24
 Hyperelasticity Tom Scarpas Continuum Mechanics

5 Hyperelasticity

  • Upload
    wim

  • View
    221

  • Download
    0

Embed Size (px)

DESCRIPTION

continuum mechanics

Citation preview

  • Hyperelasticity

    Tom Scarpas

    Continuum Mechanics

  • Continuum Mechanics 2 / 24

    Clausius-Planck inequality

    The internal dissipation should always be non-negative:

    : 0P F

    0 Mechanical process is reversible non-dissipative materials

    0 Mechanical process is irreversible dissipative materials

    1 2 n, , ,...F X

    stored energy F X

    internal variables

    :P F Helmholtz free energy Work per unit ref. volume

  • Continuum Mechanics 3 / 24

    Clausius-Planck inequality: dissipative materials

    : 0P F

    n

    ii 1 i

    : 0

    n

    ii 1 i

    P : : 0FF

    Coleman-Noll procedure :

    elastic range

    i0

    inelastic range

    PF

    i0

    i 1 2 n, , ,...F X

    Evolution laws:

    1 2 n, , ,...F X

    Helmholtz free energy n

    iii 1

    : :FF

  • Continuum Mechanics 4 / 24

    0 Mechanical process is reversible

    Clausius-Planck inequality:

    : : 0F

    P F P FF

    FP

    FHYPERELASTIC

    materials

    :P F Work per unit ref. volume

    Strain energy function corresponds to

    work done by stresses from initial to

    final configuration 0

    t

    t

    : dtP F

    hyperelastic materials

  • Continuum Mechanics 5 / 24

    Hyperelasticity

    Objectivity :

    F

  • Continuum Mechanics 6 / 24

    Hyperelasticity

    F F

    Objectivity

    T T

    F F R F R RU U

    C

    QSince is arbitrary: TQ R Objectivity condition

    F

    F

    F QF

    a rotation tensor : QF

    2since : C U

  • Continuum Mechanics 7 / 24

    Hyperelasticity

    ???PF

    C

    : P FF

    C

    :t

    FC

    CC

    T T:CF F F F

    symmetric

    T: :S A S A

    T: :A BC B A C

    T2 : 2 :F F F FC C

    T T:

    F F F FC

    : 2 :F F C FF C

    F

    2FF C

    2P FF

    C

    C

    1 T 1 T J 2JPF F FC

  • Continuum Mechanics 8 / 24

    Isotropic hyperelastic response

    Isotropy Response of material same in all directions

  • Continuum Mechanics 9 / 24

    Isotropic hyperelastic response

    Isotropy

    d dx XF

    d dXX QdX

    dxd dx F X

    dX

    F

    F

    1F F FQ

    1F FQ

    d d dd X Q FF Xx XF

    Isotropic

  • Continuum Mechanics 10 / 24

    Isotropic hyperelastic response

    T T T T

    T T

    C C

    F F Q F FQ

    Q CQ

    TSet :Q R C RCR b

    d dx XF

    d dXX QdX

    dxd dx F X

    dX

    F F 1F FQ

    is an isotropic scalar valued

    tensor function

    TC RCRi.e.:

    Isotropy

    TR R

  • Continuum Mechanics 11 / 24

    Representation theorem for invariants

    1 2 3 1 2 3I ,I ,I I ,I ,IC C C C b b b

    Isotropic scalar valued tensor functions,

    are invariant under a rotation

    2 2 21 1 2 3 1

    2 2 2 2 2 2 2 21 12 22 1 1 2 2 3 1 3 1 2

    2 2 2 23 1 2 3 3

    I : : I

    I I : I : I

    I det J det I

    C C I b I b

    C C C b b b

    C C b b

    i i 1,...3 principal stretches

    TC RCR

    Can be expressed in terms of the

    principal invariants of their arguments

  • Continuum Mechanics 12 / 24

    Strain energy functions

    11

    22 1

    2 13

    II

    II I

    I J

    C

    C

    C

    IC

    I CC

    C

    1 2 2 31

    I 1 I I 3 I

    11 2 3

    2 I I

    s s s

    S I C C

    I C C

    1 2 3 1 31

    c 1 I ,I ,I I 3 I 12

    Neo-Hookean

    21 2 3 1 3 3

    3

    I1 1I , I , I c I 3 I 1 1 c 3 I 1

    2 2 I

    ; c 0,1 ; with & : Lam material constants2 1 2

    : Poisson ratio

    Blatz-Ko

    material

    i

    3

    iIi 1

    ICC

    C2SC

  • Continuum Mechanics 13 / 24

    Blatz-Ko Neo-Hookean

    0

    1

    3

    Ic 1 c

    I

    3

    1 c

    I

    23 3

    3

    Ic I 1 c I

    I3I

    1s

    2s

    3s

    1 2 2 31

    I 1 I I 3 I

    11 2 3

    2 I I

    s s s

    S I C C

    I C C

    General stress relation for isotropic hyperelastic materials

    1 TJ F FS

  • Tom Scarpas

    Hyperelasticity in principal directions

    Continuum Mechanics

  • Continuum Mechanics 15 / 24

    Hyperelasticity in principal directions

    2 2 21 1 2 3

    2 2 2 2 2 2 212 1 1 2 2 3 1 32

    2 2 2 23 1 2 3

    I :

    I I :

    I det J

    C C I

    C C C

    C C

    32i i i

    i 1

    C L L3

    1 2i i i

    i 1

    C L L3

    i ii 1

    I L L

    1 2 2 3

    1I 1 I I 3 I2 2 I IS I C CC

    1 2 3

    32 2 2

    I I 1 i I i i ii 1

    2 2 I 2JS L L

  • Continuum Mechanics 16 / 24

    Hyperelasticity in principal directions

    2 2 21 1 2 3

    2 2 2 2 2 2 212 1 1 2 2 3 1 32

    2 2 2 23 1 2 3

    I :

    I I :

    I det J

    C C I

    C C C

    C C

    1 2 3

    32 2 2

    I I 1 i I i i ii 1

    2 2 I 2JS L L

    12i

    221 i2

    i2

    32 2i i

    I1

    II

    I J

    2 2 21 2 3i i i

    2i

    3

    I 1 I 2 I 3 i ii 13 3

    i i i i ii 1 i 1

    2 I 2 I 2 I

    2 S

    S L L

    L L L L

  • Continuum Mechanics 17 / 24

    Hyperelasticity in principal directions

    i 2i

    S 2

    3

    i ii 1 i i

    1S L L

    Material description

    Spatial description

    1 2 3J

    i2

    i i i i

    12 2

    2 i i

    1

    1 TJ FSF

  • Continuum Mechanics 18 / 24

    Hyperelasticity in principal directions

    i 2i

    S 2

    3

    i ii 1 i i

    1S L L

    Material description

    1 TJ F SF

    Spatial description

    ii

    iJ

    31

    i i iii 1

    J l l

    i2

    i i i i

    12 2

    2 i i

    1

    1 2 3J

  • Continuum Mechanics 19 / 24

    Example

    23 3 2

    1 2 3 i ii 1 i 1

    , , ln ln2

    Stretch based hyperelastic material

    3i

    i iii 1 Jl l i

    i i i i i

    ln 1

    ln ln

    3

    i iii 1

    1

    J lnl l

    3

    i i ii i 1

    1 1ln 2 ln

    J ln J

  • Continuum Mechanics 20 / 24

    Example

    23 3 2

    1 2 3 i ii 1 i 1

    , , ln ln2

    Stretch based hyperelastic material

    3

    i i ii i 1

    1 1ln 2 ln

    J ln J

    3

    i i i

    i 1

    Compare with : 2 : small strain theory

  • Continuum Mechanics 21 / 24

    Example

    2

    3 3 2

    1 2 3 i ii 1 i 1

    , ,2

    No-tension linear hyperelastic material

    3i

    i iii 1 Jl l

    *i i

    * *i i i

    3 3 3

    i i ii 1 i 1 i 1

    with : 1

    1

    2

    1

    2

    i

  • Continuum Mechanics 23 / 24

    Reference

    No-tension non-linear hyperelastic material

    A continuum model for granular materials taking

    into account the no-tension effect

    by Vu-Hieu Nguyen et al.

    Mechanics of Materials, Vol. 35, 2003, pp. 955-967

  • Continuum Mechanics 24 / 24

    Hyperelasticity

    Tom Scarpas

    Continuum Mechanics

  • Continuum Mechanics 26 / 24

    31 T 1 T

    i ii ii 1

    1J JF SF F FL L

    Hyperelasticity in principal directions

    A u v Au v

    Tu v A u A v

    i i iFL l

    31 T

    i ii ii 1

    1J F FL L

    31 T

    i ii ii 1

    1J F FL L

    31

    i ii ii 1

    1J F FL L

    31

    i i i ii ii 1

    1J l l

    31

    i i iii 1

    J l l