32. Final Review Day 2 - Improper Integrals

Embed Size (px)

Citation preview

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    1/28

    Improper Integrals, Part 3:

    The Concept Reloaded (Rigorous)Definition of Improper Integrals

    Singularities in the Interval of Integration

    Basic Improper IntegralsComparison Theorem

    The Gamma FunctionThe Gamma Function

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    2/28

    Improper Integrals

    An integral is improper if either

    the interval of integration is infinitely long or

    if the function has singularities in the interval of integration.

    One cannot apply numerical methods like LEFT or RIGHT sums toapproximate the value of such integrals.

    1

    20

    1is improper because the integrand has a singularity.dxx

    0The integral e is improper because the

    interval of integration is infinitely long.

    x dx

    0

    eis improper for two reasons: infinitely long

    interval of integration and a singularity of the integrand.

    x

    dxx

    Definition

    Examples

    1

    2

    3

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    3/28

    Improper Integrals: Visualization

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    4/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    5/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    6/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    7/28

    Example 1

    Evaluate

    Integration by parts:

    dxx

    x

    1 2

    ln

    xvx

    dx

    du

    xdxdvxu

    1

    ,

    ,ln2

    dxx

    x

    dxx

    x b

    b

    121 2

    ln

    lim

    ln

    L I P E TL I P E T

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    8/28

    Example 1

    Evaluatedx

    x

    x

    1 2

    ln

    111

    1

    lim

    1

    11ln1lnlim

    lnlim

    1 2

    b

    b

    bdx

    x

    x

    b

    b

    b

    b

    What rule do we use to evaluate this?

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    9/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    10/28

    Example 2

    Evaluate

    This is arctangent x

    dxx

    21

    1

    dx

    x

    dx

    x

    b

    baa

    0

    2

    0

    2

    1

    1lim

    1

    1lim

    0tantanlimtanlim0tan 1111

    baba

    22tanlimtanlim

    11ba

    ba

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    11/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    12/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    13/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    14/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    15/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    16/28

    Example 4

    Evaluatedx

    x 1

    0 1

    1dx

    x

    b

    b

    01 1

    1lim

    01ln1lnlim11

    lim 101 bdxxb

    b

    b

    01ln1lnlim1 bb

    00

    x 1ln

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    17/28

    This was covered in lastweeks lecture on improperintegrals. Please review it.

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    18/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    19/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    20/28

    1121lim

    2

    21lim

    2

    1

    12

    1

    lim

    xx

    x

    x

    xxxx

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    21/28

    1121lim

    2

    21lim

    21

    12

    1

    lim

    xx

    x

    x

    xxxx

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    22/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    23/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    24/28

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    25/28

    Example: The Gamma Function

    1

    0

    The gamma function is defined for 0 by setting

    ( ) e . Show that this integral converges.x t

    x

    x t dt

    Problem

    Solution The integral defining the gamma function is improper

    because the interval of integration extends to infinity.

    If 0 < x < 1, the integral is also improper because then

    the function to be integrated has a singularity at x = 0,

    the left endpoint of the integration interval.

    Case 1.

    0 < t < 1. Observe first that the integral converges if p > -1.

    1

    0

    pt dt

    11 1 1 10 0 0

    0

    1 1lim lim lim

    1 1 1 1

    p pp p

    a a aa a

    t at dt t dt

    p p a p

    This computation requires the assumption that p > -1, i.e., that p + 1 > 0. This allows you toconclude thatap+1 0 as a 0.

    NB: Interval here is ( 0, 1 ]

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    26/28

    Example: The Gamma Function

    1

    0

    The gamma function is defined for 0 by setting

    ( ) e . Show that this integral converges.x t

    x

    x t dt

    Problem

    Solution(contd)

    Case 1.Case 1.(0 0,

    1 1e .

    x t x

    t t

    Hence the integral converges by the ComparisonTheorem and by the fact that converges for p > -1.

    1

    0

    pt dt

    11

    0e

    x tt dt

    To show the convergence of the integral ,

    use the fact that

    1

    1e

    x t

    t dt

    1 2lim e 0.

    t

    x

    tt

    This holds for all values of x. Hence there is a number bbxx

    such that for t >bbxx. 1 2e 1x tt

    This means that for t >bx. 1 1 2 2 2e e e ex t x t t tt t

    Case 2.Case 2.

    t > 1.t > 1.

    NB: Interval here is [1,

    )

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    27/28

    Example: The Gamma Function

    1

    0

    The gamma function is defined for 0 by setting

    ( ) e . Show that this integral converges.x t

    x

    x t dt

    Problem

    Solution(contd)

    To show the convergence of the integral ,

    use the fact that

    1

    1

    ex tt dt

    1 2lim e 0.

    tx

    tt

    This holds for all values of x. Hence there is a number bbxx

    such that for t >bbxx. 1 2e 1x tt

    This means that for t >bx. 1 1 2 2 2e e e ex t x t t tt t

    Hence the integral converges by the Comparison Theorem,

    since the integral converges (by direct computation).

    1 tex

    x

    bt dt

    2

    e

    x

    t

    bdt

    Case 2.Case 2.

    t > 1.t > 1.Write this out, prove it.

    The main idea here was to find a convergent

    funct ion that we know alwaysalways lies above t x-1 e - t

  • 7/28/2019 32. Final Review Day 2 - Improper Integrals

    28/28

    Example: The Gamma Function

    Solution

    Conclusion

    1

    0

    The gamma function is defined for 0 by setting

    ( ) e . Show that this integral converges.x tx

    x t dt

    Problem

    Let x > 0 be fixed.

    1

    1 1 1 1

    0 0 1

    e e e e

    x

    x

    b

    x t x t x t x t

    b

    t dt t dt t dt t dt

    We split the improper integral defining the Gamma functionto three integrals as follows:

    converges by part 1. Here we needed to assume that x > 0.

    1

    1

    0

    ex tt dt 1

    is an ordinary integral.1

    1

    e

    xb

    x tt dt 2

    1e

    x

    x t

    b

    t dt

    3 converges by part 2.

    We conclude that the integral converges.1

    0

    ex tt dt