26
5. ATOMIC DYNAMICS IN AMORPHOUS SOLIDS Crystalline solids phonons in the reciprocal lattice

5. ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

  • Upload
    lucus

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

5. ATOMIC DYNAMICS IN AMORPHOUS SOLIDS. Crystalline solids  phonons in the reciprocal lattice. Crystalline solids  Debye Theory. g (  ) =  2 / 2 2 v D 3. C p ( T ) = C Debye T 3. 2. ATOMIC DYNAMICS. Hamiltonian for lattice vibrations:. n = 1, …, N  = 1, …, r - PowerPoint PPT Presentation

Citation preview

Page 1: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

5. ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

Crystalline solids phonons in the reciprocal lattice

Page 2: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

333

42

2345

2

D

B

D

BDebye

nkv

kC

333

113

TLD vvv

Cp(T) = CDebye T 3

2

Crystalline solids Debye Theory

g() = 2 / 22vD3

Page 3: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

ATOMIC DYNAMICS

Hamiltonian for lattice vibrations:

Eq. of motion:

inin

inin

ininin

in

sssMH

21

21 2

n = 1, …, N = 1, …, r i = x, y, z

inin

ininin ssM

If:

)exp(1)( tiuM

ts inin

inin

ininin uDu

2

Dynamical matrix D has 3Nr real eigenvalues j2

and corresponding eigenvectors uni (j)

In periodic crystals: q only 3r curves j(q) :

• 3 acoustic branches j(q 0) 0 • 3(r-1) optic branches j(q 0) const.

)exp( niin Rqicu

Page 4: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

Dispersion relations (q) in amorphous solids

Page 5: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

Does exist a quantity which can describe sensibly phonon modes in amorphous solids?

YES: the vibrational density of states (VDOS):

g()·d = number of states with frequencies between and d !

S k

g dSVg 3)2(

)(For crystals:

Page 6: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

COMPUTER SIMULATIONS

Page 7: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

EXPERIMENTAL TECHNIQUES

Page 8: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS
Page 9: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS
Page 10: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS
Page 11: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

RAMAN SPECTROSCOPY

In amorphous solids, there is a breakdown of theRaman selection rules in crystals for the wavevector ALL vibrational modes contribute to Raman scattering (first-order scattering), in contrast to the case of crystals (second-order scattering due to selction rules)

Page 12: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

RAMAN SPECTROSCOPYBOSONPEAK

]1),([)()()(

TngCIR

Competition between increasing g() anddecreasing Bose-Einstein factor ???

Page 13: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

RAMAN SPECTROSCOPYBOSONPEAK

Martin & Brenig theory: a peak in the coupling coefficient C() due to elastoacoustic disorder ??

Page 14: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

RAMAN SPECTROSCOPYBOSONPEAK

]1),([)()()(

TngCIR

2/)()(]1),([/)( gCTnII Rred

[Sokolov et al. 1994]

The Boson Peak is a peak in C() g() / 2 !!!

Page 15: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

Brillouin scattering: Experimental set-up

Page 16: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS
Page 17: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

BRILLOUIN SCATTERING: ethanol

Page 18: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

INELASTIC NEUTRON SCATTERING

Page 19: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

INELASTIC NEUTRON SCATTERING

Page 20: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

INELASTIC NEUTRON SCATTERING

Page 21: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

INELASTIC NEUTRON SCATTERING

Page 22: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

INELASTIC NEUTRON SCATTERING

Page 23: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

RAMAN SCATTERING

]1),([)()()(

TngCIR

The Boson Peak is a peak in C() g() / 2 !!!

Page 24: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

Damped Harmonic Oscillator

INELASTIC X-RAY SCATTERING

Page 25: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

INELASTIC X-RAY SCATTERING

Page 26: 5.  ATOMIC DYNAMICS IN AMORPHOUS SOLIDS

INELASTIC X-RAY SCATTERING