(4)ROOTS_NON_LINEAR_EQNS.pdf

Embed Size (px)

Citation preview

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    1/25

    Numerical Methods Applied to Mechatronics

    Lecture No 4

    Escuela de Ingeniera Mecatrnica

    Universidad Nacional de Trujillo

    NON-LINEAR EQUATIONS ROOTS

    Dr. Jorge A. Olortegui Yume Ph.D.

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    2/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.2

    ROOTS PROBLEMS

    Functionf can be written as:f(x)=0

    particular x satisfying equality is a root

    These problems often occur when a design

    problem presents an implicit equation for a

    required parameter.

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    3/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.3

    GRAPHICAL METHODS

    Plot of the function and observewhere it crosses thex-axis.

    Graphing can also indicate whereroots may be and where some root-

    finding methods may fail:

    a) Same sign, no roots

    b) Different sign, one root

    c) Same sign, two roots

    d) Different sign, three roots

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    4/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.4

    BRACKETING METHODS

    Make 2 initial guesses that bracket the root

    Brackets: 2 guessesxlandxufulfillingf(xl)f(xu) < 0

    [ ]xl xu

    f(xu)

    f(xl)

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    5/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.5

    Incremental Search Methods

    Disadvantages:

    BRACKETING METHODS

    If spacing are too far

    apart, brackets may

    be missed due tocapturing an even

    number of roots

    within two points.

    Cannot find bracketscontaining even-

    multiplicity roots

    Tests the value of function at evenly spaced intervals to

    find brackets by function sign change.

    Good Practice: Plot the function along with the algorithm

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    6/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.6

    Incremental Search MethodsBRACKETING METHODS

    Example: Matlab program

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    7/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.7

    The Bisection Method

    BRACKETING METHODSIncremental Search Methods

    a variation of the incremental

    search methodthe interval

    is always divided in half.

    If a function changes sign over

    an interval, the function value

    at the midpoint is evaluated.

    The location of the root is then

    determined as lying within the

    subinterval where the sign

    change occurs.

    The absolute error is reduced

    by a factor of 2 for each

    iteration.

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    8/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.8

    Bisection Method Errors

    BRACKETING METHODSIncremental Search Methods

    The absolute error of the bisection method is solelydependent on the absolute error at the start of the

    process (the space between the two guesses) and the

    number of iterations:

    The required number of iterations to obtain a particular

    absolute error can be calculated based on the initialguesses:

    Ean x

    0

    2n

    nlog2x 0

    Ea,d

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    9/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.9

    BRACKETING METHODSIncremental Search MethodsThe Bisection Method

    Example: Matlab program

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    10/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.10

    BRACKETING METHODSThe False Position Method

    It determines the nextguess not by splitting the

    bracket in half but byconnecting the endpointswith a straight line and

    determining the locationof the intercept of thestraight line (xr).

    The value ofxrthenreplaces whichever of the

    two initial guesses yieldsa function value with thesame sign asf(xr).

    xr xu f(xu)(xlxu)

    f(xl) f(xu)

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    11/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.11

    BRACKETING METHODS

    Bisection vs False Position

    Bisection does not take intoaccount the shape of the

    function; this can be good

    or bad depending on thefunction!

    Bad: f(x)x10 1

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    12/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.12

    BRACKETING METHODSThe False Position Method

    Homework: Write a general purpose Matlab program for the

    False position method

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    13/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.13

    OPEN METHODS

    Open methodsdiffer from bracketing methods, in

    that open methods require:

    1 starting value or

    2 starting values (not necessarily bracketing a

    root).

    Open methods may diverge as the computation

    progresses, butwhen they do converge, they

    usually do so much faster than bracketing methods.

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    14/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.14

    OPEN METHODS

    GRAPHICAL COMPARISON OF METHODSa) Bracketing method

    b) Diverging open method

    c) Converging open method

    Note speed!

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    15/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.15

    OPEN METHODS

    SIMPLE FIXED-POINT METHOD

    Rearrangef(x)=0 to the form

    Use g(x)to predict a new value ofx- that is,

    Approximate error : a xi1x i

    xi1100%

    xgx

    ii

    xgx 1

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    16/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.16

    OPEN METHODSSIMPLE FIXED-POINT METHODExample: Solve for the roots of f(x)=e-x-x

    Solution:

    1. Rearrange

    2. Start with a guess for x0. For this case x0 =0

    3. Use the iteration formula

    4. Continue until some tolerance is reached

    xgx x=e-x

    i xi g(xi)=e-xi |a| %

    0 0.0000 1.0000

    1 1.0000 0.3679 100.000

    2 0.3679 0.6922 171.828

    3 0.6922 0.5005 46.854

    4 0.5005 0.6062 38.309

    5 0.6062 0.5454 17.436

    ii xgx 1

    a xi1x i

    xi1100%

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    17/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.17

    OPEN METHODSSIMPLE FIXED-POINT METHODExample: Solve for the roots of f(x)=e-x-x

    Solution:

    xgx

    567143.0x

    00x

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    18/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.18

    OPEN METHODSSIMPLE FIXED-POINT METHODExample: Solve for the roots of f(x)=e-x-x

    Solution:

    00x

    10 xg

    101

    xgx

    3679.01 xg

    3679.012

    xgx

    6922.02 xg

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    19/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.19

    OPEN METHODSSIMPLE FIXED-POINT METHODConvergence:

    Requires :

    a) Convergent, 0 g(x) 1

    d) Divergent, g(x)

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    20/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.20

    OPEN METHODSSIMPLE FIXED-POINT METHODConvergence:

    Requires :

    a) Convergent, 0 g(x) 1

    d) Divergent, g(x)

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    21/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.21

    OPEN METHODS

    NEWTON-RAPHSON METHOD

    Based on forming the tangent line to thef(x) curve at

    some guessx, then following the tangent line to where it

    crosses thex-axis.

    f'(x i) f(xi)0

    x ix i1

    x i1x i

    f(x i)

    f'(x i)

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    22/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.22

    OPEN METHODS

    NEWTON-RAPHSON METHOD

    Pros and Cons

    Pro: The error of the i+1thiteration is

    roughly proportional to the square of

    the error of the ithiteration - this is

    called quadratic convergence

    Con: Some functions show slow or

    poor convergence

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    23/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.23

    OPEN METHODSNEWTON-RAPHSON METHOD Matlab Code

    O O S

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    24/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.24

    OPEN METHODS

    SECANT METHOD

    Newton-Raphson method problem:

    Evaluation of the derivative - may be difficult or

    inconvenient to evaluate.

    Then, the derivative can be approximated by abackward finite divided difference:

    f'

    (x i) f(x

    i1) f(x

    i

    )

    x i1xi

    OPEN METHODS

  • 8/10/2019 (4)ROOTS_NON_LINEAR_EQNS.pdf

    25/25

    Non-Linear Equations Roots Dr. Jorge A. Olortegui Yume Ph.D.25

    OPEN METHODS

    SECANT METHOD (contd)

    Substitution of this approximation for thederivative to the Newton-Raphson method

    equation gives:

    Note - this method requires twoinitial estimatesofxbut does notrequire an analytical expression

    of the derivative.

    xi1xi f(xi) xi1x i

    f(xi1) f(xi)