43
A Fully-Integrated 5GHz CMOS Wireless-LAN Receiver Hirad Samavati Center for Integrated Systems Stanford University

A Fully-Integrated 5GHz CMOS Wireless-LAN Receiver - Stanford

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

A Fully-Integrated 5GHz CMOSWireless-LAN Receiver

Hirad Samavati

Center for Integrated Systems

Stanford University

Motivation

Introduction to Wireless LAN

Receiver Architecture

Circuit Implementations

Offset Cancellation Techniques

Fractal Capacitors

Measurements

Conclusions

Outline

• Demand for wideband wireless local area network (LAN)

- High data rate (> 20Mb/s)

- Low cost (CMOS)

- Low power

• New released frequency band in US

- Unlicensed national information infrastructure (U-NII) band

• Existing frequency band in Europe

- High performance radio LAN(HIPERLAN) band

Motivation

• U-NII and HIPERLAN frequency bands.

• Proposed channel allocation for a U-NII band WLAN system.

- Compatible with HIPERLAN.

HIPERLAN U-NII

5.15 5.30 5.35 5.725 5.825 GHz

GHz5.15 5.35

23.5MHz

Available Frequency Bands

Modulation GMSKMaximum signal level -25dBmSensitivity -70dBmChannel bandwidth 23.5MHzSpurious emissions 30MHz-1GHz 1GHz-25.5GHz

-57dBm-47dBm

HIPERLAN Receiver Requirements

NF < −143.7dBm/Hz − 12dB − (−174dBm/Hz)=18.3dB

Sensitivity

Pre-detection SNRAvailable noise power of the antenna

(-70dBm)/(23.5MHz)

Receiver Architecture

VCO

LNA

PFDChargePump

Vc

Filter

Loop

Image-Reject PLL

Tracking

BufferI

Q

VCO

Tracking ILFD

Loop FilterCharge

PFD

2Prescaler

N/N+1

Program &Pulse Swallow

Counters

Channel Select Bits

8

LO1 Buffers

fref

Pump

LO2 Buffers

Synthesizer

Baseband

Differential Input5.15-5.35 GHz

Quadrature

+

+

+

Σ

Q I Q I

Fractal Capacitors

BufferBaseband

Filter

LO Frequencies

Satellite downlink

LO1LO2

1617------ ωSig⋅1

17------ ωSig⋅

Sig.Img.

÷2LO1 LO2

Low-power injection-locked frequency divider

÷8

• Image signal is small.

• LO2 easily obtained from LO1.

Image Rejection

In

M3

M1

X

Out

Zf

• Series resonance @fImg→ improves image rejection

fsigfimgFrequency

VOut f( )VIn f( )------------------

fmin fmax

Parasitic capacitance Cx degrades the noise performance.

Noise Rejection

In

M3

M1

XCx Lx

• Parallel resonance @fSig→ improves noise figure

fsigfimg

FrequencyN

oise

Fig

ure Without LX

With LX

fmin fmax

Solution: Third-Order Filter

Z f s( )L5 C3 C1+( ) s

21+⋅ ⋅

C1 C3 L5 s3⋅ C3 s⋅+⋅ ⋅

---------------------------------------------------------=

ωp 0=

ωp1

L5 C1⋅---------------------±=

ωz1

L5 C3 C1+( )⋅---------------------------------------±=

C3

C1L5

Zf

LNA/Filter Transfer Function

fsigfimg

Frequency

VOut f( )VIn f( )------------------

1gm3---------

log

Z f f( )log

fmin fmax

fsigfimgfmin fmaxIn

OutM3

M1

C3

C1L5

Zf

1/gm3

Equivalent Noise Circuit for the LNA

M1

X

Cx

Zin

Ls

Lg

M3 Iout

+−

+−

Vs2

Vg12

I g12

I d32Rs

Rin1 Cx

1/gm3gm3V3Gm1V1

+

+

V1 V3

Iout

Second stageFirst stage(all noise sources modeled)

(Only drain noisemodeled)

Filter Noise Model

I d52

I L52

C3

C1CxL5

1gm5----------–

ψ I d52

I L52

+

1GL5-----------

Simplifies to

Where ,

and F1 is the noise figure of the first stage defined in: D. Shaeffer and T. Lee, “A1.5V, 1.5 GHz CMOS Low Noise Amplifier”, IEEE Journal of Solid-State Circuits,May 1997, pp. 745-759.

Fno filter– F1 4Rsγ3gdo3

ω02

ωT2

------- Cx

2

gm32

---------ω02

+=

Fwith ideal– filter– F1=

Ftot F1 ψ 4R⋅ s γ5gdo5 GL5+( )ω0

2

ωT2

-------

+=

ψC3

2 ω⋅ 02

C32

Cx C3+-------------------

2

ω02⋅ GL5 gm5–( )2

+

-----------------------------------------------------------------------------=

Noise Formulas

Receiver Architecture

VCO

LNA

PFDChargePump

Vc

Filter

Loop

Image-Reject PLL

Tracking

I

Q

LO1 Buffers LO2 Buffers

+

+

+

Σ

Q I Q I

Fractal Capacitors

BufferBaseband

Filter

LO1 LO2Synthesizer

BufferBaseband

Circuit Implementation: LNA and filter

M5 M6

M1 M2

M3 M4

I1 (Const. gm source)

I2 (Const. gm source)

C1 C2C3 C4

L1 L2

L3 L4

L5 L6

In-In+

Filter

LNA

Vc

Receiver Architecture

VCO

LNA

PFDChargePump

Vc

Filter

Loop

Image-Reject PLL

Tracking

I

Q

LO1 Buffers LO2 Buffers

+

+

+

Σ

Q I Q I

Fractal Capacitors

BufferBaseband

Filter

LO1 LO2Synthesizer

BufferBaseband

- A. Shahani, et al, “A 12-mW wide dynamic range front-end for a por-

table GPS receiver,” IEEE J. Solid-State Circuits, vol. 32, pp. 2061-

2070, Dec. 97.

Circuit Implementation: First Mixers

M1 M2

M3 M4LO1

LO1

RF+ RF-

IF+

IF-

LO1

LO1

Receiver Architecture

VCO

LNA

PFDChargePump

Vc

Filter

Loop

Image-Reject PLL

Tracking

I

Q

LO1 Buffers LO2 Buffers

+

+

+

Σ

Q I Q I

Fractal Capacitors

BufferBaseband

Filter

LO1 LO2Synthesizer

BufferBaseband

Loop Mixer

Circuit Implementation: VCO and Loop Mixer

M5 M6

M1 M2

M3 M4

I3

C1 C2C3C4

L5 L6

VCO

Loop Mixer

LO1

LO1

Vbias

Vbias

Vc

RF+ RF-

IF+

IF-

LO1

LO1

Receiver Architecture

VCO

LNA

PFDChargePump

Vc

Filter

Loop

Image-Reject PLL

Tracking

I

Q

LO1 Buffers LO2 Buffers

+

+

+

Σ

Q I Q I

Fractal Capacitors

BufferBaseband

Filter

LO1 LO2Synthesizer

BufferBaseband

Circuit Implementation: Second Mixers

LO+

-

+In -In

+Out -Out

Ib

To Current Summing Resistors

DC Offsets

BasebandAmp

LOLO Leakage

BasebandAmp

LO

InterfererLeakage

• Capacitive Coupling

- Requires a large capacitor

• Negative Feedback

- Nonlinear

• TDMA offset Cancellation

- Requires a large capacitor

DC Offset Cancellation Techniques

BasebandAmp

LO

BasebandAmp

LO

-a

BasebandAmp

LO

MOS Capacitor

Switch

Traditional Capacitors

Gate Capacitance:

Junction Capacitance:

High capacitance per unit areaNonlinearRequires DC bias voltageLow breakdown voltageMedium Q

Highly nonlinearRequires DC bias voltageSensitive to process variationsLow QLarge temperature variation

Metal to Metal / Poly Capacitance:LinearHigh QSmall temperature variationLow capacitance per unit area

Thin-Insulator Capacitors:Linear

Not available in standard CMOSExpensive

• Lateral flux improves capacitance density.

• Structures with large periphery are desirable.

• Some fractals have finite area but infinite perimeter.

Improving Capacitance Density

Fractal Capacitor

Horizontal spacing=0.6µm

Vertical spacing=0.8µmCapacitance boost factor=2.3

# of cross-connected layers=4

Scalability

Unlike conventional parallel-plate structures, thecapacitance per unit area increases as the processtechnologies scale.

Reduction of the Bottom-Plate Capacitance

First Terminal

First Terminal

Substrate

Second Terminal

Second Terminal

Area is smaller.

Some of the field lines terminate on the adjacentplate instead of the substrate.

Improved Matching

5.4pF 5.5pF 5.6pFCapacitance

0

1

2

3

4

5

6N

umbe

r of

dic

eCentral sites

Capacitance distribution across the wafer

σcentral=9.4fF (0.2%)

22mm

8”

m=5.5pFσ=83fF

CAD Tool

LGFCLayout Generator for Fractal Capacitors

LGFCField

Tech. File

Fractal

User

Layout

Report

CSolver Ls & rs

Input

Lib.

Receiver Architecture

VCO

LNA

PFDChargePump

Vc

Filter

Loop

Image-Reject PLL

Tracking

I

Q

LO1 Buffers LO2 Buffers

+

+

+

Σ

Q I Q I

Fractal Capacitors

BufferBaseband

Filter

LO1 LO2Synthesizer

BufferBaseband

CapacitorArea:131x165µmCapacitance value:15pFBottom-plate capacitance/terminal:1.2pFSelf-resonance frequency:11.3GHz

Capacitance density: 700aF/µm2

Capacitance boost factor:3.5Resistor

Area: 103x61mmResistance value:2.1MΩBottom-plate capacitance/terminal:0.3pF

Offset Cancellation Circuit

Corner frequency5kHz

Die Area:4mm2

Technology:0.24-µm CMOS

Die Micrograph

Measured Receiver NF

5.15 5.20 5.25 5.30

Frequency (GHz)

5.35

Noi

se F

igur

e (d

B)

6.8

7.0

7.2

7.4

7.6

7.8

8.0

Measured Image Rejection

5.15 5.20 5.25 5.30Frequency (GHz)

47.0

49.0

51.0

53.0

55.0

57.0Im

age

Rej

ectio

n (d

B)

Ch1 Ch2Ch3

Ch4Ch5 Ch6 Ch7 Ch8

5.35

IP3 Measurement Results

-40 -35 -30 -25 -20 -15 -10 -5 0Source Power (dBm)

-80

-60

-40

-20

0

20O

utpu

t Am

plitu

de (

dBV

)Two-tone test (f1=5.263, f2=5.265GHz)

IIP3=-7dBm

1-dB Compression-Point Measurement

-50.0 -40.0 -30.0 -20.0 -10.0Source Power (dBm)

-30.0

-20.0

-10.0

0.0

10.0

20.0O

utpu

t Vol

tage

(dB

V)

1dB

-18 dBm

1-dB Blocking Desensitization Point

-700 -500 -300 -100 100 300 500 700-24

-22

-20

-18

-16

-14

Offset Frequency (MHz)

LO1Blo

ckin

g S

ourc

e P

ower

(dB

m)

Measured S11 of the Receiver

Frequency (GHz)

S11

(dB

)

4.0 4.5 5.0 5.5 6.0-25

-20

-15

-10

-5

0

Measured Performance Summary

Signal path performance Noise figure Voltage gain S11

Image rejection (filter only) Image rejection (total) Input-referred IP3 1-dB compression point LO1 Leakage to RF LO2 Leakage to RF

Achieved7.2dB26dB< -14dB16dB53dB-7dBm-18dBm-87dBm-88dBm

Required18.3dB

-21dBm-47dBm-57dBm

Power dissipation Synthesizer Divide-by-8 (for LO2) Signal path Image-reject PLL LO buffers Biasing Total power Supply voltage

25.3mW6.0mW18.5mW3.1mW5.0mW0.9mW58.8mW1.8V

Implementation Die area Technology Package

4mm2

0.24-µm CMOS32-pin ceramic flat pack

• Im -LAN receiver.

Th

• De

• D ning tech-

ni image-reject

PL

plementing the first 5GHz CMOS wireless

e receiver is:

- highly integrated

- low power

- highly linear and tolerates large blockers

veloping a novel RF filter topology that:

- rejects the image signal

- improves the LNA noise figure

emonstrating the feasibility of automatic tu

ques at RF frequencies using a low power

L.

Contributions

• Im ing fractal

ge

• De tors including:

• De erate custom

fra

plementing a novel capacitor structure us

ometries.

monstrating the benefits of fractal capaci

- area efficiency

- linearity

- scalability

- reduced bottom-plate capacitance

- improved matching characteristic

veloping a CAD tool to automatically gen

ctal layouts.

Contributions