49770675-case-study-pneumonia

Embed Size (px)

Citation preview

  • 8/7/2019 49770675-case-study-pneumonia

    1/14

    GENERAL OBJECTIVE:

    To be able to acquire reliable information about Pneumonia in order for us students tobecome knowledgeable ;be able to demonstrate competent nursing care that will address our patients condition ; and to demonstrate right attitude as member of the health care team.

    SPECIFIC OBJECTIVES:

    y To obtain pertinent information about the the patients demographic and socio-

    economic profile.

    y To be well informed on the clients history including the past and present illness.

    y To be familiar with the structures and normal function of the body organs involved..y To gain knowledge about the underlying causes and factors of the clients diagnosis.

    y To be able to formulate and establish appropriate nursing care plan that will help

    improve our clients condition.

    y To be familiar with some of the clients medications which includes both therapeutic and

    the adverse effects.

    As heath care providers, it is important to know and understand more about of this case for

    better provision of care to clients, for more sufficient and adequate health

    educations/teachings for the patient, and to protect ourselves from possible transmission of this

    disease while working on clients with this case. Moreover, the importance of this study is also tocontinually challenge the students to expand their scope to meet the needs of the patient with

    pulmonary disease. The purpose of this paper is to enable the readers to enhance their

    knowledge of normal pulmonary function and apply it to abnormal situations when assessing,

    applying and evaluating therapeutic care. Patient observation and recognition of the signs and

    symptoms of pneumonia are the keys to recognizing abnormal function. The ability of the clinical

    students to participate, recognize and intervene to treat pneumonia may prevent or modify

    complications.

  • 8/7/2019 49770675-case-study-pneumonia

    2/14

    PATIENTS PROFILE:

    Name: J. D.

    Age: 1 y/o

    Birthday: October 15, 2009

    Address: Calasiao, Pangasinan

    Sex: Male

    Religion: Roman Catholic

    Nationality: Filipino Citizen

    Attending Physician : Dr. Fama

    Diagnosis: Pneumonia (PCAP-C)

    History of Past and Present Illness:

    John Domagas, a 1 year old male from Calasiao , Pangasinan was admitted atPangasinan Provincial Hospital last January 10, 2011 @ 9:30 pm with the chief complaints of fever and cough that started 2 weeks ago.

    The patient has no previous history of hospitalization and operations.

    Family History:

    They have a history of Hypertension, diabetes, and asthma on his mother side.

    Environmental history:

    They are living in a barangay. They have their own toilet and bathroom. For their garbagedisposal, they usually burn them. They have lots of plants that surround their house.Patient is fond of playing outside with his cousins.

  • 8/7/2019 49770675-case-study-pneumonia

    3/14

    INTRODUCTION:

    The inflammation of the lung parenchyma (the respiratory bronchioles and alveoli) is

    known as Pneumonia. Frequently, it is described as lung parenchyma/alveolar inflammation and

    abnormal alveolar filling with fluid. The alveoli are microscopic air-filled sacs in the lungs

    responsible for absorbing oxygen from the atmosphere. Pneumonia can result from a variety of

    causes, including infection with bacteria, viruses, fungi, or parasites, and chemical or physical

    injury to the lungs.

    Pneumonia often classified as community acquired, nosocomial (hospital acquired), or

    opportunistic. The most common causative organism for community acquired pneumonia is

    Streptococcus pneumoniae (also called pneumococcus), a gram- positive bacterium. This

    organism causes 70% to 75% of all diagnosed cases of pneumonia. Mycoplasma pneumoniae,

    Haemophilus influenzae , and in the influenza virus are also leading cause of community-

    acquired pneumonia. Staphylococcus aureus and gram-negative bacteria such as Klebsiella

    pneumoniae , Pseudomonas aeruginosa , and enteric bacilli, including Escherichia coli , are often

    implicated as nosocomial causes of pneumonia. Organisms such as Pnuemonocystis carinii

    generally cause infections only in immuno-compromised people (opportunistic infections).

  • 8/7/2019 49770675-case-study-pneumonia

    4/14

    NORMAL ANATOMY AND PHYSIOLOGY OF THE RESPIRATORY SYSTEM:

    In anatomy and physiology, the Respiratory system, is a system that delivers oxygen to

    the circulatory system and transport it to all body cells. Oxygen is essential for cells, which use this

    vital substance to liberate the energy needed for cellular activities. In addition to supplying

    oxygen, the respiratory system aids in removing of carbon dioxide, preventing the lethal buildup

    of this waste product in body tissues. Everyday without the prompt of conscious thought, therespiratory system carries out its life-sustaining activities. If the respiratory systems tasks are

    interrupted for more than a few minutes, serious, irreversible damage to tissues occurs, followed

    by the failure of all body systems, and ultimately, death.

    While the intake of oxygen and removal of carbon dioxide are the primary functions of

    the respiratory system, it plays other important roles in the body. The respiratory system helps

    regulate the balance of acid and base in tissues, a process crucial for the normal functioning of

    cells. It protects the body against disease-causing organisms and toxic substances inhaled with

    air. The respiratory system also houses the cells that detect smell, and assists in the production of

    sounds for speech.The respiratory and circulatory systems work together to deliver oxygen to cells and

    remove carbon dioxide in a two-phase process called respiration. The first phase of respiration

    begins with breathing in, or inhalation. Inhalation brings air from outside the body into the lungs.

    Oxygen in the air moves from the lungs through blood vessels to the heart, which pumps the

    oxygen-rich blood to all parts of the body. Oxygen then moves from the bloodstream into cells,

    which completes the first phase of respiration. In the cells, oxygen is used in a separate energy-

    producing process called cellular respiration, which produces carbon dioxide as a byproduct.

    The second phase of respiration begins with the movement of carbon dioxide from the cells to

    the bloodstream. The bloodstream carries carbon dioxide to the heart, which pumps the carbondioxide-laden blood to the lungs. In the lungs, breathing out, or exhalation, removes carbon

    dioxide from the body, thus completing the respiration cycle.

    Structure

    The organs of the respiratory system extend from the nose to the lungs and are divided

    into the upper and lower respiratory tracts. The upper respiratory tract consists of the nose and

    the pharynx, or throat. The lower respiratory tract includes the larynx, or voice box; the trachea,

    or windpipe, which splits into two main branches called bronchi; tiny branches of the bronchi

    called bronchioles; and the lungs, a pair of saclike, spongy organs. The nose, pharynx, larynx,

    trachea, bronchi, and bronchioles conduct air to and from the lungs. The lungs interact with thecirculatory system to deliver oxygen and remove carbon dioxide.

    A. Nasal passages

    The nose is uppermost portion of the human respiratory system, and is a hollow air

    passage that functions in breathing and for the sense of smell. The nasal cavity moistens and

    warms incoming air, while small hairs and mucus filter out harmful particles and microorganisms.

    The flow of air from outside of the body to the lungs begins with the nose, which is divided into

    the left and right nasal passages. The nasal passages are lined with a membrane composedprimarily of one layer of flat, closely packed cells called epithelial cells. Each epithelial cell is

    densely fringed with thousands of microscopic cilia, fingerlike extensions of the cells. Interspersed

    among the epithelial cells are goblet cells, specialized cells that produce mucus, a sticky, thick,

    moist fluid that coats the epithelial cells and the cilia. Numerous tiny blood vessels called

    capillaries lie just under the mucous membrane, near the surface of the nasal passages. While

    transporting air to the pharynx, the nasal passages play two critical roles: they filter the air to

    remove potentially disease-causing particles; and they moisten and warm the air to protect the

  • 8/7/2019 49770675-case-study-pneumonia

    5/14

    structures in the respiratory system. Filtering prevents airborne bacteria, viruses, other potentially

    disease-causing substances from entering the lungs, where they may cause infection. Filtering

    also eliminates smog and dust particles, which may clog the narrow air passages in the smallest

    bronchioles. Coarse hairs found just inside the nostrils of the nose trap airborne particles as they

    are inhaled. The particles drop down onto the mucous membrane lining the nasal passages. The

    cilia embedded in the mucous membrane wave constantly, creating a current of mucus that

    propels the particles out of the nose or downward to the pharynx. In the pharynx, the mucus isswallowed and passed to the stomach, where the particles are destroyed by stomach acid. If

    more particles are in the nasal passages than the cilia can handle, the particles build up on the

    mucus and irritate the membrane beneath it. This irritation triggers a reflex that produces a

    sneeze to get rid of the polluted air. The nasal passages also moisten and warm air to prevent it

    from damaging the delicate membranes of the lung. The mucous membranes of the nasal

    passages release water vapor, which moistens the air as it passes over the membranes. As air

    moves over the extensive capillaries in the nasal passages, it is warmed by the blood in the

    capillaries. If the nose is blocked or stuffy due to a cold or allergies, a person is forced to

    breath through the mouth. This can be potentially harmful to the respiratory system membranes,since the mouth does not filter, warm, or moisten air. In addition to their role in the respiratory

    system, the nasal passages house cells called olfactory receptors, which are involved in the

    sense of smell. When chemicals enter the nasal passages, they contact the olfactory receptors.

    This triggers the receptors to send a signal to the brain, which creates the perception of smell.

    B. Pharynx

    Air leaves the nasal passages and flows to the pharynx, a short, and funnel-shaped tube

    about 13 cm (5 in) long that transports air to the larynx. Like the nasal passages, the pharynx is

    lined with a protective mucous membrane and ciliated cells that remove impurities from the air.In addition to serving as an air passage, the pharynx houses the tonsils, lymphatic tissues that

    contain white blood cells. The white blood cells attack any disease-causing organisms that

    escape the hairs, cilia, and mucus of the nasal passages and pharynx. The tonsils are

    strategically located to prevent these organisms from moving further into the body. One tonsil,

    called the adenoids, is found high in the rear wall of the pharynx. A pair of tonsils, the palatine

    tonsils, is located at the back of the pharynx on either side of the tongue. Another pair, the

    lingual tonsils, is found deep in the pharynx at the base of the tongue. In their battles with

    disease-causing organisms, the tonsils sometimes become swollen with infection. When the

    adenoids are swollen, they block the flow of air from the nasal passages to the pharynx, and aperson must breathe through the mouth.

    C. Larynx

    Air moves from the pharynx to the larynx, a structure about 5 cm (2 in) long located

    approximately in the middle of the neck. Several layers of cartilage, a tough and flexible tissue,

    comprise most of the larynx. A protrusion in the cartilage called the Adams apple sometimes

    enlarges in males during puberty, creating a prominent bulge visible on the neck.

    While the primary role of the larynx is to transport air to the trachea, it also serves other

    functions. It plays a primary role in producing sound; it prevents food and fluid from entering theair passage to cause choking; and its mucous membranes and cilia-bearing cells help filter air.

    The cilia in the larynx waft airborne particles up toward the pharynx to be swallowed. Food and

    fluids from the pharynx usually are prevented from entering the larynx by the epiglottis, a thin,

    leaf like tissue. The stem of the leaf attaches to the front and top of the larynx. When a person

    is breathing, the epiglottis is held in a vertical position, like an open trap door. When a person

    swallows, however, a reflex causes the larynx and the epiglottis to move toward each other,

    forming a protective seal, and food and fluids are routed to the esophagus. If a person is eating

  • 8/7/2019 49770675-case-study-pneumonia

    6/14

    or drinking too rapidly, or laughs while swallowing, the swallowing reflex may not work, and food

    or fluid can enter the larynx. Food, fluid, or other substances in the larynx initiate a cough reflex

    as the body attempts to clear the larynx of the obstruction. If the cough reflex does not work, a

    person can choke; a life-threatening situation. The Heimlich maneuver is a technique used to

    clear a blocked larynx (see First Aid). A surgical procedure called a tracheotomy is used to

    bypass the larynx and get air to the trachea in extreme cases of choking.

    D. Trachea, Bronchi, and Bronchioles

    Air passes from the larynx into the trachea, a tube about 12 to 15 cm (about 5 to 6 in)

    long located just below the larynx. The trachea is formed of 15 to 20 C-shaped rings of cartilage.

    The sturdy cartilage rings hold the trachea open, enabling air to pass freely at all times. The open

    part of the C-shaped cartilage lies at the back of the trachea, and the ends of the C are

    connected by muscle tissue. The base of the trachea is located a little below where the neck

    meets the trunk of the body. Here the trachea branches into two tubes, the left and right

    bronchi, which deliver air to the left and right lungs, respectively. Within the lungs, the bronchi

    branch into smaller tubes called bronchioles. The trachea, bronchi, and the first few bronchiolescontribute to the cleansing function of the respiratory system, for them, too, are lined with

    mucous membranes and ciliated cells that move mucus upward to the pharynx.

    E. Alveoli

    In humans the lungs occupy a large portion of the chest cavity from the collarbone down

    to the diaphragm. The right lung is divided into three sections, or lobes. The left lung, with a cleft

    to accommodate the heart, has only two lobes. The two branches of the trachea, called

    bronchi, subdivide within the lobes into smaller and smaller air vessels known as bronchioles.

    Bronchioles terminate in alveoli, tiny air sacs surrounded by capillaries. When the alveoli inflatewith inhaled air, oxygen diffuses into the blood in the capillaries to be pumped by the heart to

    the tissues of the body. At the same time carbon dioxide diffuses out of the blood into the lungs,

    where it is exhaled. The bronchioles divide many more times in the lungs to create an impressive

    tree with smaller and smaller branches, some no larger than 0.5 mm (0.02 in) in diameter. These

    branches dead-end into tiny air sacs called alveoli. The alveoli deliver oxygen to the circulatory

    system and remove carbon dioxide. Interspersed among the alveoli are numerous

    macrophages, large white blood cells that patrol the alveoli and remove foreign substances

    that have not been filtered out earlier. The macrophages are the last line of defense of the

    respiratory system; their presence helps ensure that the alveoli are protected from infection sothat they can carry out their vital role. A scanning electron micrograph reveals the tiny sacs

    known as alveoli within a section of human lung tissue. Human beings have a thin layer of about

    700 million alveoli within their lungs. This layer is crucial in the process called respiration,

    exchanging oxygen and carbon dioxide with the surrounding blood capillaries.

    The alveoli are about 150 million per lung and comprise most of the lung tissue. Alveoli

    resemble tiny, collapsed balloons with thin elastic walls that expand as air flows into them and

    collapse when the air is exhaled. Alveoli are arranged in grapelike clusters, and each cluster is

  • 8/7/2019 49770675-case-study-pneumonia

    7/14

    surrounded by a dense hairnet of tiny, thin-walled capillaries. The alveoli and capillaries are

    arranged in such a way that air in the wall of the alveoli is only about 0.1 to 0.2 microns from the

    blood in the capillary. Since the concentration of oxygen is much higher in the alveoli than in the

    capillaries, the oxygen diffuses from the alveoli to the capillaries. The oxygen flows through the

    capillaries to larger vessels, which carry the oxygenated blood to the heart, where it is pumped

    to the rest of the body. Carbon dioxide that has been dumped into the bloodstream as a waste

    product from cells throughout the body flows through the bloodstream to the heart, and then tothe alveolar capillaries. The concentration of carbon dioxide in the capillaries is much higher

    than in the alveoli, causing carbon dioxide to diffuse into the alveoli. Exhalation forces the

    carbon dioxide back through the respiratory passages and then to the outside of the body.

    Regulation

    As the diaphragm contracts and moves downward, the pectoralis minor and intercostal

    muscles pull the rib cage outward. The chest cavity expands, and air rushes into the lungs

    through the trachea to fill the resulting vacuum. When the diaphragm relaxes to its normal,

    upwardly curving position, the lungs contract, and air is forced out

    The flow of air in and out of the lungs is controlled by the nervous system, which ensures

    that humans breathe in a regular pattern and at a regular rate. Breathing is carried out day and

    night by an unconscious process. It begins with a cluster of nerve cells in the brain stem called

    the respiratory center. These cells send simultaneous signals to the diaphragm and rib muscles,

    the muscles involved in inhalation. The diaphragm is a large, dome-shaped muscle that lies justunder the lungs. When the diaphragm is stimulated by a nervous impulse, it flattens. The

    downward movement of the diaphragm expands the volume of the cavity that contains the

    lungs, the thoracic cavity. When the rib muscles are stimulated, they also contract, pulling the rib

    cage up and out like the handle of a pail. This movement also expands the thoracic cavity. The

    increased volume of the thoracic cavity causes air to rush into the lungs. The nervous stimulation

    is brief, and when it ceases, the diaphragm and rib muscles relax and exhalation occurs. Under

    normal conditions, the respiratory center emits signals 12 to 20 times a minute, causing a person

    to take 12 to 20 breaths a minute. Newborns breathe at a faster rate, about 30 to 50 breaths a

    minute. The rhythm set by the respiratory center can be altered by conscious control. Thebreathing pattern changes when a person sings or whistles, for example. A person also can alter

    the breathing pattern by holding the breath. The cerebral cortex, the part of the brain involved

    in thinking, can send signals to the diaphragm and rib muscles that temporarily override the

    signals from the respiratory center. The ability to hold ones breathing has survival value. If a

    person encounters noxious fumes, for example, it is possible to avoid inhaling the fumes.

    A person cannot hold the breath indefinitely, however. If exhalation does not occur,

    carbon dioxide accumulates in the blood, which, in turn, causes the blood to become more

  • 8/7/2019 49770675-case-study-pneumonia

    8/14

    acidic. Increased acidity interferes with the action of enzymes, the specialized proteins that

    participate in virtually all biochemical reaction in the body. To prevent the blood from

    becoming too acidic, the blood is monitored by special receptors called chemoreceptors,

    located in the brainstem and in the blood vessels of the neck. If acid builds up in the blood, the

    chemoreceptors send nervous signals to the respiratory center, which overrides the signals from

    the cerebral cortex and causes a person to exhale and then resume breathing. These

    exhalations expel the carbon dioxide and bring the blood acid level back to normal.A person can exert some degree of control over the amount of air inhaled, with some

    limitations. To prevent the lungs from bursting from overinflation, specialized cells in the lungs

    called stretch receptors measure the volume of air in the lungs. When the volume reaches an

    unsafe threshold, the stretch receptors send signals to the respiratory center, which shuts down

    the muscles of inhalation and halts the intake of air.

  • 8/7/2019 49770675-case-study-pneumonia

    9/14

    PATHOPHYSIOLOGY:

    Narrative

    Pneumonia is an acute infection of the lungs, often caused by inhaled pnemococci of the

    species. Streptococcus pneumoniae . The alveoli and bronchioles of the lungs become plugged

    with fibrous exudates. Pneumonia may be caused by other bacteria, as well as viruses and also

    fungi. Predisposing factors to the development of pneumonia include upper respiratory

    infection, excessive alcohol ingestion, central nervous system depression, cardiac failure, COPD

    or chronic obstructive pulmonary disease, have history of smoking, patient who are

    malnourished, elderly and very young persons (Gulanick & Myers. 1998 p. 417). Pathogenic

    microorganisms can reach the lung by several routes. The most common means of entry of

    pathogens into the lungs is aspiration of oropharyngeal secretions containing microbes.

    Microorganisms also may be inhaled after having been released when an infected person

    coughs, sneezes, or talks. Microorganisms can also be inspired with aerosols (nebulized gas) from

    contaminated respiratory therapy equipment. In illness or poor dental hygiene, normal flora of

    the orophaynx can become pathogenic. Staphylococcus and gram- negative bacteria can be

    spread by the circulation from systemic infection (IV) drug abusers. Upon entering,

    microorganisms start to attach themselves into the mucosal surface and releases toxin which

    stimulates the activation of bodys defense mechanism in the lungs. The cough reflex,

    mucociliary clearance, and phagocytosis by alveolar macrophages are backed up by the

    bodys immune system and various components of the inflammatory response, including the

    release of biochemical mediators by alveolar mast cells. In susceptible individuals the invading

    pathogen multiplies, releasing damaging toxins and stimulating full-scale inflammatory

    responses, both of which have damaging side effects. The antigen- antibody reaction and the

    endotoxins released by some microorganisms damage bronchial mucous membranes and

    alveolocapillary membranes. Inflammation and edema cause the acini (respiratory bronchioles,

    alveolar ducts, and alveoli) to fill with infectious debris and exudates. Exudate is a fluid rich in

    proteins (leukocyes, plasma proteins of all kinds); that migrates out of the capillaries. Together

    with this exudates are fibrin, RBC, and bacteria that cause the consolidation or solidification of

    the lungs. Due to the RBC in the lungs, the lungs becomes red giving the name Red Hepatization

    in which hepatization is based from liver- like feature of the lungs, Red liver-like lungs. The WBC

    then continues their job by infiltrating and eliminating injurious agents and dead cells in the lungs

    caused by the phagocytic activity. Gray hepatization then occurs due to the accumulation of

    the WBC in the lungs, deposition of fibrin (a body protein which hardens when blood leaves its

    usual channels) on pleural surfaces, and phagocytes in alveoli. Ingestion and removal of

    degenerated neutrophils, fibrin, and bacteria are then secreted mechanically through hard

    coughing resulting to purulent, rusty-colored sputum. Resolution then occurs when all the

    infectious and injurious agents are brought out of the lungs returning lungs to its normal function.

    On the other hand, alveolar edema could decrease the intrapleural pressure, elastic recoil and

    tidal volume; the ability to pressure and gets enough air thus, impairing ventilation and gas

    exchange. Impaired ventilation then may impair lung function which may gradually lead to lung

    collapse due to absence of air in the lungs, respiratory arrest, and finally death. So, the body will

    try to compensate to get adequate supply of oxygen by the form of increasing in respiration

    rate for the lungs to have sufficient air. There is respiratory acidosis if there is abnormal increase

    of carbon dioxide in the body. On other the way, impaired gas exchange will decrease the

    percentage of oxygen and carbon dioxide exchange thus, resulting to absence of oxygen in

    the blood which will lead to hypoxemia, systemic hypoxia and eventually death.

  • 8/7/2019 49770675-case-study-pneumonia

    10/14

    Failure to trap and expel microorganisms in the upper airway may cause the spread and

    invasion of the bacteria in the other parts of the lungs especially to the lower airways. This will

    cause inflammation to the mucous membranes which leads to mucous secretions as bodys

    mechanism to continue trap and remove foreign bodies through mucous clearance. Due to the

    inflammation and increased secretions, nasal obstruction and clogging will occur which thickens

    respiratory secretions, decreased movement of the cilia and mucous clearance then results.

    Hard coughing is a persons way then to continually remove the blocking substance inside thelungs which may sometimes lead to fatigue, weakness, loss of appetite, and weight loss due to

    over exertion of breathing and accessory muscles. Decreased defense mechanism of the lungs

    also occurs due to the decreased ciliary and mucous clearance increasing the risk for spread

    and transmission of infection to other parts of the lungs especially in the lower airways.

    Microorganisms go to the terminal part of the lungs combining to blood in the bloodstream

    which leads to septicemia or infection in the blood, septic shock, and death. Infection may also

    spread to the other parts of the body same way through bloodstream which will lead then

    multiple organ affectation that results to multiple

    organ failure, and again death.

    U pper panel shows a normal lung under a

    microscope. The white spaces are alveoli that

    contain air. Lower panel shows a lung with

    pneumonia under a microscope. The alveoli are filledwith inflammation and debris.

  • 8/7/2019 49770675-case-study-pneumonia

    11/14

    MEDICAL DIAGNOSIS:

    Pneumonia is a serious infection or inflammation of one or both lungs.

    Description of Pneumonia

    Pneumonia is caused by the inhalation of infected microorganisms (tiny, single-celled livingorganisms, such as bacteria, viruses, fungi or protozoa) spread through contact with an infectedperson. The microorganisms enter the body through the mouth, nose and eyes. If the body's

    resistance is down, the natural process of fighting off diseases is weakened and themicroorganisms are free to spread into the lungs and the lungs' air sacs. The air sacs becomefilled with fluid and pus from the infectious agent, making it more difficult for the body to get theoxygen it needs, and the person may become sick.

    Potential complications of pneumonia include pleural effusion (fluid around the lung), empyema(pus in the pleural cavity), hyponatremia (low blood sodium) and rarely, an abscess in the lung.

    Causes of Pneumonia

    There are over 30 different causes of pneumonia, but the most common causes are bacteria

    (including mycoplasma) and viruses. Corresponding to these causes are the most commontypes of pneumonia - bacterial pneumonia, viral pneumonia and mycoplasma pneumonia.

    Bacterial pneumonia

    Pneumonia-causing bacteria is present in many throats, but when the body's defenses areweakened (for example, by illness, old age, malnutrition or impaired immunity) the bacteria canmultiply, working its way into the lungs, inflaming the air sacs and filling the lungs with liquid andpus. The bacteria that cause bacterial pneumonia are streptococcus pneumonia (resulting inlobar pneumonia), hemophilus influenza(resulting in bronchopneumonia), legionellapneumophilia (resulting in Legionnaires' disease) and staphylococcus aureus.

    Viral pneumonia

    Half of all pneumonias are believed to be caused by viruses, such as influenza (flu), adenovirus,coxsackievirus, chickenpox, measles, cytomegalovirus and respiratory syncytial virus. Theseviruses invade the lungs and multiply.

    Mycoplasmal pneumonia (also called "walking pneumonia")

    Similar to bacterial pneumonia, the mycoplasmas multiply and spread, causing infection.

    Some of the other pneumonia-related disorders are aspiration pneumonia, chlamydialpneumonia, Loffler's syndrome, pneumocystis carinii pneumonia, pediatric pneumonia and

    necrotizing pneumonia.

    Risk factors include:

    y 65 years of age or older y People in nursing homes or other chronic care facilitiesy Maley Children under the age of twoy People with colds or other respiratory infectionsy People with reduced immunityy People with other lung diseases, such asthma, cystic fibrosis and lung cancer y People with AIDS or HIVy Organ transplant recipientsy People who have had their spleen removedy People receiving chemotherapyy People who smokey Alcoholicsy People with chronic health problems, such as lung disease, heart disease, kidney

    disorders, sickle cell anemia or diabetes

  • 8/7/2019 49770675-case-study-pneumonia

    12/14

    Symptoms of Pneumonia

    Symptoms vary, depending on the type of pneumoniaand the individual.

    With bacterial pneumonia , the person may experience:

    y shakingy chillsy

    chattering teethy severe chest painy cough that produces rust-colored or greenish mucusy very high fever y sweatingy rapid breathingy rapid pulse rate

    With v iral pneumonia , the person may experience:

    y fever y dry coughy headachey muscle pain and weakness

    These flu-like symptoms may be followed within one or two days by:

    y increasing breathlessnessy dry cough becomes worse and produces a small amount of mucusy higher fever y bluish color to the lips

    With mycoplasma pneumonia , the person may experience:

    y violent coughing attacksy chillsy fever y nauseay vomitingy slow heartbeaty breathlessnessy bluish color to lips and nailbedsy diarrheay rashy muscle aches

    Regardless of the type of pneumonia, the person may also experience the following symptoms:

    y a loss in appetitey feeling illy clammy skiny nasal flaringy fatiguey mental confusiony joint and muscle stiffnessy anxiety, stress and tensiony abdominal painy

  • 8/7/2019 49770675-case-study-pneumonia

    13/14

    Diagnosis of Pneumonia

    To diagnose pneumonia, the doctor begins with a medical history and physicalexamination. By placing a stethoscope on the chest, the doctor may be able to hear cracklingsounds, coarse breathing, wheezing and/or the breathing may be faint in a particular area ofthe chest. Additionally, the doctor may order a chest x-ray, a sputum gram stain and a bloodtest. The chest x-ray may show a blotchy-white area, where fluid and pus has accumulated inthe lung's air sacs. The sputum grain stain and the blood test may determine the cause andseverity of the condition.

    If these tests are inconclusive, the doctor may perform a procedure called a bronchoscopy. Inthis procedure, a flexible, thin and lit viewing tube is inserted into the nose or mouth after a localanesthetic is administered. The breathing passages can then be directly examined by thedoctor and specimens from the infected part of the lung can be obtained.

    TREATMENT/ MANAGEMENT FOR PNEUMONIA:

    Treatment depends on the severity of symptoms and the type of organism causing the infection.

    Bacterial pneumonia (caused by the streptococcus pneumonia bacteria) is often treated withpenicillin, ampicillin-clavulanate (Augmentin) and erythromycin. Bacterial pneumonia (causedby the hemophilusinfluenza bacteria) is treated with antibiotics, such as cefuroxime (Ceftin),ampicillin-clavulanate (Augmentin), ofloxacin (Floxin), and trimethoprim-sulfanethoxazole(Bactrim and Septra). Bacterial pneumonia (caused by legionella pneumophilia andstaphylococcus aureus bacteria) are treated with antibiotics, such as erythromycin.

    Viral pneumonia does not respond to antibiotic treatment. This type of pneumonia usuallyresolves over time. If the lungs become infected with a secondary bacterial infection, the doctor will prescribe an appropriate antibiotic to eliminate the bacterial infection.

    Mycoplasma pneumonia is often treated with antibiotics, such as erythromycin, clarithromycin(Biaxin), tetracycline or azithromycin (Zithromax).

    In addition to the pharmaceutical intervention, the doctor will also recommend bedrest, plentyof fluids, therapeutic coughing, breathing exercises, proper diet, cough suppressants, painrelievers and fever reducers, such as aspirin (not for children) or acetaminophen. In severecases, oxygen therapy and artificial ventilation may be required.

    The course of pneumonia varies. Recovery time depends upon the organism involved, thegeneral health of the person and how promptly medical attention was obtained. A majority ofsufferers recover completely within a few weeks, with residual coughing persisting between sixand eight weeks after the infection has gone.

    Prevention of Pneumonia

    y Practice good hygiene.y Get an influenza shot each fall.y Get a pneumonococcal vaccine. People who stand to benefit most from vaccination

    are those over the age 65; anyone with chronic health problems (such as diabetes,kidney disease, heart disease, etc.); anyone who has had their spleen removed; anyoneliving in a nursing home or chronic care facility; caregivers of the chronically ill(healthcare workers or family caregivers); children with chronic respiratory diseases (suchas asthma), and anyone who has had pneumonia in the past (due to increased risk ofreinfection). The pneumonococcal vaccine is 90 percent effective against the bacteriaand protects against infection for five to 10 years.

    y Practice good preventive measures by eating a proper diet, getting regular exercise andplenty of sleep.

    y Do not smoke.

    LABORATORY:

    > No laboratory results in, still for request. (CBC,Platelet count, CXR AP-L)

  • 8/7/2019 49770675-case-study-pneumonia

    14/14

    DISCHARGE PLANNING:

    Instruct the mother to do the following teachings to her child for continuity of care:

    > Breathing warm, moist (wet) air helps loosen the sticky mucus that may make you feel like youare choking. These things may help:

    y Place a warm, wet washcloth loosely over your nose and mouth.y Fill a humidifier with warm water and breathe in the warm mist.

    > Coughing helps your lungs clear your airways. Take a couple of deep breaths 2 to 3 times everyhour. Deep breaths will help open up your lungs.

    > Tap your childs back gently if there are secretions, to loosen them.

    > Do not allow smoking in your home.

    > Increase fluid intake(as long as your doctor says it is okay):

    y Drink water, juice, and weak tea.y

    Drink at least 8to 12 cups a day.

    > Get plenty of rest when you go home..

    >K eep the childs back dry always.

    > Observe proper hygiene.

    > feed the child with nutritious foods specially fruits that are rich in Vitamin C to enhance childsimmune system.

    Medicines:

    Continue medications per doctors order and do not use the medication for self-treating

    with other health problems.