18
Visual Information Systems Pr. Robert Laurini Chapter II: GIS: Data Modeling 1 Chapter II Geographic Information Systems: Data Modeling 80 % “80 % of all data throughout the world have some geographic background” Application Domains Urban planning Land use planning Rural and forestry planning Sea and Marine Applications Transports Natural resources (mines) planning and management Earth sciences Archaeology Big real estate planning and management etc GIS: Data Modeling 2.1 – Geographic Data Modeling 2.2 – Data Acquisition 2.3 – Output Devices 2.4 – Spatial Data Consistency 2.5 – Extensions of XML 2.6 – Conclusions

“80 % of all data throughout Geographic Information

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 1

Chapter II

Geographic Information Systems:Data Modeling

80 %

“80 % of all data throughout the world have some

geographic background”

Application Domains

• Urban planning

• Land use planning

• Rural and forestry planning

• Sea and Marine Applications

• Transports

• Natural resources (mines) planning and management

• Earth sciences

• Archaeology

• Big real estate planning and management

• etc

GIS: Data Modeling

• 2.1 – Geographic Data Modeling

• 2.2 – Data Acquisition

• 2.3 – Output Devices

• 2.4 – Spatial Data Consistency

• 2.5 – Extensions of XML

• 2.6 – Conclusions

Page 2: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 2

2.1 – Geographic Data Modeling

• Discrete Objects– Generally modeled by their boundaries

– What models to use for points, lines, areas and volumes?

• Attribute modeling

• Continuous phenomena (ex. Temperature)– Modeled as continuous fields

Earth Positioning

• Geodesy

• Coordinates

• Projections of the sphere

Geodesy

• The Earth is not exactly a sphere

• ellipsoid

• geoid

• altitude

Coordinates

North Pole

South Pole

Equator

Greenwich Meridian

30°East

Longitude (meridian)

Latitude(parallel)

50°North

What are the coordinates of thisPoint on the Earth

(0°, 0°)Centre ofthe Earth

Origin of thecoordinates

λ

φ

Page 3: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 3

Projectionsof a sphere

EQUATOR

North Pole

South Pole

Contactparallel

Projection of the sphereonto a cylinder Fragment

du cylindre développé

+3°Meridian

Tangent Meridian

Fragmentof the developed cylinder

MERCATOR PROJECTION

UNIVERSAL TRANVERSE MERCATOR (UTM)

LAMBERT PROJECTION

-3°Meridian

Projection of the sphereonto a cylinder

Projection of the sphereonto a cone

Fragmentof the developed cone

Globe Projectionshttp://www.versamap.com/webdoc15.htm

Different projections Minimum path

Page 4: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 4

For instance in France(Lambert System)

Lambert I (North)

Lambert II (Centre)

Lambert III (South) Lambert IV(Corsica)

Geographic data layers

Geographic Formats

Vector Format Raster Format

Realworld

models

Page 5: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 5

Segment Modelling

A

B

Segment

2-2

X

Y

1-1

OrigiB

Rule: pointwithin a segment

Extremities#point- x, y

Model for polylines

A

W

C

D

EFG

A

W

C

D

EG

1-B

F

2-B

1-1

Open polyline Closed polyline

Polyline

- #polyline- closure flag

order

point- #point- x, y

+ Rule:point iB asegment

2-2

1-2

Segment

- #segment

1-1

Polyline

- #polyline- closure flag

+ Rule:point in asegment

- x, y

point- #point

Polygon modelling

• Simple isolated polygon

• Complex isolated polygons

• Irregular tessellations

• Polygons limited by polylines

• Tesellation limited by mixtilines

• Orientating polygons within a tessellation

• Hierarchical organization of territories

Isolated polygons

1-1

Polygon

- #polygon - #point- x, y3-n

point

order

POLYGOB (#polygon, #point, order)point (#point, x, y)RULE : point within a polygon

Page 6: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 6

Complex isolated polygon(non-connex) (segments)

2-21-1+ rule : pointwithin a polygon

3-n 2-2

Isolated polygon with holes and islands

POLYGOB (#polygon, #segment)segment (#segment, #point1, #point2)point (#point, x, y)RULE : point within A POLYGON

Polygon

- #polygon

segment

- #segment- #point- x, y

point

Complex polygon (non connex) (piece)

NON-CONNEX POLYGON (#non-connex-polygon,#polygon, connexity-flag)

POLYGON (#polygon, etc...)

RULE : point within a polygon

#polygon

Complex polygon

#polygon

Simple polygon 1-11-n-n +/-

Isolated polygon with holes and islands

Model of a polygonal tessellation

2-21-23-n 2-n- # point- x, y

Polygon

- #polygon

Segment

- #segment

Vertex

+ rule : pointwithin a polygon

Tessellation with orientated segment

1-1

1-1+ Rule: pointin a tessellation

3-n

0-n

0-n

LeftRight

begin

End1-2

Polygon

- #polygon

segment

- #segment- orientation

- #point- x, y

point+ Rule: pointin a segment

Page 7: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 7

Terrain Modelling

• Triangulated Irregular Networks (TIN)

• Orthogonal grids

Exampleof a model

for a terrain

3-3

1-2

2-2

3-3

- x, y, z

- x, y, z2-n

2-n

Triangle

SegmeBt

point

+ Rule:point in atriangle

+ Rule:point in atriangle

Triangle

point

a/ Direct representation

TRIANGLE (#triangle, #vertex1, #vertex2, #vertex3)VERTEX (#vertex, x, y, z)and

RULE: point IN A TRIANGLE

b/ segment-oriented representation

TRIANGLE (#triangle, #segment1,#segment2,#segment3)SEGMENT (#segment, #vertex1, #vertex2)VERTEX (#vertex, x, y, z)and

RULE: point IN A TRIANGLE

Planar interpolationto computez

• Each triangle is located on a plane, whoseequation is:

z = Ax+By+C

• How to know the parametersA, B and C ?

• We have 3 vertices, so– 3 equations with 3 unknowns

Page 8: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 8

a/ Representation with parameters

TRIANGLE (#triangle, #vertex1, #vertex2, #vertex3, A, B, C)VERTEX (#vertex, x, y, z)

b/ Representation segment-oriented with parameters

TRIANGLE (#triangle, #segment1,#segment2,#segment3, A, B, C)SEGMENT (#segment, #vertex1, #vertex2)VERTEX (#vertex, x, y, z)

c/ Etc.

Simple grid

For example: 100 meters

Interpolation within a grid

Y(j+1)

Y(j)

X(i) X0 X(i+1)

Z0

Y0

Formula of Bilinear interpolation :z = Axy + Bx +Cy +D

Z0

2.5 – Extensions of XML

• Objective: processing geographic vector data on Internet

• Interest: – To reduce server loads– To alleviate interchanges between clients and

servers– To allow queries at client side– To install local processing at client level

Page 9: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 9

Extensions

• SVG (Scalable Vector Graphic)

• GML (Geography Markup Language)

SVG

• To increase graphic capabilities of XML

• Not originally planned for cartography

• The maps is seen as a drawing

• Possibility of interactivity

• Possibility to modify some drawing attributes

SVG<desc>Parcel Lot #2</desc>

<g>

<polyline points="938.15,-2556,24

789.84,-2382,09"/>

<polyline points="789.84,-2382,09

952.92,-2237,08"/>

<polyline points="955.92,-2237,08

1116.15,-2388,54"/>

<polyline points="1116.15,-2388,54

938.15,-2556,24"/>

</g>

GML

• Really encoding geographic vector data

• Targeted applications: mapping and spatial analysis

• Creation of a small GIS at client level

• Capacity of using spatial and non-spatial attributes

• Opening towards interoperability

Page 10: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 10

GML<exMember>

<Parcel><gml:name>Lot #2</gml:name> <area>52129.7703</area> <gml:centerOf>

<gml:Point><gml:coordinates>2392.91 950.79</gml:coordinates>

</gml:Point></gml:centerOf><gml:extentOf>

<gml:Polygon srsName="http://www.opengis.net/gml/srs/epsg.xml#4326"><gml:outerBoundaryIs>

<gml:LinearRing><gml:coordinates>

2556.24 938.15 2382.09 789.84 2382.09 789.84 2237.08 955.92 2237.08 955.92 2388.54 1116.15 2388.54 1116.15 2556.24 938.15

</gml:coordinates> </gml:LinearRing>

</gml:outerBoundaryIs></gml:Polygon>

</gml:extentOf></Parcel>

</exMember>

Comparison - usage

Domains GML SVGUrban planning X X

Environmental planning X XCadaster XX X

Statistical mapping XX3D X

2.2 – Data Acquisition Modes

• Surveys

• Digitizing

• Aerial photos

• Satellite images

• Laser

• GPS

• Sensors

Theodolite

Page 11: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 11

Aerial photos

City boundaries

Flight trajectory

Overlapping

Example offramework

for aerial photo

Aerial photos Characteristics

• Altitude: from 5 00 to 3,000 meters

• Format: 23 cm × 23 cm

• Scale from 1:3,000 to 1:25,000

• Photos pair � relief

• Parallaxes � determination of altitudes

• Photo-interpretation

• Orthophotos (mosaicking)

Page 12: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 12

A B

EC D

A' B'

aa'

bb'

Photo plan

Irregular soil

Camera

Distortions

Distortions

Nadir

Road

Tree

House A

House B

AERIALPHOTO

House B looksbigger thanHouse A.

House A

House B

Principle of Laser Scanning

(a) (b)

Laser range scanning

Page 13: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 13

Satellite image

30 cm3 cm

0,3 cm300 µm30 µm3 µm

0,3 µm300 Å30 Å3 Å

0,3 Å0,003 Å

1 GHz10 GHz100 GHz1012 Hz

1014 Hz

1016 Hz

1018 Hz

1020 Hz

Hyperfrequences

InfraredRemote

ThermicNear

Ultraviolet

X-Rays

Gamma-Rays

Visible

RedOrangeYellowGreenBlueViolet

0,7 µm

0,4 µm

Waves

Page 14: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 14

Satellites and usage

Temporalscale

SpatialAmplitude

10 000 km

1000 km

100 km

10 km

1 km

1 hm

1 dam

1 mMinutes Hours Days Months Years Centuries

MicroclimateBiotopes

Mesoclimate

Volcanism

Soilmeasures

METEOSAT

Agriculture

Humidity

NOAA

AtmosphericCirculation

EnvironmentUrban planning

ErosionPedogenesis

Morphogenesis

Glaciations

LANDSAT

SPOT

MilitarySatellites

Arialphotos

Species

OceanicCirculation

Solarradiations

Reflected solarradiations

Remote sensing principles

Filtering

Proper emissions

Geostationary orbit

Polarorbit

Subsequent passages

Phases

http://www.ccrs.nrcan.gc.ca/ccrs/eduref/tutorial/chap2/c2p2e.html

Tracking

Spectral signaturehttp://www.rsacl.co.uk/remote_sensing/main.htm

Page 15: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 15

Ikonos

Global Positioning System

Principles of GPS

Satellite #3

Set of pointsat the same distanceof satellites #2 and 3

Satellite #2

Positionof the receiver

Set of pointsat the same distance

of satellite #1

Satellite #1

Differential GPS

Page 16: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 16

Measuringwith GPS

(b)(a)

Measures with fixed sensors

Sensor Antenna

(a) (b)

ComputerReal time

mapping device

(c)

Informationsystem

Rubber-sheeting

Carteinitiale

Nouvellecarte

Pointsde contrôleà bouger

Pointsfixes

Choosingscales

Satellite images

Aerial photos

Digitising (relative)

Terrestrial surveys

Scanning (relative)

Woods and cultures

Roads

Near building Geology

Rivers

Civil engineering

Utility networks Transportation studies

Cadastre

Risk analysis

Tourism

Environmental studies

Urban and regional planning

Conversedscales

1 mm 1 cm 10 cm 1 m 10 m Precision

(a) Range of acquisition scales and precision

(b) Range of utilization scales and precision

10 100 1000 10 000 100 000

Page 17: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 17

2.3 – Output devices

• Various devices

• Interactivity level

• Level of Graphic Semiology

Flatbed plotter

Drum plotter

Control Room at NASA

Page 18: “80 % of all data throughout Geographic Information

Visual Information Systems Pr. Robert Laurini

Chapter II: GIS: Data Modeling 18

http://www.touchtable.nl

Generator of terrain models Tangible Interface of Geodan

http://www.geodan.nl/uk/project/virtual_maquette/HPCfeb05_small.wmv

2.6 – Conclusions

• 80 % of information throughout the world have some spatial component

• Geographic Databases among the biggest in the world

• Usage for other domains– Geomarketing– Real estate management– Location-Based Services– Pervasive Information Systems