18
D1 - 18/03/2004 A tapped Delay Line Model of Multipath Channel for CDMA Systems March 15th-16th COST 289 Meeting Stefan Wendt

A tapped Delay Line Model of Multipath Channel for CDMA ...cost289.ee.hacettepe.edu.tr/publications/equivalent_channel.pdf · D1 - 18/03/2004 A tapped Delay Line Model of Multipath

  • Upload
    doandan

  • View
    222

  • Download
    1

Embed Size (px)

Citation preview

D1 - 18/03/2004

A tapped Delay Line Model of Multipath Channel for CDMA

Systems March 15th-16th

COST 289 Meeting

Stefan Wendt

France Télécom R&DD2 - 18/03/2004

Outline

s Introduction

s Existing methods to obtain an equivalent model

s Equivalent channel model

s Advantages - Limitations

s Conclusion

France Télécom R&DD3 - 18/03/2004

Introduction

France Télécom R&DD4 - 18/03/2004

Need of an equivalent channel model• Real channel models (Pedestrian, Indoor…) have paths delays that are

not multiple of the chip period Tc

• Simulations, therefore, need several samples per chip

• Aim: Equivalent channel

• Equivalence criterium:

signal after the channel or at the output of the Rake receiver

• Avantages: 1 sample per chip and one can discard the filters’ influence

)τ()('); τ(' cn

n nTthth −= ∑ δ

Channel Coding Spreading

Impulse forming

filter

Multipath Channel

RX

filter

De-spreading/

Correlations

Channel decoding

)ττ()(); τ(1

0i

L

ii thth −= ∑

=

δ

France Télécom R&DD5 - 18/03/2004

Existing methods

France Télécom R&DD6 - 18/03/2004

Former works

• J. G. Proakis [1]: equivalence at the channel output

• Filter u(t) is band limited

• Fechtel [2]: equivalence at the channel output• Projection to basis {u(t-nTc)}n :

• Mutually dependant paths

• The number of coefficients (paths) is large

)( )('τ);(':Channel

)τsinc()()(' :Paths1

0

ci

i

c

iL

nni

iTthth

iT

thth

−=

−=

∑∞

−∞=

=

τδ

)( )('τ);(':Channel

)( )()(' :Paths1

0

ci

i

cn

L

nni

iTthth

iTgthth

−=

−=

∑∞

−∞=

=

τδ

τ

France Télécom R&DD7 - 18/03/2004

Equivalent channel model

France Télécom R&DD8 - 18/03/2004

Chip equivalent channel (1)• Assumptions : channel perfectly known, perfect spreading, WCDMA

• Output of the Rake receiver:

• Characteristic function of the energy

• G: Autocorrelation matrix of the filters, C: covariance matrix of the channel taps• D is the diagonal matrix of CG

kk

kThkThwhere

L

i

L

jjisjsisk bsgkThkThEs

tsLskkkk

+

−=

−==

=

=∑∑ )()()( ˆ

)](),...,([

1

0

1

0

*

10*

444444 3444444 21hGhhγ

ττ

)det()det() DIGCI jν1

jν1(ν

LLγk −=−=ψ

France Télécom R&DD9 - 18/03/2004

Chip equivalent channel (2)• Definition of the equivalent channel

• Average powers of the paths: values of the diagonal of D

• Same performance for an uncoded system

• Placing the paths at multiples of Tc there’s no influence of the filters.

• Let’s consider γk’=h’

k*.h’

k with h’k a vector with L Gaussian processes of the

diagonal matrix D

• We proved the equality of the two processes γk and γk’

same performance after decoding channel is equivalent

{ } 1L0ii−='γ

')'()( kk0

skkk

0

sk dpNE 'QdpN

E QBER γγγγγγ∫∫

=

=

),...,( et ),...,(où

pp k

1k101k10

==

=∀

−− '','',

)'()(

γγγγγγγγ

γγ

France Télécom R&DD10 - 18/03/2004

Simulation results• 12.2 kbps Service UMTS mode FDD: Spreading factor 64, convolutional code 1/3

France Télécom R&DD11 - 18/03/2004

Simulation results• 12.2 kbps Service UMTS mode FDD: Spreading factor 64, convolutional code 1/3

France Télécom R&DD12 - 18/03/2004

Comparisonof different strategies

when a path is not multiple of Tc

France Télécom R&DD13 - 18/03/2004

Comparison

Tc

A

tTc/2

B

Tct

Tc/2

A+nB(1-n)B

Performance after Rake changes

Delay spread changes

Performance after Rake changes

Delay spread changes

Energy

tTcTc/2

AB

TcTc/2t

A’B’

Performance after Rake is the same

Delay spread changes

France Télécom R&DD14 - 18/03/2004

Tc

A

tTc/2

B+C

Performance after Rake changes

Delay spread changesComparison

Energy

tTcTc/2

AB C

Performance after Rake changes

Delay spread changes

tTcTc/2

A+nB(1-n)B+(1-m)C+mC

Performance after Rake is the same Delay spread changes but third path can be neglected

TcTc/2 2Tct

A’B’ C’

France Télécom R&DD15 - 18/03/2004

Advantages – Limitationsof the proposed

equivalent channel

France Télécom R&DD16 - 18/03/2004

Annotations

• Avantages• The paths are mutually independant, i.e uncorrelated

• Reduction of the number of paths is possible

• Comparison between channel models

• Limitations• Inter-Symbol-Interference and Inter-Path-Interference(residual correlation) are

different

310-31.88

290-26.14

170-17.99

110-10.0

50-2.99

00.0

τi (ns)(dB)

ITU Indoor-A

1300-81.9

1040-58.48

790-37.67

520-25.74

260-12.54

00.0

τi (ns)(dB)

Equivalent channel

410-22.8

190-19.2

110-9.7

00.0

τi (ns)(dB)

ITU Pedestrian-A

790-33.88

520-22.7

260-12.67

00.0

τi (ns)(dB)

Equivalent channel

iγ iγiγiγ

France Télécom R&DD17 - 18/03/2004

Conclusions

• Chip equivalent model for WCDMA systems

• mutually independant paths

• Reduction of the number of paths possible

• ISI and IPI is neglected (true for spreading factor > 16)

• order and exact place (at which multiple of Tc) of the paths are to be defined according to

needs

France Télécom R&DD18 - 18/03/2004

References

[1] “Digital Communications”, J.G. Proakis, McGraw-Hill, 1985.

[2] “A novel approach to modeling an efficient simulation of frequency selective

fading radio channels”, S. A. Fechtel, Proc. IEEE JSAC, vol.11, issue 3, April

1993.

[3] “Tapped delay line model of linear randomly time-variant WSSUS channel”, J.

Sykora, IEEE Electronic letters, Vol. 36, No. 19, Sept. 2000.

[4] “An Equivalent Multi-Path Channel Chip Model for CDMA Systems”, A. Saadani,

S. Wendt, P. Gelpi and D. Duponteil, accepted at ISCCSP 2004, Hammamet.