25
1 A Holistic Approach to Sensor and Analytical Method Development Barry M. Wise, Neal B. Gallagher, Richard M. Ozanich,* and Jay Grate* *Pacic Northwest National Laboratory Richland, WA USA United States

A Holistic Approach to Sensor and Analytical Method

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

1

A Holistic Approach to Sensorand Analytical Method

Development

Barry M. Wise, Neal B. Gallagher,

Richard M. Ozanich,* and Jay Grate*

*Pacific Northwest National Laboratory

Richland, WA USA

United States

2

Washington State

Neal

Barry

Rich, Jay

• Concept of holistic design

• Examples• Laser Photo-acoustic Spectroscopy Sensor

• GC-Surface Acoustic Wave Sensor

Outline

3

Holistic Design Concept

• Analytical systems can not be optimized one pieceat a time

• Model the whole analytical system, from sampleenvironment to output

• Lots of parts to consider

Overall Model

SampleEnvironment

Analytical Device

(hardware)

Data Analysis(software)

Estimate

4

Sample Environment Model

• Analytes of interest

• Interferents, mean, covariance, distribution

• Specific problem interferents

• Situation specific scenarios

• Sampling error

Analytical Instrument Model

• Typically a blend of theoretical, empirical andstatistical elements

• Ideal response

• Noise model

• Non-idealities

• Sensor selection

5

Data Analysis

• Detection, concentration, classification…

• What sort of model?

• How to calibrate?

Exercising the Models

• Monte Carlo

• Can sometimes propagate theoretically

• Often interested in the distribution tails

6

Model Use

SampleEnvironment

Analytical Device

(hardware)

Data Analysis(software)

Estimate

Device configurationVariable selection

Power, signal

PLS, CLS, GLS,PLS-DA, GRAM

Potential probleminterferents

Optimizationor what if?

Example 1

• Laser Photo-acoustic Spectroscopy Sensor

• Detection of G-agents in battlefield scenario

• DARPA project lead by PNNL

• Reference:• Laser photo-acoustic chemical sensor performance

modeling, J. F. Schultz, B. D. Cannon, T. L. Myers, R.M. Ozanich, D. M. Sheen, M. S. Taubman, M. D.Wojcik, N. B. Gallagher, B. M. Wise, Proceedings

of SPIE Vol. #57

7

QC L-PAS Sensor Concept

QC & IC lasers:•Wavelengths from ~ 2 – 100 μm

•FM & AM modulation

•Small sizes for multiplexing

• ~10 cm-1 tuning per laser

• 600 mW CW @ 300 K, (6 μm)

•Repeatable, readily stabilized

Compact, rugged in situ

sensors

QC Laser

Tuning Fork

Laser photo-acoustic sensors (L-PAS):

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

Sensor and Optics Design

Lens Mount

Chalcogenide Lens

Tuning Fork

(QVR)

Pyroelectric

DetectorZnSe Window

Liquid heat exchangerTEC with diamond

heat spreader

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

8

QVR Voltage and Noise Sources

• P –Power in QCL mode • Varies more than total QCL power

except for single mode QCL• Measure total QCL power to 1%

relative reproducibility• Cross Section chem,

• Varies with wavelength and hencelaser line shape and laser chirp

• Chemical Concentrations-CChem• Analyte & clutter (both vary)

• Thermal Noise in QVR• Analogous to Johnson noise• Limits sensitivity in Rice expts.

• Acoustic Interference at AM frequency• AM laser power absorbed by QVR &

other surfaces• Measure to generate specs for optics

design• Variations in QCL power and coupling to

QVR create noise• Preamp gain Zgain• Acoustic coupling coefficients (A1, A2,solid )

++= seThermalNoiPAPCAZVSolid

Solid

Chem

ChemChemgainQVR ,2,1

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

Simulant Spectra in the Long-Wave IR

700 800 900 1000 1100 1200 1300 1400 15000.99

1

700 800 900 1000 1100 1200 1300 1400 15000

0.001

0.002

0.003

0.004

Frequency (cm-1)

Abso

rban

ce (

bas

e 10) DMMP

Atmospheric Concentration

Analytes (ppm)

CO2 475

CO 25

NO2 0.1

CH4 0.9

H2O 784

O3 0.07

N2O 0.3

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

9

Simulant Spectra in the Mid-Wave IR

2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 31000.99

1

2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 31000

0.001

0.002

0.003

0.004

Frequency (cm-1)

Abso

rban

ce (

bas

e 10) DMMP

Atmospheric Concentration

Analytes (ppm)

CO2 475

CO 25

NO2 0.1

CH4 0.9

H2O 784

O3 0.07

N2O 0.3

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

Analyte Concentration (mg/m3)

CO2* 634-7065

H2O 0-1163

NO2* 0.00038-250

CO* 12-46

SO2* 0.026-13

Formaldehyde* 0.0025-3.0

CH4 0.1-1.1

Toluene 0.0076-0.76

N2O 0.36-0.7

Dodecane 0.014-0.49

H2S 0.014-0.43

Benzene* 0.0064-0.24

Parathion 0-0.24

m-Xylene* 0.0044-0.22

Acetaldehyde* 0.0036-0.22

O3 0.059-0.2

DEET 0-0.16

Propionaldehyde* 0.0024-0.14

HNO3 0-0.065

Acrolein* 0.0023-0.06

Butadiene* 0.0022-0.038

Carbonyl Sulfide* 0.0025-0.032

NH3 0.00002-0.0035

HCN 0-0.0011

Ethylene Glycol 0-0.00026

* Diesel constituent

Initial Design Atmosphere• “Standard” constituents

vary independently

between mean values of

EPA rural and urban

atmospheres

• Only species with IR

absorptions are listed at

right

• Single-component

interferents vary from 0 to

max value

• Diesel exhaust

constituents co-vary

(R2=0.8) from 0 to max

values (close proximity to

running diesel engine)

TA Blake, KM Probasco , “Chemical Emission

Scenarios and Detection Limits for Active

Infrared Remote Sensing”, PNNL Report

13382 (2000).

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

10

Pre- concentrator

Core containing solid adsorbent

Resistive Heating Wires

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

Initial Design Atmosphere With Pre-concentration

Analyte Concentration (mg/m3)

CO2* 634-7065

H2O5 0-5815

NO2* 0.00038-250

CO* 12-46

SO2* 0.026-13

Formaldehyde* 0.0025-3.0

CH4 0.1-1.1

Toluene10 0.076-7.6

N2O 0.36-0.7

Dodecane10 0.14-4.9

H2S5 0.07-2.15

Benzene*10 0.064-2.4

Parathion10 0-2.4

m-Xylene*10 0.044-2.2

Acetaldehyde*5 0.018-1.1

O3 0.059-0.2

DEET10 0-1.6

Propionaldehyde*5 0.012-0.7

HNO310 0-0.65

Acrolein*5 0.0115-0.3

Butadiene*5 0.011-0.19

Carbonyl Sulfide* 0.0025-0.032

NH310 0.0002-0.035

HCN 0-0.0011

Ethylene Glycol10 0-0.0026

Concentrations shown assume pre-concentration,

resulting in 10-fold concentration of agents and

the following concentration factors for

interferents:

5 = 5-Fold Concentration Factor10 = 10-Fold Concentration Factor

* = Diesel Exhaust Constituent

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

11

Fabry-Perot QCL Line-shapes

Near threshold, CWoperation:•Single mode•Width < 3 cm-1

Initial design choice

Well above threshold, 100%current modulation:

•Multiple modes

•Width ~10 cm-1

•Relative mode power stability?

Well above threshold, CW:

•Multiple modes

•Width ~ 50 cm-1 wide (!)

•Relative mode power stability?

J. S. Yu, A. Evans, J. David, L. Doris, S.Slivken, and M. Razeghi, IEEE PHOTONICSTECHNOLOGY LETTERS, VOL. 16, NO. 3, pp747-9, MARCH 2004

M. Garcia a, E. Normand b, C.R.

Stanley a, C.N. Ironside, C.D. Farmer,G. Duxbury, and N. Langford, OpticsComm 2003

Lineshape from 12 A, 9 ns

pulsed QC laser

Lineshape from CW, 25 C QCL

producing ~80 mWLineshape from Maxion QCL, CW

cryogenic operation, 56 mW

1130 1150 1170 11900

0.1

0.2 FP 10.99 mW

FP 55.95 mW

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

QVR Voltage and Noise Sources

• P –Power in QCL mode • Varies more than total QCL power

except for single mode QCL• Measure total QCL power to 1%

relative reproducibility• Cross Section chem,

• Varies with wavelength and hencelaser line shape and laser chirp

• Chemical Concentrations-CChem• Analyte & clutter (both vary)

• Thermal Noise in QVR• Analogous to Johnson noise• Limits sensitivity in Rice expts.

• Acoustic Interference at AM frequency• AM laser power absorbed by QVR &

other surfaces• Measure to generate specs for optics

design• Variations in QCL power and coupling to

QVR create noise• Preamp gain Zgain• Acoustic coupling coefficients (A1, A2,solid )

++= seThermalNoiPAPCAZVSolid

Solid

Chem

ChemChemgainQVR ,2,1

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

12

Noise Model for QC L-PAS Initial Design

• Proportional noise due to QCL powervariations

• 1% relative noise using power measurement

• Additive thermal noise• RQVR

• Neglect background from solids• Assumes good optics so laser beam clears QVR• Weak coupling of distant acoustic sources to

QVR

• Neglect variations in laser chirp

)(4.1

1.090

300410

4

rmsV

Hzk

KkM

fR

kTZNoiseThermal

QVR

gain

μ=

°=

=

++= seThermalNoiPAPCAZVSolid

Solid

Chem

ChemChemgainQVR ,2,1

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

Laser Line Selection Using Partial Least Squares Discriminant

Analysis (PLS-DA)

1. Generate synthetic data with and without agent:- Use 500 null spectra (clutter plus interferents plus noise) and 125 positive

spectra (clutter plus interferents plus noise plus signal) for each G-agent,with concentrations ranging from 0.02-0.1 mg/m3.

- Repeat null spectra and G-agent spectra creation 20 times to check forconsistency of regression vector produced from PLS-DA (below)

2. Calculate a regression vector b which is the PLS best fit solution to theequation

X b = y,

where X is a matrix of the synthetic spectra, and y is a vector that classifieseach spectrum as positive or null.

3. Plot b and select laser lines that contain the most information.

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

13

• Select laser lines based on regression coefficients

from regression vector

• Positive peaks correspond to agent features

• Negative peaks account for overlapping

interferences

• Select lines with large (+/-) coefficients

• Choose lines >20 cm-1 apart and where regression

coefficients don’t change rapidly to allow for

broader laser lines and drift

• Choose lines on separate features to provide unique

information

Laser Line Selection

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

Calculation of ROC Curves

1 million spectra with and without

agent were generated.

The red curve represents the values of

y calculated from distribution of the

samples not containing agent. The

blue curve corresponds to values of y

calculated from the distribution of

samples containing agent at 0.044

mg/m3.

The vertical green line is placed so the

false negative rate (the fractional area

under the blue curve to the left of the

green line) is at the chosen PD.

The false positive rate can then be

calculated (the fractional area under

the red curve to the right of the green

line), in this example it is 6.3 X 10-3.

The process is then repeated at

different agent concentrations.

To generate one point on a ROC curve, a specific agent concentration and defined false negative rate are chosen.

For this example, a 5% false negative rate was chosen (represented by the 95% PD – vertical green line).

Null distribution Distribution of Cyclosarin at0.044 mg/m3

False Positive Rate Area = 0.0063

False Negative RateArea = 0.05

95% PDLine

Position on PLS-DA Regression Vector

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

14

ROC Curves with and without Preconcentrator

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

10-6

10-5

10-4

10-3

10-2

10-1

0

0.1

0.2

0.3

0.4

0.5

Co

nce

ntr

atio

n (

mg

/m3

)False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Preconcentration

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

ROC Curves with Estimated and Low Noise (33% of est.)

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design (Preconcentration)

Low Noise

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design

Low Noise

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design (Preconcentration)

Low Noise

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design

Low Noise

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design (Preconcentration)

Low Noise

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design

Low Noise

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design (Preconcentration)

Low Noise

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design

Low Noise

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

15

ROC Curves With and Without Parathion

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3 )

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Parathion 95%

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3 )

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design

No Parathion 95%

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Parathion 95%

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design

No Parathion 95%

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Parathion 95%

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design

No Parathion 95%

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1 C

once

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design (Preconcentration)

No Parathion 95%

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1 C

once

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design

No Parathion 95%

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

ROC Curves with and without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design (Preconcentration)

Without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design

Without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design (Preconcentration)

Without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design

Without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design (Preconcentration)

Without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design

Without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design (Preconcentration)

Without Diesel Exhaust

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design

Without Diesel Exhaust

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

16

ROC Curves for G-Agent Categories: GA & Non-GA

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design (Preconcentration)

Tabun Specific Model

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design

Tabun Specific Model

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design (Preconcentration)

G-Agent Model (No Tabun)

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design

Non-GA Model (No Tabun)

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design (Preconcentration)

G-Agent Model (No Tabun)

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design

Non-GA Model (No Tabun)

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1 C

once

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design (Preconcentration)

G-Agent Model (No Tabun)

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1 C

once

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design

Non-GA Model (No Tabun)

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

ROC Curves for Agent Specific Models vs. Initial Design

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design

Tabun Only Model

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design

Sarin Only Model

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design

Soman Only Model

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design

Cyclosarin Only Model

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

17

ROC Curves for G-Agents with 10, 15 & 20 laser lines

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Tabun (GA) ROC Curves, 95% PD

Initial Design (Preconcentration)

With 10 Lines

20 Lines

15 Lines

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Sarin (GB) ROC Curves, 95% PD

Initial Design (Preconcentration)

With 10 Lines

20 Lines

15 Lines

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Soman (GD) ROC Curves, 95% PD

Initial Design (Preconcentration)

With 10 Lines

20 Lines

15 Lines

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

10-6

10-5

10-4

10-3

10-2

10-1

0.02

0.04

0.06

0.08

0.1

Co

nce

ntr

atio

n (

mg

/m3

)

False Positive Rate (per sample)

Cyclosarin (GF) ROC Curves, 95% PD

Initial Design (Preconcentration)

With 10 Lines

20 Lines

15 Lines

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

QC L-PAS Performance is Weakly Dependent on PDROC Curves for G-Agents: 10-Line GA and Non-GA Models: 90, 95, 99% PD

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

Conce

ntr

atio

n (

mg/m

3)

False Positive Rate (per sample)

ROC for Tabun (GA), Optimized 10 Line, GA Only Model

90% PD95% PD99% PD

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

False Positive Rate (per sample)

ROC for Tabun (GA), Optimized 10 Line, GA Only Model

90% PD95% PD99% PD

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

False Positive Rate (per sample)

ROC for Sarin (GB), Optimized 10 Line, Non-GA Model

90% PD95% PD99% PD

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

False Positive Rate (per sample)

90% PD95% PD99% PD

Conce

ntr

atio

n (

mg/m

3)

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

False Positive Rate (per sample)

ROC for Cyclosarin (GF), Optimized 10 Line, Non-GA Model

90% PD95% PD99% PD

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

90% PD95% PD99% PD

Conce

ntr

atio

n (

mg/m

3)

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

False Positive Rate (per sample)

ROC for Soman (GD), Optimized 10 Line, Non-GA Model

90% PD95% PD99% PD

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

10-6

10-5

10-4

10-3

10-2

10-1

0

0.02

0.04

0.06

0.08

0.1

False Positive Rate (per sample)

90% PD95% PD99% PD

Conce

ntr

atio

n (

mg/m

3)

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

18

Modeling QCL Line-shapes

FP-QCL Output.

Modeled Compared to Measured.

Normalized to 1 mW.

Measured FP-QCL Output

at Different Powers

DFB-QCL Output.

Modeled Curves Generated from

Measured Output.

1100 1120 1140 1160 1180 1200

0

0.1

0.2

0.3

0.4

0.5

Frequency (cm -1)

Pow

er (

mW

)

1100 1120 1140 1160 1180 1200

0

0.1

0.2

0.3

0.4

0.5

Frequency (cm -1)

Pow

er (

mW

)

15.83 mW

9.03 mW

4.55 mW

0.05 mW

-30 -20 -10 0 10 20 300

0.01

0.02

0.03

0.04

Frequency (cm -1)

Pow

er (

mW

)

measured 15.83 mW

measured 9.03 mW

measured 4.55 mW

measured 0.5 mW

modeled

width=20 cm -1

modeled

width=15 cm -1

modeled

width=2 cm -1

modeled

width=28 cm -1

-30 -20 -10 0 10 20 300

0.01

0.02

0.03

0.04

Frequency (cm -1)

Pow

er (

mW

)

measured 15.83 mW

measured 9.03 mW

measured 4.55 mW

measured 0.5 mW

modeled

width=20 cm -1

modeled

width=15 cm -1

modeled

width=2 cm -1

modeled

width=28 cm -1

• Laser line width and shape effect the LPAS signal• Modeling the laser line obviates expense of laser construction and testing• Line width and shape can be explored using LPAS virtual sensor to guide:

• Line selection• Laser design criteria

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.05

0.1

0.15

0.2

0.25

Frequency (cm -1)

Lin

e P

ow

er (

mW

)

measured M62A224

width = 0.4 cm -1

width = 1 cm -1

width = 2 cm -1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.05

0.1

0.15

0.2

0.25

Frequency (cm -1)

Lin

e P

ow

er (

mW

)

measured M62A224

width = 0.4 cm -1

width = 1 cm -1

width = 2 cm -1

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

QC L-PAS Performance Weakly Dependent on Laser Line WidthROC Curves for Cyclosarin: FP vs. DFB Line Shape

10-6

10-5

10-4

10-3

10-2

10-1

0

0.01

0.02

0.03

0.04

False Positive Rate (per cycle)

Conce

ntr

atio

n (

mg/m

3)

ROC Curves for Cyclosarin (GF): Effect of DFB Laser Line Width

width (cm -1)

1

5

15

20

10-6

10-5

10-4

10-3

10-2

10-1

0

0.01

0.02

0.03

0.04

False Positive Rate (per cycle)

Conce

ntr

atio

n (

mg/m

3)

ROC Curves for Cyclosarin (GF): Effect of DFB Laser Line Width

width (cm -1)

1

5

15

20

10-6

10-5

10-4

10-3

10-2

10-1

0

0.01

0.02

0.03

0.04

0.05

0.06

False Positive Rate (per cycle)

Conce

ntr

atio

n (

mg/m

3)

ROC Curves for Cyclosarin (GF): Effect of FP Laser Line Width

width (cm -1)5

3040

15

10-6

10-5

10-4

10-3

10-2

10-1

0

0.01

0.02

0.03

0.04

0.05

0.06

False Positive Rate (per cycle)

Conce

ntr

atio

n (

mg/m

3)

ROC Curves for Cyclosarin (GF): Effect of FP Laser Line Width

width (cm -1)5

3040

15

-10 -5 0 5 100

0.01

0.02

0.03

0.04

0.05

Frequency (cm-1)

Lin

e P

ow

er (

mW

)

width=1 cm-1

width=15 cm -1

width=5 cm -1

width=20 cm -1

-10 -5 0 5 100

0.01

0.02

0.03

0.04

0.05

Frequency (cm-1)

Lin

e P

ow

er (

mW

)

width=1 cm-1

width=15 cm -1

width=5 cm -1

width=20 cm -1

-30 -20 -10 0 10 20 300

0.01

0.02

0.03

0.04

Frequency (cm -1)

Pow

er (

mW

)

width=30 cm -1

width=15 cm -1

width=5 cm -1

width=40 cm -1

-30 -20 -10 0 10 20 300

0.01

0.02

0.03

0.04

Frequency (cm -1)

Pow

er (

mW

)

width=30 cm -1

width=15 cm -1

width=5 cm -1

width=40 cm -1

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

19

Model Atmosphere Analyte *Concentration (mg/m3)Water 0 - 2967Carbon dioxide 661 - 860Carbon monoxide 2.3 - 11.5Methane 1.0 - 1.2

Nitric oxide 0.25 - 2.5Nitrous oxide 0.53 - 0.65Sulfur dioxide 0.71 - 0.87Ozone 0.2 - 0.99Ethane 0.00074 - 0.62Propane 0.00073 - 0.4Ethene 0.00081 - 0.19Peroxyacetylnitrate 0.31 - 0.38n-Butane 0.000048 - 0.23Isopentane 0.0059 - 0.27Methanol 0.047 - 0.058Formaldehyde 0.0012 - 0.093

Nitric acid 0.065 - 0.13Toluene 0.0011 - 0.27Styrene 0.021 - 0.094n-Pentane 0.0021 - 0.2Methyl chloride 0.001 - 0.13Acetone 0.0048 - 0.13Isobutane 0.00072 - 0.11Methyl chloroform 0.001 - 0.25Acetylene 0.00075 - 0.047Formic acid 0.034 - 0.042Propene 0.00017 - 0.068Isoprene 0.00056 - 0.084

Hexane 0 - 0.11Dinitrogen pentoxide 0.06 - 0.073Perchloroethylene 0.0002 - 0.19Benzene 0.0029 - 0.084Isobutene 0.0069 - 0.042Ammonia 0.0063 - 0.0077…..

Concentrations for 3 typical scenarios: remote,

rural, and urban*

Over 70 analytes with significant contribution

to IR absorbance included in the model of

ambient atmosphere (partial list shown at right)

Additional analytes included in battlefield

scenario(s) and many analytes shown here will

have different concentration ranges

Model accounts for correlation in the analyte’s

concentrations (e.g. diesel exhaust components).

Information Sources.

a Finlayson -Pitts, BJ, and Pitts, JN. Chemistry of the Upper and Lower Atmosphere,

Academic Press, San Francisco. 2000. b Hobbs, PV. Introduction to Atmospheric Chemistry , Cambridge University Press,

Cambridge, UK, 2000. c Jacob, DJ. Introduction to Atmospheric Chemistry , Princeton University Press,

Princeton, New Jersey, 1999. d Seinfeld, JH, and Pandis, SN. Atmospheric Chemistry and Physics: From Air Pollution

to Climate Change , John Wiley and Sons, New York, 1998. eCalifornia Air R esources Board, Annual Toxics Summaries,

http://www.arb.ca.gov/adam/toxics/statesubstance.html

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

“Real World” Modeling: IR Water Continuum

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

DMMP (0.051 mg/m 3)

Continuum Absorbance

Frequency (cm -1)

Abso

rban

ce (

bas

e 10)

Increasing Temperature

Pressure = 0.5 atm

Temperature = 313 to 333 K

H2O = 1.5% volume

CO2 = 365 ppmv

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

DMMP (0.051 mg/m 3)

Continuum Absorbance

Frequency (cm -1)

Abso

rban

ce (

bas

e 10)

Increasing Temperature

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

DMMP (0.051 mg/m 3)

Continuum Absorbance

Frequency (cm -1)

Abso

rban

ce (

bas

e 10)

Increasing Temperature

Pressure = 0.5 atm

Temperature = 313 to 333 K

H2O = 1.5% volume

CO2 = 365 ppmv

Variation of continuum absorbance

with temperature

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

DMMP (0.051 mg/m3)

Continuum Absorbance

Frequency (cm-1)

Abso

rban

ce (

bas

e 10)

Increasing Pressure

pressure = 0.3 to 0.6 atm

temperature = 323 K

H2O = 1.5% volume

CO2 = 365 ppmv

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

DMMP (0.051 mg/m3)

Continuum Absorbance

Frequency

Abso

rban

ce (

bas

e 10)

Increasing Pressure

Pressure = 0.3 to 0.6 atm

Temperature = 323 K

H2O = 1.5% volume

CO2 = 365 ppmv

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

10-2

DMMP (0.051 mg/m3)

Continuum Absorbance

Frequency

Abso

rban

ce (

bas

e 10)

Increasing Water Conc

pressure = 0.5 atm

temperature = 323 K

H2O = 0.25 to 3% volume

CO2 = 365 ppmv

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

10-2

1000 1500 2000 2500 300010

-8

10-7

10-6

10-5

10-4

10-3

10-2

DMMP (0.051 mg/m3)

Continuum Absorbance

Frequency (cm-1)

Abso

rban

ce (

bas

e 10)

Increasing Water Conc

Pressure = 0.5 atm

Temperature = 323 K

H2O = 0.25 to 3% volume

CO2 = 365 ppmv

Variation of continuum absorbance

with concentration

Variation of continuum absorbance

with sample pressure

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

20

Agent Detection Performance of Existing Point Detectors

10-8 False Positive Rate< .007 mg/m3LPAS BAA Goal

Initial modeling – not fullyoptimized

2 X 10-6 False Positive Rate at

95% PD

~0.04 mg/m3 with 30 second

response (10 sec meas. time)

QC L-PAS InitialDesign

5x 10-5 false positive rate at 90%

PD

0.1 mg/m3 in 30 sec.

1 mg/m3 in 10 sec.

JCAD Rqmts

Predict Agent Categories0.1 mg/m3 for G-AgentsJSOR Rqmts

3

On a scale of 0 to 4

(4 is best)

Fast mode: 0.3 to 0.9 mg/m3 in 20

seconds

Sensitive mode: 0.06 to 0.18 mg/m3

in 2 minutes

SAWHazMatCadCWSentryMiniCAD

•The CAM may give false reading when used in

enclosed spaces

•Some vapors known to give false readings:

aromatic vapors (perfumes, food flavorings,

some aftershaves, peppermints, cough lozenges,

and menthol cigarettes, cleaning compounds

(disinfectants, methyl salicylate, menthol, etc.)

smokes and fumes, and some wood preservative

treatments

1

On a scale of 0 to 4

(4 is best)

0.1 to 0.2 mg/m3 in < 2 minsIMSCAMICAMACADAGID

Selectivity and Probability of Detection (PD)Sensitivity to G-AgentsTechnology

IMS: 1) National Academy of Sciences, Strategies to Protect the Health of Deployed U.S. Forces: Detecting, Characterizing, and Documenting Exposures (2000), Appendix D, 2)

Federal Emergency Management Agency (FEMA) Rapid Response Information System, Advantages and Limitations of Selected NBC Equipment Used by the Federal Government

SAW: 1) Microsensor Systems HAZMATCAD specifications, 2) National Institutes of Justice (NIJ): Guide for the Selection of Chemical Agent and Toxic Industrial Material

Detection Equipment for Emergency First Responders, NIJ Guide 100-00 Table 5.3

U.S. DOE - Pacific Northwest

National LaboratoryDARPA MTO

Summary of L-PAS Results

• Performance not a strong function of laser linewidth

• Moderate pre-concentration improvesperformance considerably

• Diminishing returns on adding lines after ~15

• Diesel exhaust doesn’t greatly affect performance,but parathion does

• Final system should meet required specificationsfor sensitivity and specificity

21

Example 2

• Gas Chromatography coupled with a polymercoated Surface Acoustic Wave detector

• Feasibility study• What can be done with low GC resolution and the

limits of SAW specificity?• Reference:

• N.B. Gallagher, B.M. Wise, J.W. Grate, GeneralizedRank Annihilation, Curve Resolution, and TargetFactor Analysis Applied to Second Order Data froma Pre-separator Coupled with a Surface AcousticWave Array Detector, in preparation

SAW Response Simulation

• Based on actual data, interpolated

• Polymers PIB, PVTD, OV25, PECH, OV275,

BSP3

• Included non-linear effects due to surface

adsorption

• Binary mixtures of TOL, MEK, PCE, BTL

• Modified data to make response less specific for

analytes

22

GC-SAW ParametersNon-linearity Resolution Noise Level

Run Vapors _ Parameter Rs S/N Selectivity b

A TOL-PCE - 0.05-0.5 336-18° 1.2-12 0.01

B TOL/MEK 0-1 0.05-0.5 3355° 1.2-12 0.01

C TOL/PCE - 0.05-0.5 2-7518° 1.2-12 0.1667-0.0044

D TOL/BTL 1 0.05-0.5 2-7538° 1.2-12 0.1667-0.0044

E TOL/MEK 1 0.05-0.5 2-7555° 1.2-12 0.1667-0.0044

Data Analysis Methods

• TFA, Target Factor Analysis

• WTFA, Window Target Factor Analysis

• MCR, Multivariate Curve Resolution

• GRAM, Generalized Rank Annihilation Method

23

Example Response

0

20

40

60

80

φPCE

φMEK

φBTL

θ wtf

a (de

gree

s)

TOL PCE

BTL MEK

0 10 20 30 40 50 60 70 800

2

4

6

p/p sa

t x10

00

Elution Time

TOL PCEknownestimated

PIB PVTD OV25 PECH OV275 BSP3 0

200

400

600

800

1000

Spec

tra

(kH

z) a

tp/

p sat=

0.00

68

Polymer Coating

TOL, θest

=1.5°PCE, θ

est=1.4°

knownestimated

Example WTFA and MCR for a binary mixture ofTOL/PCE with Rs=0.5 and S/N=33.

Example Results from GRAM

0

20

40

60

GRAM RMSEP (%)

1

2

5

10

0

20

40

60

S/N

2510

0 0.1 0.2 0.3 0.4 0.50

20

40

60

Rs

1

2

2

5

10

Mixture B TOL/PCE

Mixture C TOL/BTL

Mixture D TOL/MEK

24

Summary of GC-SAW Results

• TFA and WTFA can provide good estimates ofcandidate vapors over a wide range of parameters

• MCR more sensitive to parameters than GRAMfor extraction of pure component responses

• Relative RMSEP of 5% at achievable S/N andresolution as low as Rs = 0.1

Conclusions

• Models of complete systems enable investigationof many design parameters

• Can be used to optimize entire system to meetoverall objective, not just components

• Continue to refine models as new data becomesavailable

• Sometimes obtain surprising results!

25

Contact InformationEigenvector Research, Inc.3905 West Eaglerock DriveWenatchee, WA 98801 USAweb: www.eigenvector.com

Barry M. Wisee-mail: [email protected]: 509-662-9213fax: 509-662-9214

Neal B. Gallaghere-mail: [email protected]: 509-687-1039