23. Integration by Parts

Embed Size (px)

Citation preview

  • 7/28/2019 23. Integration by Parts

    1/13

    Badlands, South DakotaBadlands, South Dakota

  • 7/28/2019 23. Integration by Parts

    2/13

    Integration By Parts

    Start with the product rule:

    d dv duuv u v

    dx dx dx

    d uv u dv v du

    d uv v du u dv

    u dv d uv v du

    u dv d uv v du

    u dv d uv v du

    u dv uv v du

    This is the Integration by Partsformula.

  • 7/28/2019 23. Integration by Parts

    3/13

    u dv uv v du

    The Integration by Parts formula is a product rule forintegration.

    u differentiates tozero (usually).

    dv is easy tointegrate.

    Choose u in this order: LIPET

    Logs, Inverse trig, Polynomial, Exponential, Trig

  • 7/28/2019 23. Integration by Parts

    4/13

    Example 1:

    cosx x dxpolynomial factor u x

    du dx

    cosdv x dx

    sinv x

    u dv uv v du LIPET

    sin cosx x x C

    u v v du

    sin sinx x x dx

  • 7/28/2019 23. Integration by Parts

    5/13

    Example 2:

    lnx dxlogarithmic factor lnu x

    1du dx

    x

    dv dx

    v x

    u dv uv v du LIPET

    lnx x x C

    1lnx x x dx

    x

    u v v du

  • 7/28/2019 23. Integration by Parts

    6/13

    This is still a product, so we

    need to use integration byparts again.

    Example 3:2 xx e dx

    u dv uv v du LIPET2

    u x xdv e dx

    2du x dx xv eu v v du

    2 2x xx e e x dx 2

    2

    x x

    x e xe dx u xxdv e dx

    du dx xv e 2 2x x xx e xe e dx

    2 2 2x x xx e xe e C

  • 7/28/2019 23. Integration by Parts

    7/13

    Example 4:

    cosxe x dx

    LIPET

    xu e sindv x dx

    xdu e dx cosv x

    u v v du sin sinx xe x x e dx

    sin cos cosx x x

    e x e x x e dx

    xu e cosdv x dx

    xdu e dx sinv x

    sin cos cosx x xe x e x e x dx This is theexpression we

    started with!

    uv v du

  • 7/28/2019 23. Integration by Parts

    8/13

    Example 5:

    cosxe x dx

    LIPET

    u v v du

    cosxe x dx 2 cos sin cosx x xe x dx e x e x

    sin coscos2

    x x

    x e x e xe x dx C

    sin sinx xe x x e dx

    xu e sindv x dx

    xdu e dx cosv x

    xu e cosdv x dx

    xdu e dx sinv x

    sin cos cosx x xe x e x e x dx sin cos cos

    x x x

    e x e x x e dx

  • 7/28/2019 23. Integration by Parts

    9/13

    cosxe x dx

    u v v du

    This is called solvingfor the unknownintegral.

    It works when both

    factors integrate anddifferentiate forever.

    cosxe x dx 2 cos sin cosx x xe x dx e x e x

    sin coscos2

    x x

    x e x e xe x dx C

    sin sinx xe x x e dx

    sin cos cosx x xe x e x e x dx sin cos cos

    x x x

    e x e x x e dx

    Example 5:

  • 7/28/2019 23. Integration by Parts

    10/13

    A Shortcut: Tabular Integration

    Tabular integration works for integrals of the form:

    f x g x dxwhere: Differentiates to

    zero in severalsteps.

    Integratesrepeatedly.

  • 7/28/2019 23. Integration by Parts

    11/13

    2 xx e dx

    & deriv.f x & integralsg x

    2x

    2x

    2

    0

    xe

    xe

    xe

    xe

    2 xx e dx 2 x

    x e 2 xxe 2 xe C

    Compare this withthe same problemdone the other way:

  • 7/28/2019 23. Integration by Parts

    12/13

    2 xx e dx

    u dv uv v du LIPET2

    u x xdv e dx

    2du x dx xv eu v v du

    2 2x xx e e x dx 2

    2

    x x

    x e xe dx

    u xxdv e dx

    du dx xv e 2 2x x xx e xe e dx

    2 2 2x x xx e xe e C This is easier and quicker todo with tabular integration!

    Example 5:

  • 7/28/2019 23. Integration by Parts

    13/13

    3 sinx x dx

    3x

    23x

    6x

    6

    sin x

    cosx

    sin x

    cosx

    0

    sin x3 cosx x 23 sinx x 6 cosx x 6sin x + C