90-Degree Bloch Domain Wall Structure in a Cubic Crystal With a Negative Magnetic Anisotropy

Embed Size (px)

Citation preview

  • 8/6/2019 90-Degree Bloch Domain Wall Structure in a Cubic Crystal With a Negative Magnetic Anisotropy

    1/2

    90-DEGREE BLOCH DOMAIN WALL STRUCTURE IN A CUBIC CRYSTAL WITH A

    NEGATIVE MAGNETIC ANISOTROPY

    Svitlana . Dyachenko, Bogdan . anygin, lexandr V. ychko

    National Taras Shevchenko University of Kyiv, RadioPhysics Faculty, prosp. Acad. Glushkova, 2,building 5, [email protected]

    An influence of strong sample demagnetization field on the structure of plane 90-degree Bloch

    domain walls in a cubic (001)-crystal with a negative first constant of magnetic anisotropy is considered.

    1. For some samples (thin films, magnetic particles, etc.) their demagnetization field becomes the factor

    influencing a structure of a domain wall [1]. It may be connected with a deviation of a magnetization vector

    M from medium easy magnetization axes at presence of enough strong sample demagnetization fields. In

    particular, strong demagnetization field in thin epitaxial magnetic ferrite-garnet (001)-films results in a

    reorientation of the M in domain volumes from easy magnetization axes to the film plane [2].

    At homogeneous magnetization distribution, the volume orientation of the M in the thin plate is

    determined by minimum of energy density Ae = Me + MAe , where MAe and Me - volume energy density of the

    magnetic anisotropy and demagnetization field Hd respectively [1]: Me = (MHd)/2=23

    22 M ;

    MAe = ( ) ..K +++ 2

    3

    2

    1

    2

    3

    2

    2

    2

    2

    2

    11 , where M saturation magnetization (M=M, - unit vector);

    = ),,(321

    ;1

    ,2

    and3

    directing cosines in coordinate system Oxyz with axes along -,

    - and - direction accordingly;1

    K first magnetic anisotropy constant. For (001)-plate at

    p = ||/2 12 KM 50. and

    1K

  • 8/6/2019 90-Degree Bloch Domain Wall Structure in a Cubic Crystal With a Negative Magnetic Anisotropy

    2/2

    ( ),e A = ++++ 8}2sin2sincos4)2cos3(2cos2cos2cos)2cos1)(2cos2(cos3{ p ++++ )4cos3212cos28(4cos)2cos44cos3(2cos44cos9)2cos2cos(1297{

    )4cos2cos45(4cos2cos4 +++++ 512/])4cos2cos2835(4cos)4cos2cos43(7[4cos

    )3coscos7(4sin4sin8)cos3(cos4sin2sin61 ++

    3. Orientation dependencies of specific energy sin/ are presentedFig.. Here is an angle between(001)- and DW planes. DW parameters (for equilibrium orientation) dependencies on sample

    demagnetization field are resulted in Fig.b.

    Fig. a

    0

    10

    30

    50

    20

    40

    60

    / sin (A| ) , a.u. 1/2

    K |1

    0 8040-40-80

    , .deg

    p=3

    p=20

    p=0.5

    Fig. b

    50

    70

    . / (A ) , / (A/| ) a.u

    |K | K |1 1

    / (A|K |)1/ (A/ |K |)1

    1

    40

    60

    2

    3

    4

    0 5 10 15 20p ,a.u .

    , deg.

    For p 0.5 possible equilibrium DW orientations are set by the expression:

    [ ++++= 12cos10cos98cos136cos394cos372cos3023p

    ( )( )]/11sin9sin67sin5sin243sin3sin492cos32 ++++

    ( )( )]} 7sin5sin23sin12sin92cos328cos6cos54cos102cos21254 ++++ .

    DW have equilibrium orientations in a range00 90813 . . With p growth the general tendency of

    specific energy sin/ increase is remained for DW.

    Depending on DW orientation their thickness [4] is determined by the following expression:

    ( )( ++

    =

    4cos22cos44cos2cos2389/2cos3

    2cos3

    sin2arccos||/8 1 pKA

    ( )( ))21

    6sin24sin42sin82sin4cos2cos4528cos6cos4 ++++ p

    General tendency of DW thickness decrease is kept with growthp for examined DW.

    1. A. Hubert, R. Shafer Magnetic domains. The analysis of magnetic microstructures. Berlin: Springer-

    Verlag, 1998.

    2. Sohatsky V., Kovalenko V. //Journal De Physique IV. Colloque CI. Suppl. Journ. De Physique III.-1996.-

    V.7,3.-P.C1-699 - C1-702.

    3. O.A. Antonyuk, A.V. Tychko, V.F. Kovalenko // Alloys and Compounds. 2004. 369. 112-116.

    4. B.A. Lilley //Phill. Mag. 1950. 41. 319. 792-813.