16
A high-power, beam-based, coherently enhanced THz radiation source Yuelin Li, Yin-E Sun, and Kwang-Je Kim Accelerator Systems Division Argonne Accelerator Institute Argonne National Laboratory, Argonne, IL 60439 We propose a Smith-Purcell radiation device that can potentially generate high average power THz radiation with very high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that with a beam current of 1 mA, it is feasible to generate hundreds of Watts of narrow-band THz radiation at a repetition rate of 1 MHz.

A high-power, beam-based, coherently enhanced THz radiation source

  • Upload
    lapis

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

A high-power, beam-based, coherently enhanced THz radiation source. - PowerPoint PPT Presentation

Citation preview

Page 1: A high-power, beam-based, coherently enhanced  THz radiation source

A high-power, beam-based, coherently enhanced THz radiation source

Yuelin Li, Yin-E Sun, and Kwang-Je Kim

Accelerator Systems Division

Argonne Accelerator Institute

Argonne National Laboratory, Argonne, IL 60439

We propose a Smith-Purcell radiation device that can potentially generate high average power THz radiation with very high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that with a beam current of 1 mA, it is feasible to generate hundreds of Watts of narrow-band THz radiation at a

repetition rate of 1 MHz.

Page 2: A high-power, beam-based, coherently enhanced  THz radiation source

2CLEO 2008, San Jose, May 4-9, 2008

Content

Power of THz imaging Capability of current available source Our Approach of THz generation

– Coherence enhancement– Laser pulse train generation– E-beam generation and dynamics– Smith-Purcell radiation– Putting together

Challenges Summary

Page 3: A high-power, beam-based, coherently enhanced  THz radiation source

3CLEO 2008, San Jose, May 4-9, 2008

Current sources

Broadband, THz TDS, <650 W CW

– Gunn diode/Back wave oscillators, <200 mW

– THz-wave parametric oscillators, <100 mW

– THz gas lasers, <180 mW

– QCL, <100 mW

– FEL, >20 W, but bulky

~W, 8 min

H. B. Liu et al, Proc. IEEE 95, 1515 (2007).

Higher power is needed field application.

Page 4: A high-power, beam-based, coherently enhanced  THz radiation source

4CLEO 2008, San Jose, May 4-9, 2008

The matter of coherence

Coherent radiation

2

2

NNd

d

d

dI

E

2

)(

)cos()()(

dttS

dtttScoh

Radiation power from a electron bunch

Coherence factor

dE/d: electron radiation energy into per spectral frequencyN: total number of electrons

S(t): electron temporal distribution

Incoherent radiation

Page 5: A high-power, beam-based, coherently enhanced  THz radiation source

5CLEO 2008, San Jose, May 4-9, 2008

Coherence factor as a function of bunch length

0.0 0.2 0.4 0.60.0

0.5

1.0

C

oh

/

Ellipsoid Flat Gauss

Short bunch is the key for high coherent factor!Y.Li and K.-J. Kim, Appl. Phys. Lett. 92, 014101 (2008).

Page 6: A high-power, beam-based, coherently enhanced  THz radiation source

6CLEO 2008, San Jose, May 4-9, 2008

Degradation of coherence factors in electron bunches

0 40 80 1200.00

0.10

0.20

0.30

0 40 80 1200.0

0.5

1.0

z (cm)

31 pC 62 pC 125 pC

z/(b) (c)

coh

z (cm)

The degradation is due to space charge force.

Energy from zero to 8 MeV (see later)

Page 7: A high-power, beam-based, coherently enhanced  THz radiation source

7CLEO 2008, San Jose, May 4-9, 2008

Effect of the space charge force

22rz

SC

QF

Q: total chargez, r: longi and trans beam sizes: relativistic factor

To solve the problemHigher beam energy, costly on $$$$Less charge, costly on photons

How about bunch train? Reduced space charge but preserved coherence factor.

Page 8: A high-power, beam-based, coherently enhanced  THz radiation source

8CLEO 2008, San Jose, May 4-9, 2008

Preserve the coherence factor by bunch trains

.22

2sin

2sin1

)()(

2

2

b

coh

b

b

bb

b

coh

N

N

Coherence factor for a bunch train

coh: coherence factor for individual bunchedb: bunch spacing, to be set as 2/Nb: Number of bunches

Page 9: A high-power, beam-based, coherently enhanced  THz radiation source

9CLEO 2008, San Jose, May 4-9, 2008

Preserve the coherence factor by bunch trains

Same coherence factor but narrower band width

0 50 100 150 200 2500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coherent factor as a function of frequency for 1-16 bunches

Page 10: A high-power, beam-based, coherently enhanced  THz radiation source

10CLEO 2008, San Jose, May 4-9, 2008

Laser pulse train generation

Number of pulses= 2n, n is the number of birefringence crystals

(Credit: Cialdi et al., Appl. Phys. 46, 4959 (2007))

Page 11: A high-power, beam-based, coherently enhanced  THz radiation source

11CLEO 2008, San Jose, May 4-9, 2008

Rf photoinjector

Need high duty factor, kHz to MHz Laser power of 100 W Klystron power: 10 kWLaser

Electrons

Gun

Laser KlystronL/S band gun

Page 12: A high-power, beam-based, coherently enhanced  THz radiation source

12CLEO 2008, San Jose, May 4-9, 2008

Simulation for an rf gun: bunch coherent factor

0.0 0.5 1.0 1.50.0

0.4

0.8

0 2 4 6 8

-0.5

0.0

0.5

-0.6 -0.3 0.0 0.3 0.60.0

0.5

1.0

(c)

coh

(THz)

z (mm)

(a)

x

(mm

)

(b)

f (a.

u.)

x (mm)

0.5 1.5 2.5 3.5

0.0

0.5

1.0

0.5 THz 1 THz 1.5 THz 2 THz

(b)

Q (nC)

Particle distribution in the x-t plane as seen by a screen at z=60 cm; (b) the transverse beam profile (dashed) and the fitting to a Lorentz distribution with a 200-m width (solid); and (c) the normalized Fourier spectrum averaged over z=40-70 cm. The total charge is 1 nC.

Coherence fator at harmonics

Page 13: A high-power, beam-based, coherently enhanced  THz radiation source

13CLEO 2008, San Jose, May 4-9, 2008

Smith-Purcell radiation

(Credit: Scott Berg, http://www.cap.bnl.gov/spexp/)

,cos1

nGResonant wavelength

dx

c

Ne

d

dI

e

GG 2

20

2

22

sin]exp[8

sin Radiation power per electron

Ng, g: number of grating grooves and grating period.e: evanescent wavelengthn: diffraction order S.J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).

P.M. van den Berg, J. Opt. Soc. Am. 63, 1588 (1973).

Page 14: A high-power, beam-based, coherently enhanced  THz radiation source

14CLEO 2008, San Jose, May 4-9, 2008

Putting things together: radiation powers at 1 MHz, for 0.5 THz

Laser

Electrons

Gun

grating

THz

0.0 0.1 0.2 0.3 0.4 0.50.0

0.2

0.4

0.6 10 20 50 100

(c)

P (kW

)

h (mm)

total radiation power as a function of the beam center-grating distance with a beam scraper height D in mm measured from the

grating surface.

Page 15: A high-power, beam-based, coherently enhanced  THz radiation source

15CLEO 2008, San Jose, May 4-9, 2008

Summary

http://www.tfot.info/news/1051/boeing-tests-avenger-solid-state-laser-weapon.html

Can we make a THz source like this?

We showed that with coherence enhancement, a beam based source delivering hundreds of watts of THz power is possible and may be made compact for field application tools.

Page 16: A high-power, beam-based, coherently enhanced  THz radiation source

16CLEO 2008, San Jose, May 4-9, 2008

References B. Ferguson and X.C. Zhang, Nature Materials 1, 26 (2002). K. Kawase, J. Shikata, K. Imai, and H. Ito, Appl. Phys. Lett. 78, 2819 (2001). See, for example, D. Abbott and X.-C Zhang, Proc. IEEE 95, 1509 (2007) and the references therein. G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, and G.P. Williams, Nature 420, 153 (2002). S.V. Miginsky, N.A. Vinokurov, D.A. Kayran, B.A. Knyazev, E.I. Kolobanov, V.V. Kotenkov, V.V. Kubarev, G.N. Kulipanov, A.V.

Kuzmin, A.S. Lakhtychkin, A.N. Matveenko, L.E. Medvedev, L.A. Mironenko, A.D. Oreshkov, V.K. Ovchar, V.M. Popik, T.V. Salikova, S.S. Serednyakov, A.N. Skrinsky, O.A. Shevchenko, M.A. Scheglov, Proc of 2007 Asian Patical Accelerator Conference, Indore, India.

J.S. Nodvick and D.S. Saxon, Phys. Rev. 96, 180 (1954). Y.K. Batygin, Phys. Plasmas 8, 3103 (2001). B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, J. Appl. Phys. 92, 1643 (2002). A.M. Michalik and J.E. Sipe, J. Appl. Phys. 99, 054908 (2006). Y.Li and K.-J. Kim, Appl. Phys. Lett. 92, 014101 (2008). S.E. Korbly, A.S. Kesar, J.R. Sirigiri, and R.J. Temkin, Phys. Rev. Lett. 94, 054803 (2005). M. Arbel, A. Abramovich, A. L. Eichenbaum, A. Gover, H. Kleinman, Y. Pinhasi, and I. M. Yakover, Phys. Rev. Lett. 86, 2561 (2001),

and references therein. http://www.pulsar.nl/gpt. http://tesla.desy.de/~lfroehli/astra/ S.J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953). P.M. van den Berg, J. Opt. Soc. Am. 63, 1588 (1973). H.L. Andrews and C.A. Brau, Phys. Rev. ST AB 7, 070701 (2004). M. Boscolo, M. Ferrario,I. Boscolo, F. Castelli, and S. Cialdi, Nucl. Instr. and Meth. Phys. Res. A 577(3), 409 (2007). J.G. Neumann, P.G. O'Shea, D. Demske, W.S. Graves, B. Sheehy, H. Loos and G.L. Carr, Nucl. Instr. Meth. Phys. Res. A 507, 498

(2003). B. Dromey, M. Zepf, M. Landreman, K. O'Keeffe, T. Robinson, and S. M. Hooker, Appl. Opt. 46, 5142 (2007). D.H. Dowell, F.K. King, R.E. Kirby, J. F. Schmerge, and J.M. Smedley, Phys. Rev. ST-AB 9, 063502 (2006). T. Srinivasan-Rao, I. Ben-Zvi, J. Smedley, X.J. Wang, M. Woodle, Proc. PAC 97, 2790 (1998). F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 30, 2754 (2005). P. Dupriez, C. Finot, A. Malinowski, J.K. Sahu, J. Nilsson, D.J. Richardson, K.G. Wilcox, H.D. Foreman, and A.C. Tropper, Opt.

Express 14, 9611 (2006). D.N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, Opt. Lett. 32, 2520 (2007) D.H. Dowell, J.W. Lewellen, D. Nguyen, and R. Rimmer, Nucl. Instrum. Meth. Phys. Research A 557, 61 (2006). A. Todd, Nucl. Instrum. Meth. Phys. Research A 557, 36 (2006). M. Cornacchia, S. Di Mitri, and G. Penco, and A.A. Zholents, Phys. Rev. ST-AB 9, 120701 (2006), and reference therein.