13
T. Preußer and M. Rumpf Nonlinear diffusion methods have proved to be powerful methods in the process- ing of 2D and 3D images. They allow a denoising and smoothing of image inten- sities while retaining and enhancing edges. As time evolves in the corresponding process, a scale of successively coarser image details is generated. Certain features, however, remain highly resolved and sharp. On the other hand, compression is an important topic in image processing as well. Here a method is presented which combines the two aspects in an efficient way. It is based on a semi–implicit Finite Element implementation of nonlinear diffusion. Error indicators guide a successive coarsening process. This leads to locally coarse grids in areas of resulting smooth image intensity, while enhanced edges are still resolved on fine grid levels. Special emphasis has been put on algorithmical aspects such as storage requirements and efficiency. Furthermore, a new nonlinear anisotropic diffusion method for vector field visualization is presented. 1. INTR ODUCTION Nonlinear diffusion methods in image processing have been known for a long time. In 1987 Perona and Malik [17] introduced a continuous diffusion model which allows the denoising of images together with the enhancing of edges. The diffusion driven evolution is started on an initial image intensity. In general, it is either noisy because of unavoidable measurement errors, or it carries partially hidden patterns which have to be intensified and outlined [9, 24]. Such an image smoothing and feature restoration process can be understood as a successive coarsening while certain structures are retained on a fine scale – an approach which is closely related to the major techniques in image compression. Finite Element methods are widespread to discretize and appropriately implement the diffusion based models. Their general convergence properties were studied for instance by Kaˇ cur and Mikula [13]. Furthermore, Schn¨ orr applied Finite Elements in a variational approach to image processing [20]. In various areas of scientific computing adaptive Finite

67 02 98:,1&(4; =

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

����������� ���������������������������� "!#�$ %'&(�*)+&-,/.�',102�#354��-���67�"��02�98:,1&(4;�=<><?���'0

T. PreußerandM. Rumpf@BADCBEGFGEGHIEIJLKHNM�OPA7QSRUTWV�A1X�EYR>Z'V[E \IR^]?V[EGF _a`>bcADFed�R^MBC�FGE[KV[Egfih�AIAS`jkRlQSRUm RUMnCBEGMUogpU`rq7s7t7t[quf>h�ADAS`PvPR^Mn]?V�ADwxzy|{~}�� ���P� ���I���^�I���^� ���I{?�D���G��� }�{;� �I�D� y��L���D�L� �D�

Nonlineardiffusionmethodshave provedto bepowerful methodsin theprocess-

ing of 2D and3D images.They allow a denoisingandsmoothingof imageinten-

sitieswhile retainingandenhancingedges.As time evolvesin the corresponding

process,ascaleof successively coarserimagedetailsis generated.Certainfeatures,

however, remainhighly resolved andsharp.On theotherhand,compressionis an

important topic in imageprocessingas well. Here a methodis presentedwhich

combinesthe two aspectsin anefficient way. It is basedon a semi–implicitFinite

Elementimplementationof nonlineardiffusion.Error indicatorsguidea successive

coarseningprocess.This leadsto locally coarsegrids in areasof resultingsmooth

imageintensity, while enhancededgesarestill resolvedon fine grid levels. Special

emphasishasbeenput on algorithmicalaspectssuchasstoragerequirementsand

efficiency. Furthermore,a new nonlinearanisotropicdiffusion methodfor vector

field visualizationis presented.

1. INTR ODUCTION

Nonlineardiffusionmethodsin imageprocessinghave beenknown for a long time. In1987PeronaandMalik [17] introduceda continuousdiffusion model which allows thedenoisingof imagestogetherwith theenhancingof edges.Thediffusiondrivenevolutionis startedonaninitial imageintensity. In general,it is eithernoisybecauseof unavoidablemeasurementerrors,or it carriespartially hiddenpatternswhich have to be intensifiedand outlined [9, 24]. Suchan imagesmoothingand featurerestorationprocesscan beunderstoodasa successive coarseningwhile certainstructuresareretainedon a fine scale– anapproachwhich is closelyrelatedto themajortechniquesin imagecompression.

Finite Elementmethodsarewidespreadto discretizeandappropriatelyimplementthediffusion basedmodels. Their generalconvergencepropertieswerestudiedfor instanceby Kacur andMikula [13]. Furthermore,Schnorr appliedFinite Elementsin a variationalapproachto imageprocessing[20]. In variousareasof scientificcomputingadaptiveFinite�

Elementmethods[6, 4] havebeenincorporatedto substantiallyreducetherequireddegreesof freedomwhile conservingtheapproximationqualityof thenumericalsolution.Therebylocally definedreliableerrorestimatorsor someerrorindicatorssteerthelocalgrid refine-ment,respectively coarsening[23, 5]. The imageintensitiesresultingfrom thenonlinearparabolicevolution areobviously well-suitedto be resolved on adaptive grids. As timeevolves,a successive coarseningin areasof smoothimageintensityis nearat hand. Forinstancein caseof an � –dimensionalimage,wheretheimageintensityis constantonpiece-wisesmoothlyboundedregions,we obtainthesameimagequality on a �������I�i���| c¡¢�n��£�£complex adaptive grid ason a �����¤�¥£ regulargrid. Thecostof thenumericalalgorithm,thestoragerequirements,andthetransmissiontime on computernetworksscalewith thiscomplexity in termsof actualdegreesof freedom.

Theseefficiency perspectiveshave first beenstudiedby BanschandMikula [3], whopresentedan adaptive Finite Elementmethod. This methodis basedon simplicial gridsgeneratedby bisectionandthenagainsuccessively coarsenedin thediffusionprocess.Themajor shortcomingof their approachis the enormousmemoryrequirementfor the datastructuresdescribingthe adaptive grid and the sparsematricesusedin the linear solverin eachimplicit time. Therefore,large 3D images– as they arewidespreadin medicalimaging– aredifficult to manageon moderatelysizedworkstations.

Herewepresentanadaptivemultilevel FiniteElementmethodwhichavoidstheseshort-comingsandcomesalongwith minimal storagerequirements.Thespecificingredientsofourmethodare:

¦ adaptive quad–andoctrees,with accompanying piecewise bilinear, respectively tri-linearFiniteElementspacesareprocedurallyhandledonly,¦ error indicatorson grid nodesanda suitablethresholdvalueimplicitly describetheadaptivegrid (no explicit adaptivegrid structureis required),¦ invokinga certainsaturationconditionfor thenodalindicators,we ensurerobustnessandonelevel transitionsonly on theresultingadaptivegrid,¦ theadaptiveFiniteElementspaceis definedasanimplicitly constraineddiscretespaceon thefull grid,¦ thegrid is completelyhandledprocedurally,¦ andinsteadof dealingwith explicitly storedsparsematrices,the hierarchicallypre-conditionedlinear solver in eachtimestepuses”on–the–fly” matrix multiplication basedon efficientgrid traversals.

Let usmentionthat this approachbenefitsfrom generalandefficient multilevel datapostprocessingmethodology[16, 19] and is relatedto the multilevel methodsdiscussedin[1, 25].

Finally, asa – to our knowledge– new areaof applicationwe will presenta scalespacemethodin vectorfield visualization. Flow visualizationis an importanttaskin scientificvisualization. Simply drawing vector plots at nodesof someoverlayedregular grid ingeneralproducesvisual clutter. The centralgoal is to comeup with inituitive methodswith more comprehensibleresults. They shouldprovide an overall as well as detailedview on the flow patterns.Several techniquesgeneratingsuchtexturesbasedon discretemodelshavebeenpresented[8, 15, 21, 22]. We askfor acontinuousmodelwhich leadstostretchedstreamlinetypepatterns,which arealignedto thevectorfield. Furthermore,thepossibility to successively coarsenthis patternis obviously a desirableproperty. For the

generationof suchfield alignedflow patternswe applyanisotropicnonlineardiffusion. Amatrix valueddiffusioncoefficientcontrolstheanisotropy asin Weickert’smethod[26] torestoreandenhancelowerdimensionalstructuresin images.

2. FE-DISCRETIZA TION OF NONLINEAR DIFFUSION

Let uslook at themodifiedPerona-Malik[17] modelproposedby Catte, Lions,Morel,andColl [9]. Without any restrictionwe considerthedomain §©¨Gª¬« ­r®D¯D°�� , ��ª�±W®[² andaskfor solutionof thefollowing nonlinearparabolic,boundaryandinitial valueproblem:Find ³5¨+´¶µ�·¸§º¹»´¶¼ suchthat

½½I¾ ³2¿ div �BÀ�BÁ-³zÂ�£�Á-³z£ºªÄö��³W£�® in ´ µ ·Å§�®³���­r®DÆe£:ª9³cÇ ® on §¤®½½1È ³Éª*­ ® on ´ µ ·ËÊP§'Ìwherein the basicmodel ÀͪÏÎ for a non negative monotonedecreasingfunction ÎШ´ µÇ ¹»´ µ satisfying�|ÑYÒ�ÓaÔ2ÕÖÎP�n×1£?ªÐ­ , e.g. ÎP�n×1£?ªØ�a¯~ÙÚ×¥Û1£7�P� , and ³W is amollification

of ³ with somesmoothingkernel. We interpretthe solution ³ for increasingÜ(ÝÞ´ µ tobea successively filteredversionof ³cÇ . With respectto theshapeof Î , thediffusionis ofregularizedbackwardtype[14] in regionsof high imagegradients,while noisyregionsof³gÇ will besmoothedby dominantdiffusion.

Wesolvethisproblemnumericallybyapplyingabilinear, respectively trilinearconform-ing FiniteElementdiscretizationonanadaptivequadrilateral,respectivelyhexahedralgrid.In time a semi-implicitsecondorderEulerschemeis used.As it hasbecomestandardtheschemeis semi-implicitwith respectto theevaluationof thenonlineardiffusioncoefficientÎ andtheright handside.Thecomputationof themollified intensity ³ Â is basedonasingleshorttimestepof thecorrespondingheatequation(lineardiffusion)with givendata³ [13].In the ß th timestepwe haveto solve thelinearsystem

�BàáÙÖâäã���³  £�£cå³gæçªèà¬å³zæ �i� ÙÚéê®where å³ æ is thecorrespondingsolutionvectorconsistingof thenodalvalues,â thecurrenttimestep,à is the lumpedmassmatrix, ã���³WÂ�£ the weightedstiffnessmatrix and é thevectorrepresentationof theright handside.Thegrowth of é in theapplicationis moderatecomparedto chemicalreactiondiffusion equations. Thereforewe have not recognizedany instabilitieswith this sourceterm. The stiffnessmatrix and the right handsidearecomputedby applyingthemidpointquadraturerule.

Theabove linearsystemaswell asthelinearsystemresultingfrom themollification bytheheatequationkernelis solvedby a preconditionedconjugategradientmethod.We usethe Bramble–Pasciak–Xupreconditioning[7], thusmakingappropriateuseof the givengrid hierarchy.

As alreadymentionedabove,a peculiarityof our schemeis thatno matricesarestoredexplicitly. Instead,the multiplication of the mass,respectively the stiffnessmatrix witha coefficient vectorconsistingof nodal valuesis doneprocedurally. Therefore,in eachstepthehierarchicalandadaptivegrid is traversedandelementwiselocalcontributionsareevaluatedandsuccessively assembledon the resultingcoefficient vector. Thuswe avoidstoringthe matricesexplicitly. Otherwisewe would have beenunableto managetypical3D applicationswith more than ¯¥­ million nodes. Furthermore,this proceduralaccess

FIG. 1. On thetop elementtypesin two andthreedimensionsandtheir refinementsareshown andon thebottomgrid configurationswith hangingnodesaredepicted.

carriesstrongprovisionsfor codeoptimizationwith respectto a cacheoptimalnumberingof thenodes.

3. GRID AD APTIVITY AND ERR OR INDICA TORS

In this sectionwe will discussanadaptive approachto theproblemof nonlineardiffu-sion. We will especiallyfocuson the choiceand the handlingof error indicatorvalueson the grid nodeswhich steerthe adaptive algorithm. It will be outlinedthat saturationplaysan essentialrole in the robustnessandimplementabilityof the proposedalgorithm.In fact, solely referringto saturatederror indicator informationandnot to someexplicitgrid hierarchyenablesus to defineandhandleappropriateadaptive meshesfor the non-linear diffusionalgorithm. Let us assumethe dimensionof our imageto be �n±Lë|ìrínî Ùﯥ£in eachdirectionfor some ðlñ ò�ó�ݺô . The degreesof freedomareinterpretatedasnodalvaluesof a regulargrid with ±Lë ì¢í�î � elementsfor ��ªõ±W®[² . Above this fine grid level wedefinea quadtree,respectively octreehierarchyof elementswith ð ñ ò�ó Ùö¯ grid levels. Ineachlocal refinementstepanelement÷ is subdividedinto aset ø?��÷-£ of ±+� child elements(cf. Fig. 1). Vice versawe denoteby ù���÷£ the ancestorof an element÷ . In eachrefinementstepnew grid nodesú appear. They areexpressedby weightedsumsover theirparentnodesúrûºÝËù���ú�£ from thesetof coarsergrid level nodes:

ú˪ üý¥þ>ÿ û�� ý�� � ��úç®�ú û £Uú û ÌTheweights � ��úç®�úrû;£ Ý�� �Û ® �� ® �� dependon thetypeof thenew node,which might be

thecenterof a 1D edge,a 2D face,or a 3D hexahedron.Let usdenoteby � ���n÷£ thesetof new nodeson anelement÷ .

We supposethe grid to be adaptive. I. e. dependingon datathe recursive refinementis stoppedlocally on elementsof differentgrid levels. Therebya sequenceof nestedsuc-cessively refinedgrids ��� ë Ç�� ë � ë max is generated.On this sequencewe definediscretefunctionspaces���$ë Ç�� ë � ë max consistingof continuouspiecewisebilinear, respectively tri-linearfunctions,which areorderedby setinclusion:

� Ç�� � � � ÆDÆIÆ � � ë � � ë µ � � ÆDÆIÆ � � ë�ì¢í�î Ì

FIG. 2. Several adaptive gridsof a smoothimage. From left to right the numberof unknowns is ��������� ,��������� , and ��������� respectively. A full grid would contain ���� �����! unknowns.

Let �#"¢ëæ æ denotethebasisof �$ë consistingof hat-functions,i.e. if �¥ú � ®IÌDÌIÌN®�ú%$ denotesthesetof nonconstrainedverticesof �¬ë , we have "¢ëæ ��ú'&1£kª)( æ & , *�ª�¯+®DÌIÌDÌN®[� . Therebya vertex is called constrained, or a hanging node, if it is not generatedby refinementon every adjacentelement(cf. Fig. 1). On adaptive quadtrees,respectively octreessuchhangingnodesareunavoidable.Thehandlingof thecorrespondingnodalvaluesis crucialfor the efficiency of the resultingadaptive numericalalgorithm. We choosean efficientimplicit processingwhich will bedescribedbelow.

Usually, for timedependentproblemsa grid modificationconsistingof the refinementandcoarseningof elementsis necessaryat certaintime steps. In our settingwe startontheinitial fine grid �¬ë ì¢í�î andit sufficesto coarsenelements,sincethereis in generalnospatialmovementof the imageedgesandcompleteinformationof the imageis codedontheinitial grid. (cf. Fig. 2). This coarseningis obtainedby prescribinga datadependent,booleanvaluedstoppingcriterion +k��÷£ on elements,which implies local stoppingin arecursive depthfirst traversalof the hierarchicalgrid. It turnedout to be suitableto letthis elementstoppingcriterion dependon a correspondingcriterion +k��ú�£ on the nodes,respectively basisfunctions,i. e. wedefine

+k��÷-£S¨Gª ,ý+ÿ�-/. �10 ��2 ��ú�£SÌ2 �aÆe£ distinguisheswhich degreesof freedomareactually important,respectively which

nodalvaluescanbe generatedby interpolationof somecoarsegrid function. If 3P��ú�£ issomeerror indicatoron thenodesú and 4 is a prescribedthresholdvalue,we obtainsuchaninterpolationcriterionby

2 ��ú�£S¨Gª��53P��ú�£7684�£PÌ

FIG. 3. Fromleft to right severaltimestepsof theselective imagesmoothingonadaptive gridsareshown.

Givenanimageintensity³5Ý9�$ë ìrínî anintuitivechoicefor anerrorindicatoris 3���ú�£N¨eª;: Á-³���ú�£�: ,becausethegradientof animage³ actslikeanedgeindicator. Hencein regionswith nearlyconstantintensitythegrid will becoarsenedsubstantially, whereasin thevicinity of highgradients,indicatingpreservableedges,thegrid sizeis keptfine.

Thestoppingcriterion on elementsis motivatedby the fact that in the next refinementsteponly interpolatednodalvalueswouldappear. To ensureeverydescendentnodalvalueon suchan element– also thoseon finer grid levels – to be interpolatedwe requirethefollowing naturalsaturationconditionon theerrorindicator:

(Saturation Condition) An error indicator value 3P��ú�£ for ú:Ý<� ��÷£ is always greaterthan every error indicator 3P��ú=�W£ for ú�5Ý;� ���n÷£ .

In generalthesaturationconditionis not fulfilled, but we canmodify theerrorindicatorin apreprocessingstep.Typically, this turnsout to benecessaryonly oncoarsegrid levels.A simpleupdatealgorithmfor anerror indicator 3 andtherebythecorrespondingprojec-tion criterion 2 is the following bottom-uptraversalof the grid hierarchy, startingon thesecondfinestlevel andendingon themacrogrid.

for l= >1?A@CB -1 to 0 step -1 do

for each element D of EGF doHJI := KML�N#O�P�Q .SRUT%V HXWZYX[ ;for all Y]\�^�W D [ do if( HXWZYX[ < H I ) HXWZYX[ = H I ;

Let usemphasizethatadepthfirst traversalof thehierarchyin theadjustmentprocedurewould not be sufficient. This saturationprocess“transports”fine grid error informationup to coarsegrid level andpreventsus from overlookingimportantfine grid details[16].Furthermore,the saturationconditioncomesalongwith anotherdesirableproperty. Thecorrespondingelementstoppingcriterionimpliesonly onelevel grid transitionsatelement

FIG. 4. Nonlineardiffusionhasbeenappliedto a 3d medicaldataset. Severalslicesthroughtheadaptivegrid aredepictedshowing thecorrespondingimageintensityaswell astheintersectionlineswith elementfaces.

facesof theactualadaptive grid (cf. Fig. 1). Thus,thepossiblehangingnodeconfigura-tionsconfineto thebasiconelevel cases.I. e. any openfaceandany edgeof anelement÷ containsat mostonehangingnode(cf. [11] for a generaltreatmentof hangingnodes).Finally, this hasstraightforwardimplicationson theassuranceof continuityof discreteFi-nite Elementfunctionsandthe correspondingmatrix assemblyin the implementationofour nonlineardiffusionalgorithm.In generalon regulargridsthecontinuityis guaranteedby identifying eachlocal degreeof freedom(dof) with the globaldof in the assemblyofthe global stiffnessmatricesandthe right handsideof the correspondingdiscretelinearproblem.However, hangingnodesof theadaptive grid do not representdofs,dueto theirdependenceuponotherdofs.Therefore,whenassemblingtheglobalstiffnessmatrices,wehave to distribute the contribution of the hangingnodesonto the constrainingdofs. Thisis nothingelsebut procedurallyrespectingthe appropriateinterpolationconditions. Forfutureuselet usintroducethefollowing notation:¦ NDEP ��ßa£ = Numberof constraintsof the nodewith local index ß of an element.WedefineNDEP ��ßa£S¨Gª¯ if thenodeis not constrained.¦ CCOEF ��ß7®_*z£ = List of constrainedcoefficients.In ourcasewealwayshaveCCOEF ��ß7®C*g£ ª¯#`baMcJdMer��ßa£ for *-ª ¯+®DÌIÌDÌI®�aMcMdJe���ßa£ .¦ CDOFM ��ß7®_*z£ = List of globaldofs thatconstrainthenode ß , *�ª�¯c®DÌIÌDÌN®faJcMdMe���ßa£ . Fornon-hangingnodesCDOFM ��ß7®I¯¥£ coincideswith theglobaldof of nodeß .TheCCOEF–valuesareidenticalto theweightsin theabovenodegenerationrule. Figure3 shows theapplicationof the resultingadaptive algorithmto selectively smoothensomenoisyimage.In Figure4 and5 wehaveappliedthealgorithmto a 3D dataset[12].

4. PR OCEDURAL GRID HANDLING AND MA TRIXMUL TIPLICA TION

FIG. 5. A transparentisosurfacevisualizationof the brain dataset,smoothedby nonlineardiffusion (cf.Fig. 4).

As alreadymentionedin Section2 the hierarchicalgrid is handledsolelyprocedurallyandnecessarymatrix multiplicationsin thelinearsystemsolver areperformedon–the–flytraversingtheadaptivegrid recursively. Let usdescribethis now in moredetail.

Traversingthegrid, informationthat is neededto identify anelement÷ will begener-atedrecursively. If this recursive traversalroutinereachesa leaf elementof the adaptivegrid, i. e. an elementfor which +k�n÷£ is true, a callback-methodwill performsomeac-tion on thatelement.For instanceit calculatesthelocal right handside. An element÷ isidentifiedby theindex vectorof its lower left corner, its grid level andits refinement-type.Every otherinformationlike theelement’s size,themappingof local dofs to globaldofs,andtheconstraineddofswill bestoredin lookuptablesasalreadymentionedin Section3.In 2D thehierarchicaltraversalcanbeformulatedin pseudocodeasfollows:

sub traverse(i, j, lev, refType, callback, params)

if (lev gh >1?A@CB ) and ikj W element [ do

offset = l�F ìrínî�mMnZo5pqm'r ;traverse(i, j, lev+1, 0, callback, params);

traverse(i + offset, j, lev+1, 1, callback, params);

traverse(i + offset, j + offset, lev+1, 2, callback, params);

traverse(i, j + offset, lev+1, 3, callback, params);

else callback(i, j, lev, refType, params);

We can also formulatethe “on-the-fly” matrix-vectormultiplication using this traversalwith callback.Multiplying a givenvector s with thematrix à Ù:âäã���³zÂ�£ andassemblingtheresultin avector t requiresthefollowing local callbackprocedure:

sub matrixProduct(i, j, lev, refType, (u,w))

for each pair l,k of local dofs

for lc=1 to NDEP(l), kc=1 to NDEP(k)

w(CDOFM(l,kc)) += localMatrix(l,k) *

ρ

f(ρ)

0.0 1.0σ

a(σ)amax

FIG. 6. Thediffusioncoefficient andtheright handsidein thecontinuoussegmentationalgorithm.

CCOEFF(l,kc) * CCOEFF(k,lc) * u(CDOFM(k,lc));

Similarily theadaptiveBPX preconditioningcanbeimplemented.

5. SEGMENT ATION

Onceanoisy2D or3D imagehasbeenprocessedby thenonlineardiffusionmethodwithsimultaneousgrid coarseningwe can considerefficient segmentationor Finite Elementsimulationtaskson thecompresseddatabase.Here,we will briefly outlinea continuouswatershedalgorithm,andshow someresultsfor largemedicaldatasets.

Givena u Ç function vº¨P§�¹�´ indicatingthesegmentboundary, anda seedpoint ú ,we definea correspondingsegmentby

2 ��úç®fvi£è¨Gªw��x5Ý�§y:�z{u Ç curve |�¨r« ­ä®I¯N°�¹ §'®M| ��­g£?ª úç®'| �a¯¥£?ª}x�®v �Z| ��Ü�£�£76:­�~�Ü~Ý « ­r®D¯D° ÌExamplesareconnectedsubsetsof thepreimageof agrey valueinterval ( v � ��³W£?ª ¿{��� ����� ���M�U��³W£ ),domainsboundedby largegradients( v Û ��³z£~ª��DÁ-³A�=¿ à ), or combinedcriteria( � � v � Ù� Û v Û , Ò;�b�%��v � ®fv Û ). Thenadiffusivewatershedalgorithmconsistsof solvingthefollow-ing diffusionproblem:

ÊÊ�Ü ³-¿ div ������vi£�Á-³z£ºªÄö��³W£ in ´ µ ·Å§¤®³���­g£:ª9³cÇ on §¤®ÊÊA� ³Éª*­ on ´ µ ·ËÊP§¤Ì

where³ Ç is aseed“drop”, i. e. apositive functionwith compactsupportin asmallneigh-borhoodof theseedpoint ú . Therebythediffusioncoefficient ����vi£ is positive insidethesegmentandvanishesat thesegmentboundary. Consideringin additionananisotropicdif-fusionmodel[24], tangentialsmoothingalongthesegmentboundarycanbeincorporated(cf. Fig. 6). Obviously the algorithmcaneasilybe implementedbasedon the alreadyavailablenonlineardiffusioncode.Figure7, 8 show resultsobtainedby this method.

Let usfinally emphasizethatthesegmentationbenefitsconsiderablyof theadaptiveres-olution of edgesor surfacesin thedataset,which aretypically identicalwith thesegmentboundaries.

6. APPLICA TION TO FLO W VISUALIZA TION

As alreadysketchedin the introductionwe will now applynonlinearanisotropicdiffu-sionto vectorfield visualization.Therebywe considerdiffusivesmoothingalongstream-linesandedgeenhancingin theorthogonaldirections.Applying thisto someinitial random

FIG. 7. Brainsegmentationonslicesof aMRT-imageby nonlineardiffusion.Consecutive timestepsof thecorrespondingevolution aredepicted.

FIG. 8. Resultsof a brain segmentationin 3D with tangentialsmoothingbasedon a gradientsegmentcriterion

FIG. 9. A single timestepis depictedfrom the nonlineardiffusion methodappliedto the vector fielddescribingtheflow aroundanobstacleatafixedtime. A discretewhitenoiseis consideredasinitial data.Weruntheevolution on theleft for asmallandon theright for a largeconstantdiffusioncoefficient � .

noiseimagewe generatea scaleof successively coarserpatternswhich representtheflowfield.

For agivensmoothvectorfield ��¨c§ê¹ ´�� wedefineafamily of continuousorthogonalmappings�����z£Ö¨�´�� ¹ +?���5�>£ suchthat �����z£q�ïª�� Ç , where �#� æ æ�� Ç ������� � �W�P� is thestandardbasein ´�� . We consideradiffusionmatrix Àöª À���¢®7Á-³  £ anddefine

À-�5��®��z£~ª����5�W£q� �¢¡ �£���A�D£ ­­ Î��n�g£�¤ ���5�W£where ¡ ¨ ´ µ ¹ ´ µ controlsthe linear diffusion in vectorfield direction, i. e. along

streamlines,andtheabove introducededgeenhancingdiffusioncoefficient ÎP�aÆe£ actsin theorthogonaldirections. We may eitherchoosea linear function ¡ or in caseof a veloc-

FIG. 10. Several timestepsaredepictedfrom thenonlinearanisotropicevolution appliedto a convectiveflow field in a2D box.

ity field, which spatiallyvariesover several ordersof magnitude,we selecta monotonefunction ¡ with ¡ ��­c£{¥:­ and �|ÑYÒ ÓaÔ2Õ ¡ �n×1£~ª ¡ max.

Dif ferent to the problemsstudiedby Weickert in [26] in our caseno canonicalinitialdatais given. To avoid aliasingartifactswe thus choosesomerandomnoise ³ Ç of anappropriatefrequency range.During theevolution therandompatternwill grow upstreamanddownstream,whereastheedgestangentialto thesepatternsaresuccessively enhanced.Still thereis somediffusionperpendicularto thefield which suppliesusfor evolving timewith ascaleof progressivelycoarserrepresentationof theflow field. Runningtheevolutionfor vanishingright handside à theimagecontrastwill unfortunatelydecreasesuccessively.Therefore,we selectan appropriatecontrastenhancingright handside Ãè¨$« ­ä®I¯N°k¹ ´ µwith ö�n­c£�ª/ö�a¯1£ ªï­ , æ¥�­ on ��­rÌ §ä®D¯1£ , and æ¨ ­ on �n­ä®�­rÌ §c£ (cf. reactiondiffusionproblemsin imageanalysisstudiedin [2, 10]). Finally we end up with the methodofnonlinearanisotropicdiffusionto visualizecomplex vectorfields.

We expectanalmosteverywhereconvergenceto ³��C© ®IÆ £�ݦ�1­ä®D¯ dueto thechoiceofthecontrastenhancingfunction ö�aÆe£ . Thesetof asymptoticlimits significantlyinfluencestherichnessof thedevelopingpattern.Onewayto enrichthissetsignificantlyis to considera vectorvalueddiffusionproblem,wherethe contrastenhancingright handsideleadstoasymptoticstateswhich areeither ­ or locatedon the spherein the intensityspace.Fordetailswereferto [18]. Thismethodis capableto nicelydepicttheglobalstructureof flowfields,includingsaddlepoints,vortices,andstagnationpointsontheboundary. Resultsareshown in Figure10. Heretheanisotropicdiffusionmethodis appliedto anincompressibleBenardconvectionproblemin arectangularboxwith heatingfrom below andcoolingfromabove. Theformationof convectionrolls leadsto anexchangeof temperature.

The anisotropicnonlineardiffusionproblemhasalreadybeenformulatedin Section2for arbitraryspacedimension.Differing from 2D in 3D we havesomehow to breakup thevolumeandopenup theview to innerregions.Herea furtherbenefitof thevectorvalueddiffusion comesinto play. The asymptoticlimits - which differ from ­ - aredistributedon +~�/ªÖ« ­ä®I¯N°�Û . Hence,we reducethe informationalcontentandfocuson a ball shapedneighbourhood�¬«c� � £ of acertainpoint � Ý<+~��ª « ­ä®D¯D°lÛ (cf. Fig. 11).

7. CONCLUSIONS

FIG. 11. Theincompressibleflow in a waterbasinwith two interiorwalls andaninlet (on theleft) andanoutlet (on theright) is visualizedby anisotropicnonlineardiffusion. Isosurfacesshow thepreimageof ­¯®k°#±U²%³(for differentvaluesof ´ ) underthe vectorvaluedmapping µ for somepoint ² on ¶A· . Color is indicatingthevelocity.

WehavediscussedanadaptiveFiniteElementmethodfor thediscretizationof nonlineardiffusionmethodsin largescaleimageprocessing.Especially, we have introduceda newmethodto processadaptivegridsandcorrespondingmass-andstiffnessmatricesprocedu-rally with outstoringany matrixor any graphstructurefor thehierarchicaltreeof elements.Thusthemethodenablesthehandlingof largeimages( ±¯§J¸b¹ dofsandmore)onmoderatelysizedworkstations.Theadaptivealgorithmis controlledby errorindicatorsongrid nodes.Saturationof the indicator valuesplays an essentialrole in the reliability as well as inthe concreteimplementationof the algorithm. Furthermorecorrespondingsegmentationresultsanda new methodfor 2D and3D flow visualizationhavebeenpresented.

Fromtheauthors’pointof view exciting futureresearchdirectionsaretheapplicationoftruemultigrid methodswhich areableto manageoscillatingcoefficients.Beyondthis, byexploiting cacheoptimizationstrategieswith respectto an appropriatenumberingof thedofsweexpecta furthersignificantspeedup.

A CKNO WLEDGMENT

Theauthorswould like to acknowledgeKarol Mikula andJarke vanWijk for inspiringdiscussionsandmanyusefulcommentson imageprocessingandflow visualization. Furthermore,they thankEberhardBanschfromBremenUniversityfor providing theincompressibleflow datasets.

REFERENCES

1. S.T. Acton. Multigrid anisotropicdiffusion. IEEE Trans. Image Proc., 7:280–291,1998.

2. L. AlvarezandJ. Esclarin. Imagequantizationusing reaction-diffusion equations. SIAM J. Appl. Math.,57:153–175,1997.

3. E. BanschandK. Mikula. A coarseningfinite elementstrategy in imageselective smoothing.Computing andVisualization in Science, 1:53–63,1997.

4. P. Bastian,K. Birken,K. Johannsen,S. Lang,N. Neuss,H. Rentz-Reichert,andC. Wieners.Ug - a flexiblesoftwaretoolboxfor solvingpartialdifferentialequations.Comput. Visual. Sci., 1:27–40,1997.

5. R. Becker andR. Rannacher. A feed-backapproachto errorcontrolin finite elementmethods:Basicanalysisandexamples.East-West J. Numer. Math., 4:237–264,1996.

6. Bornemann,F. andErdmann,B. andKornhuber, R. Adaptive multilevel methodsin threespacedimensions.Int. J. Numer. Methods Eng., 36,No.18:3187–3203,1993.

7. J.Bramble,J.Pasciak,andJ.Xu. Parallelmultilevel preconditioners.Math. of Comp., 55:1–22,1990.

8. B. CabralandL. Leedom. Imaging vector fields using line integral convolution. In J. T. Kajiya, editor,Computer Graphics (SIGGRAPH ’93 Proceedings), volume27,pages263–272,Aug. 1993.

9. F. Catte, P. L. Lions, J. M. Morel, andT. Coll. Imageselective smoothingandedgedetectionby nonlineardiffusion. SIAM J. Numer. Anal., 29:182–193,1992.

10. G.-H. CottetandL. Germain.Imageprocessingthroughreactioncombinedwith nonlineardiffusion. Math.Comp., 61:659–673,1993.

11. L. Demkowicz, K. Gerdes,C. Schwab,A. Bajer, andT. Walsh.HP90:A generalandflexible fortran90 º�» –FEcode.TechnicalReport97-17,Seminarfur AngewandteMathematik,ETH Zurich,1997.

12. T. GerstnerandM. Rumpf. Multiresolutionalparallelisosurfaceextractionbasedon tetrahedralbisection.InProceedings of the Volume Visualization ’99 workshop, 1999.

13. J.Kacur andK. Mikula. Solutionof nonlineardiffusionappearingin imagesmoothingansdedgedetection.Appl. Numer. Math., 17 (1):47–59,1995.

14. Kawohl, B. andKutev, N. Maximum andcomparisonprinciple for one-dimensionalanisotropicdiffusion.Math. Ann., 311(1):107–123,1998.

15. N. Max and B. Becker. Flow visualizationusing moving textures. In Proceedings of the ICASE/LaRCSymposium on Time Varying Data, NASA Conference Publication 3321, pages77–87,1996.

16. M. OhlbergerandM. Rumpf.Adaptiveprojectionoperatorsin multiresolutionalscientificvisualization.IEEETransactions on Visualization and Computer Graphics, 4 (4), 1998.

17. P. PeronaandJ.Malik. Scalespaceandedgedetectionusinganisotropicdiffusion. In IEEE Computer SocietyWorkshop on Computer Vision, 1987.

18. T. PreußerandM. Rumpf.Anisotropicnonlineardiffusionin flow visualization.In Proceedings Visualization’99, to appear, 1999.

19. M. Rumpf.Recentnumericalmethods– achallengefor efficient visualization.IEEE Transactions on Visual-ization and Computer Graphics, 15:43–58,1999.

20. C. Schnorr. A studyof aconvex variationalapproachfor imagesegmentationandfeatureextraction.J. Math.Imaging and Vision, 8:271–292,1998.

21. H.-W. ShenandD. L. Kao. Uflic: A line integral convolution algorithmfor visualizingunsteadyflows. InProceedings Visualization ’97, pages317–322,1997.

22. J. J. van Wijk. Spot noise-texture synthesisfor datavisualization. In T. W. Sederberg, editor, ComputerGraphics (SIGGRAPH ’91 Proceedings), volume25,pages309–318,July 1991.

23. R. Verfurth. A posteriorierrorestimationandadaptive mesh-refinementtechniques.J. Comput. Appl. Math.,50:67–83,1994.

24. J.Weickert. Anisotropic diffusion in image processing. Teubner, 1998.

25. J. Weickert, B. M. ter HaarRomeny, andViergever. Efficient andreliableschemesfor nonlineardiffusion.IEEE Trans. Image Proc., 7:398–410,1998.

26. Weickert,J. Foundationsandapplicationsof nonlinearanisotropicdiffusionfiltering. Z. Angew. Math. Mech.,76:283–286,1996.