36
3GPP U-ETRA/LTE Technology Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde-schwarz.com Seunggeun.yoo@rohde-schwarz.com

3GPP U-ETRA

Embed Size (px)

Citation preview

3GPP U-ETRA/LTE Technology

Rohde-schwarz Korea

Seung-geun Yoo

[email protected]@rohde-schwarz.com

2009/2010

Today's technology evolution path

GSM/

GPRS

UMTS

EDGE, 200 kHzDL: 473 kbpsUL: 473 kbps

E-EDGE, 200 kHzDL: 1.9 MbpsUL: 947 kbps

HSDPA, 5 MHzDL: 14.4 MbpsUL: 2.0 Mbps

HSPA, 5 MHzDL: 14.4 MbpsUL: 5.76 Mbps

HSPA+, Rel. 7DL: 21.0 MbpsUL: 11.5 Mbps

2003/2004 2005/2006 2007/2008 2011/2012

LTE (2x2), Rel. 8, 20 MHzDL: 173 MbpsUL: 58 Mbps

LTE (4x4), 20 MHzDL: 326 MbpsUL: 86 Mbps

HSPA+, Rel. 8DL: 42.0 MbpsUL: 11.5 Mbps

OFDMA+

MIMO

2011.04.21 | Title of presentation | 2

cdma

2000

1xEV-DO, Rev. 0

1.25 MHzDL: 2.4 MbpsUL: 153 kbps

1xEV-DO, Rev. A

1.25 MHzDL: 3.1 MbpsUL: 1.8 Mbps

1xEV-DO, Rev. B

5.0 MHzDL: 14.7 MbpsUL: 4.9 Mbps

1xEV-DO, Rev. D

(= UMB 4x4) 20 MHzDL: 280 MbpsUL: 68 Mbps

Mobile WiMAX

scalable bandwidth1.25 … 28 MHzup to 15 Mbps

Mobile WiMAX, 802.16e

10 MHz DL: 64 Mbps (2x2)UL: 28 Mbps (1x2)

Mobile WiMAX, 802.16m

20 MHzDL: >130 Mbps (4x4)UL: 56 Mbps (2x4)

IEEE 802.11a/b/g IEEE 802.11n

1xEV-DO, Rev. C

(= UMB 2x2) 20 MHzDL: 140 MbpsUL: 34 Mbps

MIMO

LTE Key Parameter

Frequency Range UMTS FDD bands and UMTS TDD bands

Channel bandwidth 1 Resource Block (RB)=180 kHz

1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

6 RB 15 RB 25 RB 50 RB 75 RB 100 RB

Modulation Schemes

Downlink QPSK, 16QAM, 64QAM

Uplink QPSK, 16QAM, 64QAM (� optional for handset)

Multiple AccessDownlink OFDMA (Orthogonal Frequency Division Multiple Access)

Uplink SC-FDMA (Single Carrier Frequency Division Multiple Access)

2011.04.21 | Title of presentation | 3

Uplink SC-FDMA (Single Carrier Frequency Division Multiple Access)

MIMO technologyDownlink

Wide choice of MIMO configuration options for transmit diversity, spatial multiplexing, and cyclic delay diversity (max. 4 antennas at base station and handset)

Uplink Multi-user collaborative MIMO

Peak Data RateDownlink

150 Mbps (UE category 4, 2x2 MIMO, 20 MHz)300 Mbps (UE category 5, 4x4 MIMO, 20 MHz)

Uplink 75 Mbps (20 MHz)

OFDM vs OFDMA

l OFDM allocates user just in

time domain,

l OFDMA allocates user in time

and frequency domain,

Fre

qu

en

cy d

om

ain

Fre

qu

en

cy d

om

ain

User 2

User 1

User 1

2011.04.21 | Title of presentation | 4

Time domain Time domain

Fre

qu

en

cy d

om

ain

Fre

qu

en

cy d

om

ain

User 3User 3 User 2

frequency

1 resource block =

180 kHz = 12 subcarriers

1 slot = 0.5 ms =

OFDMA time-frequency multiplexing

Subcarrier spacing = 15 kHz

UE1UE1 UE3UE3UE2UE2

2011.04.21 | Title of presentation | 5

time

1 slot = 0.5 ms =

7 OFDM symbols**

1 subframe =

1 ms= 1 TTI*=

1 resource block pair

*TTI = transmission time interval

** For normal cyclic prefix duration

QPSK, 16QAM or 64QAM modulationQPSK, 16QAM or 64QAM modulation

UE1UE1

UE4UE4

UE3UE3UE2UE2

UE5UE5 UE6UE6

Spectrum flexibility

TransmissionBandwidth [RB]

Transmission Bandwidth Configuration [RB]

Channel Bandwidth [MHz]

Re

so

urc

e b

loc

k

Ch

an

nel e

dg

e

Ch

an

ne

l ed

ge

• Sub-carrier Spacing : 15kHz

• 1RB = 12carrier

= 12 x15kHz = 180kHz

•Tx Bandwidth

ex) 180kHz * 50RB = 9MHz

2011.04.21 | Title of presentation | 6

DC carrier (downlink only)Active Resource Blocks

Channel bandwidth BWChannel [MHz] 1.4 3 5 10 15 20

Number of resource blocks 6 15 25 50 75 100

1 Subframe = 1 ms(Minimum TTI)

1 Slot, TSlot = 15360xTSample = 0.5 ms

#0

Downlink frame structure

#1 #2 #3 #19

1 Radio Frame, TFrame = 307200xTSample1) = 10 ms

#0 #1 #2 #3 #4 #5 #6 Usage of normal cyclic prefix is assumed

2011.04.21 | Title of presentation | 7

TSYMBOL ≈ 66.7 µs

CPf0 f1 f2

1/TSYMBOL=15 kHz

ff0 f1 f2

TCP ≈ 5.2, 4.7 µs

Example of 3 subcarrier within one OFDM symbol

1) Sampling Rate = 30.72 MHz � TSample = 1/(15000x2048) = 32.522 ns

Resource Allocation

l RE( Resource Element), 1symbol / 1 subcarrier

l RB(Resource Block), 최소 전송 단위l 1 RB=12 sub-carriers

12*15 kHz = 180 kHz @ Freq Domain

1 Time Slot (= 0.5 ms) @ time domain,

10 MHz (50RB) ���� 50 RB*180 kHz = 9.0 MHz + 1 unused DC subcarrier (= fCarrier) = 9.015 MHz

2011.04.21 | Title of presentation | 8

Reference signals (DL)

l 안테나별 reference signal pattern

l 2 antennas 경우 예시– Frequency domain 축 간격 = 6 subcarrier

– Time domain 축 간격 = 4 OFDM symbols � 4 RS / RB

Resource Block

2011.04.21 | Title of presentation | 9

Resource Block

DL Reference signal antennas

2011.04.21 | Title of presentation | 10

3GPP U-ETRA/LTE AdvancedRelease 10

Carrier

aggregationeSC- FDMA

4x4 MIMO (UL)

8x8 MIMO (DL)

The Road to LTE-AdvancedMain physical layer features

LTE Release 8

Rel-10

Carrier

aggregation

4x4 MIMO (UL)

Rel-9

MBSFN

Positioning

Dual Layer

BF

8x8 MIMO (DL)

eSC-FDMA

UL + DL PHY

enhancements

2011.04.21 | Title of presentation | 12

LTE Release 8

MIMO OFDMA /SC-FDMA

1.4 MHz, …20 MHz QPSK, 16QAM

64QAM

DL PHYenhancements

R&S signal generator solutions available

-K55/-K255

-K84/-K284

-K85/-K285

LTE Release 10 features Physical layer

DL feature

Status

UL feature

l PUSCH/PUCCH synchronous transmission released

l Clustered PUSCH released

l PUCCH format 3 released

l Aperiodic SRS Q2/2012

l UL 2x2 MIMO Q2/2012

l Carrier Aggregation Q2/2012

Rel-10

2011.04.21 | Title of presentation | 13

DL feature

l Carrier Aggregation (up to 5x 20 MHz) released

l Cross-carrier scheduling for carrier aggregation released

l eICIC: general ABS support released

l DL 4x4 MIMO: generation of 4 TX-antennas released

(including FEC chain, layer mapping and precoding)

l Tx mode 9 Q2/2012

l CSI-RS Q2/2012

General features

l 2x2 and 4x2 MIMO fading simulation released

LTE Release 10 – eSC-FDMAWhat is it?

l eSC-FDMA = enhanced Single Carrier FDMA

l The uplink transmission

scheme remains

SC-FDMA

l The transmission of the

physical uplink shared

Rel-10

2011.04.21 | Title of presentation | 14

physical uplink shared

channel (PUSCH) uses

DFT precoding

l Two enhancements:

l PUCCH and PUSCH in the same subframe

l Non - contiguousdata transmission

LTE Release 10 – eSC-FDMAImpact on PHY layer

l Simultaneous transmission of PUSCH and PUCCHor a clustered PUSCH qualitatively causes multiple carriers in the frequency spectrum

l This leads to:

l Higher crest factor of the LTE-Advanced signal

Rel-10

2011.04.21 | Title of presentation | 15

l Higher crest factor of the LTE-Advanced signal

l Intermodulation products which might violate frequency masks

l Higher complexity of the base station receiver

LTE Release 10 – eSC-FDMA LTE settings in R&S®SMU200A

clustered PUSCH

simultaneous PUCCH/ PUSCH

Rel-10

PUCCH Format 3

2011.04.21 | Title of presentation | 16

clustered PUSCH

simultaneous PUCCH

LTE Release 10 – eSC-FDMAApplication example – intermodulation test

l LTE release 8

Rel-8

2011.04.21 | Title of presentation | 17

l PUSCH and PUCCH are not present at the same time

LTE Release 10 – eSC-FDMAApplication example – intermodulation test

l LTE release 10

simultaneousPUSCH/PUCCH

Rel-10

2011.04.21 | Title of presentation | 18

l Intermodulation occurs!

l Two or more component carrier are aggregated in order to support wider

transmission bandwidths up to 100MHz (=5 carriers with 20 MHz).

LTE Release 10 – Carrier AggregationWhat is it?

Rel-10

2011.04.21 | Title of presentation | 19

l Currently, due to non-availability of free frequency bands, most operators

are not able to implement more than 2 component carriers.

LTE Release 10 – Carrier Aggregation Impact on PHY layer

Time

Fre

qu

en

cy

PD

CC

H

PD

CC

H

1 subframe = 1 ms

1 slot = 0.5 ms

up to 3 (4) symbols per subframe

PDSCH PDSCH

l Variant I:

� PDCCH on a component carrier assigns PDSCH resources on the same component carrier (and PUSCH resources on a single linked UL component carrier)

–No carrier indicator field

l Cross-carrier scheduling

Rel-10

2011.04.21 | Title of presentation | 20

Variant (I) Variant (II)

PD

CC

H

PD

CC

H

PD

CC

H

PD

CC

HPDSCH

PDSCH

PDSCH

PDSCH

l Variant II:

� PDCCH on a component carrier can assign PDSCH or PUSCH resources in one of multiple component carriers using the carrier indicator field

–Rel-8 DCI formats extended with 1 to 3 bit carrier indicator field

l In both cases, limiting the number of blind decoding is desirable

SMx-K85 – LTE-Advanced / Release 10DL CA – Non-cross-carrier scheduling

Rel-10

2011.04.21 | Title of presentation | 21

SMx-K85 – LTE-Advanced / Release 10DL CA – Cross-carrier scheduling

Rel-10

2011.04.21 | Title of presentation | 22

LTE Base Station Test set up

according to TS36.141

Transmitter Characteristics

▌ 기지국 측정 항목 소개TX 측정 항목 (TS36.141 Chapter 6)

- Chapter 6.2 : Base Station Output Power

- Chapter 6.3 : Output power dynamic range

- Chapter 6.5.1 : Frequency error

- Chapter 6.5.2 : Error vector magnitude (EVM)

- Chapter 6.5.3 : Time alignment between transmitter branches

- Chapter 6.5.4 : Down link RS power

2011.04.21 | Title of presentation | 24

- Chapter 6.5.4 : Down link RS power

- Chapter 6.6.1 : Occupied bandwidth

- Chapter 6.6.2 : Adjacent channel leakage ratio (ACLR)

- Chapter 6.6.3 : Operating band unwanted emissions

- Chapter 6.6.4 : Transmitter spurious emission

E-UTRA Test Modelsfor thansmitter Characteristics test

l General parameters used by E-UTRA test modell Duration is 10 subframes (10ms)

l Normal CP

l UE-specific reference signals are not used

l Virtual resource blocks of localized type, no intra-subframe hopping for

PDSCH

l Type of Test models

2011.04.21 | Title of presentation | 25

l Type of Test modelsl E-TM1.1/ 1.2/ 2/ 3.1/ 3.2/ 3.3

l Transmitter tests shall be according to one for the E-UTRA models

TS36.141 Transmitter CharacteristicsChapter 6.2 Base Station Output Power

Title Minimum Requirement in TS 36.141

Output

power

In normal conditions

within ±2 dB of manufacturer’s rated

output power

In extreme conditions

within ±2,5 dB of manufacturer’s rated

output power

▌Propose

-기지국 Maximum Output Power 가 Spec 에만족하는지측정▌Specification

2011.04.21 | Title of presentation | 26

.

▌Test Signal - E-TM 1.1

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.3.2 Total power Dynamic range

▌Propose

-기지국에서전송되는 OFDM symbol 의 Max. 값과 Min. 값의차이를측정 (Only PDSCH)

▌Specification

E-UTRA channel bandwidth (MHz) Total power dynamic range (dB)

1.4 7.7

3 11.7

5 13.9

10 16.9

15 18.7

20 20

2011.04.21 | Title of presentation | 27

.

20 20

▌Test Signal - E-TM 3.1(at Max Power), E-TM 2 (at Min power)

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.5.1 Frequency error

▌Propose-기지국에할당된주파수와실제로전송되는주파수간의차이

(Data clock generation- key point)

▌Specification

BS class Accuracy

Wide Area BS ± 0.05 ppm

Local Area BS ± 0.1 ppm

Home BS ± 0.25 ppm

▌Test Signal

2011.04.21 | Title of presentation | 28

▌Test Signal - E-TM2, E-TM 3.1, E-TM3.2, E-TM3.3

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.5.2 : Error vector magnitude (EVM)

▌Propose

-기지국에서전송되는 LTE Signal 의 Quality 측정 (전송 Data Quality)

▌Specification

Modulation scheme for PDSCH Required EVM [%]

QPSK 17.5 %

16QAM 12.5 %

64QAM 8 %

▌Test Signal

2011.04.21 | Title of presentation | 29

▌Test Signal - E-TM 3.1(64QAM), E-TM 3.2(16QAM) , E-TM 3.3(QPSK), E-TM2(64QAM)

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.5.3 : Time alignment between transmitter branches

▌Propose-기지국전송 antenna간의 delay 를측정( Tx diversity, MIMO transmission, Carrier Aggregation)

▌Specification

- Two transmit antennas shall not exceed 65ns to 1.3us

▌Test Signal - E-TM 1.1

2011.04.21 | Title of presentation | 30

▌Test set-up

TX1Attenuator

Attenuator

LTE Signal

TX2 LTE Signal

TS36.141 Transmitter Characteristics Chapter 6.5.4 Downlink RS Power

▌Propose- Downlink Reference Symbol의 resource element power 측정

▌Specification- DL RS power shall be within ±±±± 2.1 dB of the DL RS power indicated on the DL-SCH

▌Test Signal - E-TM 1-1

▌Test set-up

2011.04.21 | Title of presentation | 31

Note that a repeater is a bi-directional device. The signal generator may need protection.

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.6.1 Occupied bandwidth

▌Propose-기지국 TX 신호의 Bandwidth 가기준 Bandwidth 를초과여부측정

▌Specification- The occupied bandwidth shall be less than the channel bandwidth

Channel bandwidth BWChannel [MHz] 1.4 3 5 10 15 20

Transmission bandwidth configuration NRB 6 15 25 50 75 100

▌Test Signal

2011.04.21 | Title of presentation | 32

▌Test Signal - E-TM 1.1

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.6.2 : Adjacent channel rejection ratio (ACLR)

▌Propose- Pass-band 에있는기지국 center 주파수의 mean power 와바깥쪽에있는인접채널 mean power 의비율측정

▌Specification

E-UTRA transmitted signal channel bandwidth BWChannel

[MHz]

BS adjacent channel centre frequency offset below the first or above the last carrier centr

e frequency transmitted

Assumed adjacent channel carrier (informative)

Filter on the adjacent channel

frequency and corresponding

filter bandwidth

ACLR limit

1.4, 3.0, 5, 10, 15, 20 BWChannel E-UTRA of same BW Square (BWConfig) 45 dB2 x BWChannel E-UTRA of same BW Square (BWConfig) 45 dB

BWChannel /2 + 2.5 MHz 3.84 Mcps UTRA RRC (3.84 Mcps) 45 dBBWChannel /2 + 7.5 MHz 3.84 Mcps UTRA RRC (3.84 Mcps) 45 dB

NOTE 1: BWChannel and BWConfig are the channel bandwidth and transmission bandwidth configuration of the E-UTRA transmitted signal on the assigned channel frequency.

2011.04.21 | Title of presentation | 33

channel frequency.NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.104 [6], with a chip rate as defined in this table.

▌Test Signal - E-TM 1.1/ E-TM1.2

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.6.3 Operating band unwanted emission

▌Propose-기지국의 DL operating band의최저주파수보다 10MHz 낮고, 최고주파수보다 10MHz 높은주파수범위에서기지국불요파측정

▌Specification

Frequency offset of measurement filter -3dB point, ∆∆∆∆f

Frequency offset of measurement filter centre frequency, f_offset

Minimum requirementMeasurement ban

dwidth (Note 1)

0 MHz ≤ ∆f < 5 MHz 0.05 MHz ≤ f_offset < 5.05 MHz 100 kHz

5 MHz ≤ ∆f < min(10 MHz, ∆fmax)

5.05 MHz ≤ f_offset < min(10.05 MHz, f_offsetmax)

-14 dBm 100 kHz

10 MHz ≤ ∆f ≤ ∆fmax 10.05 MHz ≤ f_offset < f_offsetmax -13 dBm (Note 5) 100 kHz

2011.04.21 | Title of presentation | 34

▌Test Signal - E-TM 1.1 / 1.2

LTE Signal

▌Test set-up

Attenuator

TS36.141 Transmitter Characteristics Chapter 6.6.4 Transmitter spurious emission

▌Propose- 9kHz 부터 12.75GHz 사이에서기지국의 Operating band unwanted emission 를제외한주파수주파수대역의기지국 TX 신호의불요파측정

▌Specification ( Category A)

Frequency range Maximum levelMeasurement Bandwi

dthNote

9kHz - 150kHz

-13 dBm

1 kHz Note 1150kHz - 30MHz 10 kHz Note 130MHz - 1GHz 100 kHz Note 1

1GHz - 12.75 GHz 1 MHz Note 2NOTE 1: Bandwidth as in ITU-R SM.329 [2] , s4.1

NOTE 2: Bandwidth as in ITU-R SM.329 [2] , s4.1. Upper frequency as in ITU-R SM.329 [2] , s2.5 table 1

2011.04.21 | Title of presentation | 35

NOTE 2: Bandwidth as in ITU-R SM.329 [2] , s4.1. Upper frequency as in ITU-R SM.329 [2] , s2.5 table 1

▌Test Signal - E-TM 1.1 / 1.2

LTE Signal

▌Test set-up

Attenuator

Thank you !!!