

How can light be transferred? Can you build a project on historical events?

The task was to build a under ground garage for 500 cars. The garage should be connected to a central square, a former bastion. The concept was to connect the shape of the staircases to the characteristic geometry of the bastion.

Light was also important in this project. How could you make the garage as light as possible with out using much artificial lighting?

22 23lukas nordström [email protected] +31 617039566

90 degrees

Project Sauna

Site Mossen, Göteborg

Time 2007 1st semester

Professor Wiktor Kowalski Inger Bergström

Project type Individual

What is architecture?

This project was the introduction to architecture. The task was to design a sauna. The site was a clearing in a small forest with no lake, so the sauna should include a warm and a cold bath.

The hot and the cold, the straight and the smooth, black and white. This project was all about contrasts. The building was created out of two contrasting volumes, one black and one white, which were connected corner to corner. The shower is a free form and a center in the interior standing in the middle of the room. The outside is built up by straight angles with a closed locker-room part and a sauna with large windows. The seats in the sauna is oriented so that you can enjoy the view and the conversation at the same time. Fire wood can be stored in the sauna windows and in that way you can adjust the visibility from outside.

24lukas nordström [email protected] +31 617039566

internship TEMA arkitekter

24 25lukas nordström [email protected] +31 617039566

Plan 10 kontor +32.1

+36.9

Plan 9 kontor +28.8

Plan 8 kontor +25.8

Plan 7 kontor +22.8

Plan 6 kontor +19.8

Plan 5 kontor +16.8

Plan 4 kontor +12.8

Plan 3 kontor och teknik +9.0

Plan 2 kontor och teknik +4.9

Plan 1 garage +1.0 +0.0

3

Skala och karaktär

Tönsberg är Norges äldsta stad med anor från medeltiden. Gatunät och strukturer är bevarade sedan medeltiden. Stottlfj ellet och kullen med konstmuseet Haugar höjer sig över övriga stadsbebyggelsen.Den äldre bebyggelsen på Haugar består av trähus i två våningar från förra sekelskiftet.På kommunens översiktsplan är stora delar av centrum markerat som område med speciell bevarandehänsyn. Farmandstredet väster om Stoltenbergsgate ligger inom bevarandeområdetStaden består dock av en mångfald av byggnader och arkitektur. Nya byggnader är byggda med sin tids arkitektur.Kommunens avsikt är att göra stadskärnan mer attraktiv genom att lägga vikt på den historiska identiteten samt modern formgivning och estetik.Man vill också underlätta för näringslivet att intressera sig för att utveckla och bevara stadens ruiner och värdefulla byggnaderSkaljämförelse mellan Farmandstredet

och äldre bebyggelse i Tönsberg

Områden med speciell bevarande hänsyn

Äldre bebyggelse på Haugar

Blandad bebyggelse

7

Bussterminalen ligger integrerad med köpcentret och överbyggd med handel och bostäder.Terminalen är för liten och behöver utökas med ca 4 hållplatser. Ett annat alternativt kan vara att skapa ett resecenter i anslutning till järnvägsstationen.Ur ett handelsperspektiv torde det vara bra med en busstation i omedelbar anslutning till centrum. Hur kundfl ödet kommer förändras med en fl yttad busstation måste utredas. Samtidigt kan en busstation integrerat med järnvägsstationen bli ett resecentrum som gör kollektivt resande attraktivt och stärker centrala Tönsberg som en hållbar stad.

Kollektivtrafi k

Bussterminal

Järnväg

Framtida bussterminal

Framtida busscentral

Nuvarande busscentral

16

Konkurerande handelsplatser

Farmandstredet

Kommunens utveckling som regioncenter

Nuvarande konkurenter

Tolvsröd senter

Kilen Korten

Bellevuesentret

Tornsberg torvTorvgården

Farmandstredet

Stensarmmen

Det etableras fl era nya handelsplatser i närområdet, Kilen Korten Jarlsberg och Stensarmen. En framtida förlängning järnvägen genom och förbi Tönsberg innebär att stationen inte längre kommer att vara slutstation.

internship White arkitekter

26lukas nordström [email protected] +31 617039566