6
쫕룥죕웚: 20130511;¸Ä»ØÈÕÆÚ : 20130620 »ù½ðÏîÄ¿ : 훐쪯뮯릤돌쿈떼쿮쒿 튳퇒폍웸님뿳컯슼뺮뚨솿럖컶벼쫵( SG12068); 훐쪯폍쿈떼쿮쒿 붭몺첽쟸튳퇒폍웸풴움볛닢뺮랽램퇐뺿( G0605 - 12 - ZS - 0002) ×÷Õß¼ò½é : 럫낮맺( 1962 - ) £¬ 쓐£¬ 룟벶릤돌쪦£¬ 1985 쓪뇏튵폚붭몺쪯폍톧풺뿳뎡뗘쟲컯샭튵£¬ 1997 쓪뇏튵폚룃킣펦폃뗘쟲컯샭튵£¬ 믱쮶쪿톧캻£¬ 쿖듓쫂 닢슼뺮벼쫵폫ힰ놸릤ퟷDOI: 10. 3969 /j. issn. 1006 - 6535. 2013. 06. 004 ÖÐÑï×ÓµØÇø¸¢ÁêÇø¿éº£Ï默³Ñ ·ë°®¹ú £¬ 헅붨욽£¬ 쪯풪믡£¬ 헔뫬퇠£¬ (훐쪯뮯붭몺쪯폍릤돌폐쿞릫쮾£¬ 뫾놱 잱붭 433123) ÕªÒª : 뢢쇪쟸뿩뗘뒦훐퇯ퟓ냥뿩컷늿£¬ ퟛ뫏닢슼뺮벰퇒킼퇒탄쫒쓚럖컶뮯퇩쇏퇐뺿뷡맻뇭 쏷£¬ 뢢쇪쟸뿩쇺십쾪ퟩ컥럥ퟩ몣쿠튳퇒닣퇒탔훷튪캪믒뫚즫럛즰훊쓠퇒;뒢닣뫱뛈듳£¬ 폐믺 첼몬솿룟£¬ 뺵훊쳥랴짤싊폫든탔뿳컯몬솿쫊훐;뒢닣뗍뿗쳘뗍째£¬ 쓉쏗벶뿗쾶랢폽£¬ 캢쇑러뷏랢 폽;쳬좻웸틔볗췩캪훷£¬ 늻몬쇲뮯쟢;짮쮮슽엯돁믽뮷뺳폅풽£¬ 튳퇒웸닣듦퓚쏷쿔틬뎣룟톹뺿뷡싛뛔폚뢢쇪쟸뿩튳퇒웸뾱첽뾪랢닺쓜붨짨£¬ 틔벰맺쓚튳퇒웸뾱첽뻟폐훘튪횸떼ퟷ폃¹Ø¼ü´Ê : 훐퇯ퟓ뗘쟸;뢢쇪쟸뿩;몣쿠튳퇒웸;쳘헷 ÖÐͼ·ÖÀàºÅ : TE122. 3 ÎÄÏ×±êʶÂë : A ÎÄÕ±àºÅ : 1006 - 6535( 2013) 06 - 0015 - 05 ÒýÑÔ 튳퇒웸쫇튻훖럇뎣맦폍웸풴£¬ 뢻듦폚폐믺첼 몬솿뫍돉쫬뛈쿠뛔뷏룟뗄쓠퇒튳쓚£¬ ퟔ짺ퟔ뒢£¬ 닣뿗쾶뛈킡£¬ 뿗쾶횱뺶뛠캪쓉쏗벶£¬ 째춸싊벫뗍£¬ 쏦믽 솬탸럖늼£¬ 뻖늿뢻벯£¬ 탨튪춨맽쮮욽뺮벶럖뛎톹쇑랽쪽뾪닉 £Û 1-8£¬ 13 - 15 £Ý 튳퇒웸퓚훐맺뗄퇐뺿폫뾱첽뾪랢룕룕웰늽£¬ 뒦폚뾱첽뾪랢뗄퓧웚뷗뛎훐쪯뮯웴뚯틔 뾱첽 퓶뒢캪훷뗄튳퇒웸뾱첽뾪랢릤ퟷ£¬ 퓚훐짏퇯ퟓ뗘 쟸슽쿠벰몣쿠뗘닣쿠볌ퟪ첽쇋붨 111 뫓튳 1 붹튳 1 역튳 1 쿦튳 1 뗈튻엺튳퇒웸뾱첽뾪랢쫔퇩뺮퓚싞쾵횾쇴쾵몮커쾵늿럖튳퇒닣뛎쿠볌믱뗃 릤튵웸쇷£¬ 쳘뇰쫇틔붹튳 1 뺮캪듺뇭뗄뢢쇪쟸뿩몣 쿠튳퇒웸뾱첽믱뗃훘듳춻웆£¬ 늢틑춶죫짌튵뾪 £Û 9 - 15 £Ý 1 µØÖʸſö 잰죋듳솿퇐뺿죏캪£¬ 뢢쇪쟸뿩벰훐퇯ퟓ뗘쟸쇺 십쾪ퟩ컥럥ퟩ뗘닣훷튪캪짮쮮슽엯쿠돁믽£¬ 돁믽 쮮쳥듓쿂훁짏훰붥뇤잳£¬ 폐샻폚뢻몬폐믺훊뗄쓠튳 퇒닣짺뎤랢폽 £Û 5£¬ 8£¬ 10£¬ 13£¬ 15 £Ý 뢢쇪쟸뿩냼삨훘쟬쫐쓏 커슡뢢쇪럡뚼뎤쫙뗦붭훒쿘솺욽췲쿘 9 쟸쿘£¬ 뾱닩쏦믽캪 7 308 km 2 £¬ 쫇훐쪯뮯쫗룶튳퇒 웸뾱첽뾪랢벰닺쓜붨짨쪾랶쟸붹튳 1 뺮쫇훐쪯뮯헫뛔쯄뒨엨뗘뢢쇪뗘쟸몣 쿠튳퇒웸늿쫰뗄뗚 1 뿚닎쫽뺮£¬ 릹퓬짏뒦폚뒨뚫 훥듸냼붹쪯냓놳킱듸£¬ 2012 2 19 죕뾪 ퟪ£¬ 2012 5 18 죕췪ퟪ£¬ ퟔ짏뛸쿂ퟪ폶뗘닣폫 쟸쓚뗘닣닣탲튻훂(뇭 1 ) £¬ 퓚쒿뗄닣쇺십쾪ퟩ럥ퟩ 2 330. 0 ~ 2 418. 0 m 뺮뛎솬탸쏜뇕좡탄 11 듎£¬ 퇒탄뎤캪 84. 8 m£¬ 캪짮죫럖컶몬웸쓠튳퇒퇒 컯탔뫍몬웸탔쳡릩쇋컯훊믹뒡2 ÁúÂíϪ×é Î蟾袮éÒ³ÑÒÆø²耄ØÕ÷ 붹튳 1 뺮퓚뺮짮 2 149. 0 m 뒦뷸죫쇺십쾪ퟩ 뗘닣£¬ 웸닢슼뺮폚쇺십쾪ퟩ뺮짮 2 341. 0 m 뾪쪼돶 쿖쳾샠틬뎣쿔쪾(춼 1 ) £¬ 훁컥럥ퟩ뺮짮 2 415. 0 m 뒦틬뎣쿔쪾뷡쫸£¬ 쇺십쾪ퟩ컥럥ퟩ뗘닣캴랢쿖폐 쇲뮯쟢웸쳥쿔쪾2. 1 ÑÒÐÔÌØÕ÷ 붹튳 1 뺮쇺십쾪ퟩ컥럥ퟩ퇒킼퇒탔훷튪캪 믒뫚즫럛즰훊쓠퇒믒뫚즫쓠퇒폫첿훊쓠튳퇒

中扬子地区涪陵区块海相页岩气层特征_冯爱国

Embed Size (px)

Citation preview

  • :20130511;:20130620:(SG12068) ;(G0605

    12 ZS 0002):(1962 ) 1985 1997

    DOI:10. 3969 / j. issn. 1006 6535. 2013. 06. 004

    ( 433123)

    :;;

    ;;

    :;;;

    :TE122. 3 :A :1006 6535(2013)06 0015 05

    1 813 15

    111 11 1 1 1

    9 15

    1

    58101315

    9 7 308 km2

    1 1 2012 2 19 2012 5 18 ( 1) 2 330. 0 2 418. 0 m 11 84. 8 m

    2

    1 2 149. 0 m 2 341. 0 m ( 1) 2 415. 0 m

    2. 1

    1

  • 16 20 1 1

    /m/m

    1424. 0 23. 0

    1924. 0 500. 0

    2149. 0 225. 0

    2410. 0 261. 0

    2415. 0 5. 0

    2430. 0 15. 0

    2444. 0 14. 0

    2450. 0()

    6. 0

    1 1

    X 16. 6% 62. 8% 40. 0% 54. 0%40. 0%; 34. 0%80. 0% 56. 0% 38. 0% 9. 0% 3. 8%

    19. 7% 47. 0% 46. 0% 58. 0% 36. 7%; 49. 9% 80. 3%60. 0% 40. 0%10. 0% 4. 0%

  • 6 : 17

    2. 2

    1 1. 2% 8. 0%4. 5%; 0. 002 10 3 m2365. 000 10 3m2 22. 000 10 3m2; 2. 44 g /cm3 2. 82 g /cm32. 58 g /cm3 2 368. 0 2 410. 0 m 1. 2%7. 2% 4. 6% 0. 75 m 100 nm( 2); 0. 002 10 3m2 265. 000 10 3m2 24. 600 10 3m2;2. 46 g /cm32. 82 g /cm32. 59 g /cm3

    a b

    dc

    a b cd! "#$%&()*+, "#$-.+,"#$/0+,12

    a b

    c d

    2 1 2405. 0m

    1 2 330. 0 2 415. 0 m2. 5% 5. 2% 4. 5%;

    1 (ECS)2 330. 0 2 377. 0 m 3. 0% 6. 0% 4. 6%;2 377. 0 2 415. 0 m 2. 0% 7. 0%4. 5%(FMI) 2 137. 0 2 320. 0 m

    ;2 395. 0 2 415. 0 m ;

    1 4. 5% 23. 0 10 3

    m2

    2. 3

    1 2 342. 0 2 415. 0 m 2 315. 0 2 342. 0 m 2 315. 0 2 331. 0 m;2 331. 0 2 342. 0 m

    1 2 342. 0 2 415. 0 m 1. 35 1. 50 MPa /Hm

    2. 4

    1 2 342. 0 2 415. 0 m 0. 10% 1. 20% 2. 13%M; 0. 10% 1. 20% 2. 03%;() 21;()

    513 2 330. 0 2 418. 0m 20 min

    1 173 0. 6%

  • 18 20

    5. 9% 2. 5%; 9 1 8 o

    2. 2% 3. 1% 2. 7%;

    2( 3)

    3 1

    1 31 29 2 0. 31 m3 / t 1. 40 m3 / t 0. 79 m3 / t;0. 44 m3 / t 5. 19 m3 / t 1. 97 m3 / t

    1 2 330. 0

    2 415. 0 m 29. 2% 56. 0% 2 330. 0 2 377. 0 m 1. 0% 4. 5% 2. 8%; 0. 85 2. 27 m3 / t 1. 45 m3 / t; 2. 55 5. 95 m3 / t 3. 86m3 / t;() 47. 0m2 377. 0 2 415. 0 m 3. 0% 6. 0% 4. 5%;1. 42 3. 11 m3 / t 2. 36 m3 / t 1. 13 8. 50 m3 / t 4. 64 m3 / t() 38. 0 m 85. 0 m

    111 598. 0 646. 0

    m 1 2 139. 0 2 165. 0 m 1 2 341. 0 2 415. 0 m

    : 20. 0 m 3. 0% 50. 0% 1. 0% 1. 0% 30. 0% 1. 0 m3 / t( 0. 5 m3 / t) 1. 05 10 2MPa /m( 1. 0)() 50. 0 m5. 0%1. 0m3 / t 1. 25 10 2MPa /m( 1. 1) ; 4. 0 m3 / t () 1. 5 m3 / t () 1. 5 4. 0 m3 / t ()8 1214 15

  • 6 : 19

    1 2 342. 0 2 415. 0 m 73. 0 m

    3

    1 2 646. 0 3 654. 0 m 1 008. 0 m 2 408. 5 2 416. 0m 2 408. 0 2 410. 0 m 1 008. 0 m 15 44. 0 m 89. 0 m; 2 104m3 1 000 m3; 20. 3 104m3 /d 1. 45 10 2 MPa /m98. 23% 0. 59% 0. 12%

    2013 1 8 7 104m3 /d 6 104m3 /d 25 MPa

    4

    (1)

    (2)

    (3) 1

    :

    1 . J.

    201017(5) 1 7.2 .

    J. 201234(3) :7 16.

    3 . J. 201232(12) :1 5.

    4 . J. 201219(2) :9 16.

    5 . J. 201031(2) :225 230.

    6 . :J. 200822(3) :33 36.

    7 . J. 201118(4) :1 6.

    8 . Fort Worth BarnettJ. 201130(2 /3) :372 384.

    9 . J. 201232(9) :33 36.

    10 . J. 201232(18) :466 466.

    11 . J. 201223(1) :25 29.

    12 . J. 201232(12) :17 21.

    13 . J. 201225(5) :18 20.

    14 . J. 201133(1) :56 60.

    15 . J. 201133(4) :408 413.

  • esearch on Velocity Anisotropy of Organic rich ShaleWANG Xiao qiongGE Hong kuiSHEN Ying hao

    (China University of Petroleum BeijingBeijing 102249China)Abstract:Wave velocity and its anisotropy are significant for exploration of deep shale gasreservoir assessment and prediction ofsweet spots Shale gas play is strongly anisotropic since it is rich in organic matterwith oriented minerals and natural cracks How-everthe elastic properties of organic matteras a key factorare not easily measured and characterizedbecause its typesabun-dancethermal maturity and organic porosity vary significantly Until now the laboratory measurements of organic matter are scarceand the influence of organic matter on velocity anisotropy is unclear Thusthis paper analyzes the different anisotropies between or-ganic rich shale and conventional mud shaleand investigates and defines the anisotropy characteristics and changes of organic rich shale On this basisan anisotropy measurement is introducedthat isfine measurement of wave velocity anisotropy For thismethodit is a key and a challenge to investigate the elastic properties of organic matter in shale gas play and the impact of the or-ganic matter on wave velocity and anisotropy In additiona physical model of anisotropy for organic rich shale is presentedKey Words:shale gas play;organic (matter) ;crack;anisotropy;wave velocity;research progress

    Seismic Attribute Fusion and its Application in eservoir DescriptionYU Zheng jun

    (Shengli Oilfield CompanySINOPECDongyingShandong 257022China)Abstract:The glutenites in steep slope belt are characterized by strong heterogeneity and rapid changing physical properties Inthis regardthis paper expounds the necessity of seismic attribute fusionand establishes its algorithms and technical approachesBesidesbased on the relationship between seismic trace and well log data and the correlation analysisoptimum seismic attributesare selected and their weights are defined Thenthe seismic attribute fusion volume is formed Through seismic attribute predictionby multiple regression method and pre stack inversionan approach for glutinite identification and description is established bycombining the post stack and pre stack seismic data It can be used to fine describe the sensitive changes of faciesthicknessand physical propertiestransforming the qualitative prediction to the quantitative evaluation for glutinite reservoirso as to reducethe risk of explorationKey Words:seismic exploration;reservoir description;attribute fusion;glutinite;effective reservoir;accuracy

    Exploration achievement of Triassic heavy oil reservoir in Haqian 101 areaWANG Jian yong1WANG Xue zhong2DONG Chen qiang2XI Wei jun2

    (1 Division of Oilfield Exploration and DevelopmentSINOPECBeijing 100728China;2 Shengli Oilfield CompanySINOPECDongyingShandong 257000China)

    Abstract:Seismic acquisition and interpretation technology was improved for the complexity and characteristics of the overlap de-nudation structure in the south east slope in south HalaaltWu Xia fault zoneJunggar Basinthereby acquired high resolution3D seismic dataincluding pre stack time migrationpre stack depth migration time domain and depth domain Mesozoic tecton-ic model was reconstructed for the study areapresenting as bottom overlap and top denudationmonocline slope on the wholecutby secondary faultsand formed many fault blocks A model of hydrocarbon accumulation was established for Triassic Haqian 101areain which oil source is communicated by faultsand oil accumulates in structural high Haqian101 is the first well drilled intoTriassic reservoir in this area The reservoir depth is 202 258 mthe thickness is 52. 1m for 3 layersand commercial oil flow isobtained by thermal recoverythus discovered a high quality reserve It is suggested that horizontal well thermal recovery be attemp-ted to improve well productivity on the premise of commercial oil obtained by vertical well thermal recoveryKey words:exploration achievement;Haqian 101 area;Triassic;heavy oil reservoir;front overlap denudation zone;Halaalt ar-ea;north margin of Junggar Basin

    Characteristics of Marine Shale Gas Play in Fuling Block in the Middle Yangtze AreaFENG Ai guoZHANG Jian pingSHI Yuan huiZHAO Hong yanHUANG Qiang(Sinopec Oilfield Service Jianghan CorporationQianjiangHubei 433123China)

    Abstract:Loggingcutting and laboratory core test data are used in the study for the Fuling block in the west of the middle Yangtzeplate The results show thatin the Fuling blockLongmaxi Wufeng marine shale plays mainly contain grayish black silty mud-stone;reservoir is very thickwith high organic carbon contentand moderate vitrinite reflectance and brittle mineral content;thelow porosity and ultra low permeability reservoir has nano scale pores and microfractures;natural gas is dominated by methanewithout hydrogen sulfide;in the favorable shelf sedimentary environment of deep watershale gas plays feature obviously abnormalhigh pressure These conclusions are instructive for exploration and development of shale gas in the Fuling blockand even the shalegas exploration throughout ChinaKey Words:middle Yangtze area;Fuling block;marine shale gas;characteristics

    Types and Distribution of Carbonate eservoirs in Block 6 7 of Tahe OilfieldLI Hong kai12YUAN Xiang chun1KANG Zhi jiang1