219Rarara Rfc CvdRarara Rfc CvdRarara Rfc Cvd

  • View
    20

  • Download
    5

Embed Size (px)

DESCRIPTION

Rarara Rfc CvdRarara Rfc CvdRarara Rfc CvdRarara Rfc CvdRarara Rfc CvdRarara Rfc Cvd

Text of 219Rarara Rfc CvdRarara Rfc CvdRarara Rfc Cvd

  • Determinacao de Correntes em Circuitos Eletricos Usando

    Decomposicao de Cholesky e Pseudo-inversao

    Jose V. da C. Sousa Ana C. M. R. Boso Clovis A. Niiyama

    Cristiane Bender Pedro F. S. Othechar Vanessa A. B. Pirani

    Faculdade de Ciencias e Tecnologia, FCT, UNESP,

    19060-900 Presidente Prudente, SP

    E-mail: vanterlermatematico@hotmail.com, claudiaboso@hotmail.com, japaubatuba@hotmail.com,

    crisbndr@hotmail.com, pedro.galois@gmail.com, botta@fct.unesp.br.

    RESUMO

    O presente trabalho expoe a resolucao dos sistemas lineares resultantes das leis de Kirchhoff,para determinacao das correntes eletricas em lacos do circuito. Analisamos particularmente oproblema quando a matriz associada ao sistema e simetrica, usando a decomposicao de Choleskycaso essa matriz seja definida positiva e a pseudo-inversao quando o determinante da matriz ezero.

    Existe o seguinte problema na analise de circuitos eletricos: dadas a resistencia e a volta-gem aplicada em cada elemento do circuito, encontrar a corrente eletrica em cada um desseselementos[2].

    Qualquer problema de rede pode ser resolvido de uma forma sistematica por meio de duasregras conhecidas como leis de Kirchhoff, que servem para ditar o comportamento das grandezasem uma rede composta por diferentes lacos e nos. Estas sao as leis de Kirchhoff:

    1. A soma algebrica das correntes (ij) que fluem para um no e nula, isto e,ij = 0, (1)

    2. A soma algebrica da diferenca de voltagem (Vj) em torno de qualquer malha da rede enula, isto e,

    Vj = 0, (2)

    Aplicando as leis acima obtemos um sistema linear que pode ser resolvido utilizando aDecomposicao de Cholesky e/ou o Metodo da Pseudo-inversao. A estrategia do Metodo deCholesky baseia-se no seguinte teorema.

    Teorema 1: Se A e simetrica, positiva definida, entao A pode ser decomposta unicamenteno produto GGt, onde G e uma matriz triangular inferior com elementos diagonais positivos.

    Podemos aplicar a decomposicao GGt para obtermos a solucao de sistemas lineares. Porem,ha casos onde tal metodo nao pode ser empregado, como quando a matriz associada ao sistemapossui determinante nulo. Nesse caso podemos utilizar o metodo da pseudo-inversao.

    De acordo com [4], se A e uma matriz mn com colunas linearmente independentes, designa-

    se por matriz pseudo-inversa de A a matriz nm: A+ =(AtA

    )1

    At.A matriz pseudo-inversa de qualquer matriz A, mesmo nao sendo AtA invertvel, pode ser

    calculada a partir da decomposicao em valores singulares, A+ = V +U t, onde + e a matriz

    + =

    (D1 00 0

    )

    bolsista de Mestrado da CAPES

    387

    ISSN 1984-8218

  • e D e a matriz dos valores singulares de A.Diante do exposto, considere o seguinte circuito, com resistencias e baterias conforme mostra

    a figura abaixo.

    Figura 1: Circuito eletrico

    Aplicando as leis de Kirchhoff (1) e (2) sobre cada um dos lacos do circuito, obtemos, paraas correntes i1, i2, i3, o seguinte sistema linear:

    (R1 + R2 + R4)i1 R2i2 R3i3 = V1R2i1 + (R5 + R2 + R3)i2 R5i3 = 0R4i1 R5i2 + (R4 + R5 + R6)i3 = V2

    ,

    onde Ri (i = 1, , 6) representa a resistencia do circuito.Tomando Ri = 1, (i = 1, , 5) e R6 = 3, obtemos uma matriz simetrica, definida positiva, onde

    podemos aplicar a decomposicao de Cholesky para resolver o sistema. Tomando V1 = 10 e V2 = 4 eutilizando o codigo implementado em MATLAB, obtemos o seguinte vetor solucao:

    It =(4.875 2.375 2.250

    ).

    Mas se considerarmos R3 = 10 e R5 = 46/17, a matriz do sistema linear possui determinante nulo,nao sendo possvel aplicar o metodo de Cholesky nem alguns outros metodos tradicionais. Nesse casosera aplicado o metodo da pseudo-inversao. Utilizando o codigo implementado no MATLAB, obtemosa seguinte solucao aproximada:

    It =(0.213 0.221 0.642

    ).

    O uso da pseudo-inversao e importante para obtermos alguma solucao, uma vez que necessitamosresolver um problema pratico.

    Esse estudo pode ainda ser estendido para o caso de um sistema eletrico de potencia (SEP), onde sedeseja determinar a corrente, dadas as impedancias e as tensoes nas barras do SEP, que e equivalente aosnos de circuitos como o que estudamos.Palavras-chave: Decomposicao de Cholesky, Pseudo-inversao, Correntes eletricas.

    Referencias

    [1] N.B. Franco, Calculo Numerico. Pearson Prentice Hall. Sao Paulo, 2006.

    [2] J.R. Reitz, J.F. Milford, R.W. Christy, Fundamentos da Teoria Eletromagnetica. Elsevier. Rio deJaneiro, 1982.

    [3] F.J.V. Zuben, R.R.F. Attux. Notas de Aula, disponveis em:ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia353

    1s07//topico3

    07.pdf. Acesso em 14

    de novembro de 2011.

    [4] I. Matos, J. Amaral. Notas de Aula, disponveis em: http://www.deetc.isel.ipl.pt/paginaspessoais/isa-belteixeira/doc/pla34.pdf. Acesso em 14 de novembro de 2011.

    388

    ISSN 1984-8218