27
SPECIALIST MATHEMATICS Written examination 2 Monday 9 November 2015 Reading time: 3.00 pm to 3.15 pm (15 minutes) Writing time: 3.15 pm to 5.15 pm (2 hours) QUESTION AND ANSWER BOOK Structure of book Section Number of questions Number of questions to be answered Number of marks 1 22 22 22 2 5 5 58 Total 80 Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set squares, aids for curve sketching, one bound reference, one approved CAS calculator or CAS software and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared. Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape. Materials supplied Question and answer book of 23 pages with a detachable sheet of miscellaneous formulas in the centrefold. Answer sheet for multiple-choice questions. Instructions Detach the formula sheet from the centre of this book during reading time. Write your student number in the space provided above on this page. Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this. All written responses must be in English. At the end of the examination Place the answer sheet for multiple-choice questions inside the front cover of this book. Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. © VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2015 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Victorian Certificate of Education 2015 STUDENT NUMBER Letter

2015 Specialist Mathematics Written examination 2 · 2019-03-14 · SPECIALIST MATHEMATICS Written examination 2 Monday 9 November 2015 Reading time: 3.00 pm to 3.15 pm (15 minutes)

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

SPECIALIST MATHEMATICSWritten examination 2

Monday 9 November 2015 Reading time: 3.00 pm to 3.15 pm (15 minutes) Writing time: 3.15 pm to 5.15 pm (2 hours)

QUESTION AND ANSWER BOOK

Structure of bookSection Number of

questionsNumber of questions

to be answeredNumber of

marks

1 22 22 222 5 5 58

Total 80

• Studentsarepermittedtobringintotheexaminationroom:pens,pencils,highlighters,erasers,sharpeners,rulers,aprotractor,setsquares,aidsforcurvesketching,oneboundreference,oneapprovedCAScalculatororCASsoftwareand,ifdesired,onescientificcalculator.CalculatormemoryDOESNOTneedtobecleared.

• StudentsareNOTpermittedtobringintotheexaminationroom:blanksheetsofpaperand/orcorrectionfluid/tape.

Materials supplied• Questionandanswerbookof23pageswithadetachablesheetofmiscellaneousformulasinthe

centrefold.• Answersheetformultiple-choicequestions.

Instructions• Detachtheformulasheetfromthecentreofthisbookduringreadingtime.• Writeyourstudent numberinthespaceprovidedaboveonthispage.• Checkthatyournameandstudent numberasprintedonyouranswersheetformultiple-choice

questionsarecorrect,andsignyournameinthespaceprovidedtoverifythis.

• AllwrittenresponsesmustbeinEnglish.

At the end of the examination• Placetheanswersheetformultiple-choicequestionsinsidethefrontcoverofthisbook.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

©VICTORIANCURRICULUMANDASSESSMENTAUTHORITY2015

SUPERVISOR TO ATTACH PROCESSING LABEL HEREVictorian Certificate of Education 2015

STUDENT NUMBER

Letter

2015SPECMATHEXAM2 2

SECTION 1 – continued

Question 1

Theellipsex y−( )

+−( )

=29

34

12 2

canbeexpressedinparametricformas

A. x=2+3t and y t= + +3 2 1 2

B. x=2+3sec(t)andy=3+2tan(t)C. x=2+9cos(t)andy=3+4sin(t)D. x=3+2cos(t)andy=2+3sin(t)E. x=2+3cos(t)andy=3+2sin(t)

Question 2

Therangeofthefunctionwithrule f x x x( ) = −( ) −

2

21arcsin is

A. −[ ]π , 0

B. −

π π2 2,

C. −−( ) −( )

22

22

x xπ π,

D. 0 4,[ ]

E. 0, π[ ]

Question 3Ifbothaandcarenon-zerorealnumbers,therelationa2x2+(1–a2)y2 = c2 cannotrepresentA. acircle.B. anellipse.C. ahyperbola.D. asinglestraightline.E. apairofstraightlines.

SECTION 1

Instructions for Section 1Answerallquestionsinpencilontheanswersheetprovidedformultiple-choicequestions.Choosetheresponsethatiscorrect forthequestion.Acorrectanswerscores1,anincorrectanswerscores0.Markswillnotbedeductedforincorrectanswers.Nomarkswillbegivenifmorethanoneansweriscompletedforanyquestion.Taketheacceleration due to gravitytohavemagnitudegm/s2,whereg=9.8.

3 2015SPECMATHEXAM2

SECTION 1 – continuedTURN OVER

Question 4Thetwoasymptotesofaparticularhyperbolahavegradients

23and −

23respectivelyandintersectatthe

point(2,1).Onebranchofthehyperbolapassesthroughthepoint(5,5).Theequationofthehyperbolais

A. x y−( )

−−( )

=24

19

12 2

B. x y−( )

−−( )

=24

19

1736

2 2

C. y x−( )

−−( )

=19

24

1736

2 2

D. y x−( )−

−( )=

14

29

32 2

E. x y−( )

−−( )

=29

14

32 2

Question 5

Given z ii

=++

1 31

,themodulusandargumentofthecomplexnumberz5arerespectively

A. 2 2 56

and

B. 4 2 512

and

C. 4 2 712

and

D. 2 2 512

and

E. 4 212

and − π

Question 6Whichoneofthefollowingrelationshasagraphthatpassesthroughthepoint1+2iinthecomplexplane?

A. zz = 5

B. Arg( )z =π3

C. z z i− = −1 2

D. Re(z)=2Im(z)

E. z z+ = 2

2015SPECMATHEXAM2 4

SECTION 1 – continued

Question 7

If z i= +3 3 ,thenz63isA. realandnegativeB. equaltoanegativerealmultipleofiC. realandpositiveD. equaltoapositiverealmultipleofiE. apositiverealmultipleof1 3+ i

Question 8Arelationthatdoes notrepresentacircleinthecomplexplaneisA. zz = 4B. z i z i+ = −3 2C. z i z− = + 2D. z i− + =1 4E. z z+ =2 4

Question 9Letz1 = r1cis(θ1)andz2 = r2cis(θ2),wherez1andz1z2areshownintheArganddiagrambelow;θ1andθ2areacuteangles.

Im(z)

Re(z)

z1z2

z1

O

AstatementthatisnecessarilytrueisA. r2 > 1

B. θ1 < θ2

C. zz

r1

21>

D. θ1 = θ2

E. r1 > 1

5 2015SPECMATHEXAM2

SECTION 1 – continuedTURN OVER

Question 10

Usingasuitablesubstitution,thedefiniteintegral x x dx2

0

1

3 1+( )∫ isequivalentto

A. 19

252

32

12

0

1

u u u du− +

B. 127

252

32

12

1

4

u u u du− +

C. 19

252

32

12

1

4

u u u du− +

D. 127

252

32

12

0

1

u u u du− +

E. 13

252

32

12

1

4

u u u du− +

Question 11Thevelocity–timegraphforabodymovingalongastraightlineisshownbelow.

0

–0.5

–1

0.5

1

1 2 3 4 5 6

v

t

ThebodyfirstreturnstoitsinitialpositionwithinthetimeintervalA. (0,0.5)B. (0.5,1.5)C. (1.5,2.5)D. (2.5,3.5)E. (3.5,5)

2015SPECMATHEXAM2 6

SECTION 1 – continued

Question 12

Givendydx

y= −1

3 and y=4 when x=2,then

A. y ex

= −− −( )23 3

B. y ex

= +− −( )23 3

C. y ex

=− −

42

3( )

D. y ey x

=− −4 23

( )

E. y ex

= +−( )23 3

Question 13

y

x–3

–1

–2

1

2

–2 –1 O 1 2 3

Thedirectionfieldforacertaindifferentialequationisshownabove.Thesolutioncurvetothedifferentialequationthatpassesthroughthepoint(–2.5,1.5)couldalsopassthroughA. (0,2)B. (1,2)C. (3,1)D. (3,–0.5)E. (–0.5,2)

7 2015SPECMATHEXAM2

SECTION 1 – continuedTURN OVER

Question 14Adifferentialequationthathasy = x sin(x)asasolutionis

A. d ydx

y2

2 0+ =

B. x d ydx

y2

2 0+ =

C. d ydx

y x2

2 + = −sin( )

D. d ydx

y x2

2 2+ = − cos( )

E. d ydx

y x2

2 2+ = cos( )

Question 15

Thecomponentoftheforce� � �F i j= +a b ,whereaandbarenon-zerorealconstants,inthedirectionofthe

vector� � �w i j= + ,is

A. a b+

2 �

w

B. �F

a b+

C. a ba b

++

2 2 �

F

D. a b+( )�w

E. a b+

2 �

w

2015SPECMATHEXAM2 8

SECTION 1 – continued

Question 16

60° 30°

T~1

T~ 2

W~

Thediagramaboveshowsamasssuspendedinequilibriumbytwolightstringsthatmakeanglesof60°and30°withaceiling.Thetensionsinthestringsare

�T1and �

T2,andtheweightforceactingonthemassisW∼ .Thecorrectstatementrelatingthegivenforcesis

A. � � � �T T W1 2+ + = 0

B. � � � �T T W1 2+ − = 0

C. � � �T T1 2× + × =

12

32

0

D. � � �T T W1 2× + × =

32

12

E. � � �T T W1 2× + × =

12

32

Question 17

PointsA,BandChavepositionvectors� � �a i j= +2 ,

� � � �b i j k= − +3 and

� � �c j k= − +3 respectively.

ThecosineofangleABCisequalto

A. 56 10

B. 76 13

C. −16 13

D. −721 6

E. −26 13

9 2015SPECMATHEXAM2

SECTION 1 – continuedTURN OVER

Question 18Thepositionvectorsoftwomovingparticlesaregivenby

� � �r i j1 t t t( ) = +( ) + +( )2 4 3 22 and

� � �r i j2 6 4t t t( ) = ( ) + +( ) ,wheret≥0.

TheparticleswillcollideatA. 3 3 5

� �i j+ .

B. 6 5� �i j+

C. 3 4 5� �i j+ .

D. 0 5.� �i j+

E. 5 6� �i j+

Question 19Alightinextensiblestring passesoverasmoothpulley,asshownbelow,withparticlesofmass1kgandmkgattachedtotheendsofthestring.

1 kg

m kg

Iftheaccelerationofthe1kgparticleis4.9ms–2 upwards,thenmisequaltoA. 1B. 2C. 3D. 4E. 5

2015SPECMATHEXAM2 10

END OF SECTION 1

Question 20Anobjectismovinginastraightline,initiallyat5ms–1.Sixteensecondslater,itismovingat11ms–1intheoppositedirectiontoitsinitialvelocity.Assumingthattheaccelerationoftheobjectisconstant,after16secondsthedistance,inmetres,oftheobjectfromitsstartingpointisA. 24B. 48C. 73D. 96E. 128

Question 21AblockofmassMkgisonaroughhorizontalplane.AconstantforceofFnewtonsisappliedtotheblockatanangleofθ tothehorizontal,asshownbelow.Theblockhasaccelerationams–2andthecoefficientoffrictionbetweentheblockandtheplaneisμ.

θ

F

TheequationofmotionoftheblockinthehorizontaldirectionisA. F–μMg = MaB. Fcos(θ)–μMg = MaC. Fsin(θ)–μ(Mg–Fcos(θ )) = MaD. Fcos(θ )–μ(Fsin(θ )–Mg) = MaE. Fcos(θ )–μ(Mg–Fsin(θ )) = Ma

Question 22Aballisthrownverticallyupwithaninitialvelocityof7 6 ms–1,andissubjecttogravityandairresistance.

Theaccelerationoftheballisgivenby��x v= − +( )9 8 0 1 2. . ,wherexmetresisitsverticaldisplacement,andvms–1isitsvelocityattimetseconds.Thetimetakenfortheballtoreachitsmaximumheightis

A. 3

B. 5

21 2

C. loge(4)

D. 1021 2

E. 10loge(4)

11 2015SPECMATHEXAM2

SECTION 2 – Question 1–continuedTURN OVER

Question 1 (12marks)

Consider y x= −2 2sin ( ).

a. Usetherelationy2=2–sin2(x)tofinddydx intermsofxandy. 1mark

b. i. Writedownthevaluesofywherex=0andwhere x = π2. 1mark

ii. Writedownthevaluesof dydx

wherex=0andwhere x = π2. 1mark

SECTION 2

Instructions for Section 2Answerallquestionsinthespacesprovided.Unlessotherwisespecified,anexactanswerisrequiredtoaquestion.Inquestionswheremorethanonemarkisavailable,appropriateworkingmust beshown.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.Taketheacceleration due to gravitytohavemagnitudegm/s2,whereg=9.8.

2015SPECMATHEXAM2 12

SECTION 2 – Question 1–continued

Nowconsiderthefunction f withrule f x x( ) sin ( )= −2 2 for 02

≤ ≤x π .

c. Findtherulefortheinversefunction f –1,andstatethedomainandrangeof f –1. 3marks

d. Sketchandlabelthegraphsof f and f –1ontheaxesbelow. 2marks

y

x

1

0 1

13 2015SPECMATHEXAM2

SECTION 2 – continuedTURN OVER

e. Thegraphsof f and f–1 intersectatthepointP(a,a).

Finda,correcttothreedecimalplaces. 1mark

Theregionboundedbythegraphof f,thecoordinateaxesandthelinex=1isrotatedaboutthex-axistoformasolidofrevolution.

f. i. Writedownadefiniteintegralintermsofxthatgivesthevolumeofthissolidofrevolution. 2marks

ii. Findthevolumeofthissolid,correcttoonedecimalplace. 1mark

2015SPECMATHEXAM2 14

SECTION 2 – Question 2–continued

Question 2 (12marks)a. i. OntheArganddiagram below,plotandlabelthepoints0+0i and 1 3+ i . 2marks

–3 –2 –1

–1

1

2

3

–2

–3

2 31O

Im(z)

Re(z)

ii. OnthesameArganddiagramabove, sketchtheline z i z− +( ) =1 3 and thecircle z − =2 1 . 2marks

iii. Usethefactthattheline z i z− +( ) =1 3 passesthroughthepointz=2,orotherwise,tofindtheequationofthislineincartesianform. 1mark

15 2015SPECMATHEXAM2

SECTION 2 – continuedTURN OVER

iv. Findthepointsofintersectionofthelineandthecircle,expressingyouranswersintheforma + ib. 3marks

b. i. Considertheequationz2–4cos(α)z+4=0,whereαisarealconstantand02

< <απ .

Findtherootsz1andz2ofthisequation,intermsofα,expressingyouranswersinpolarform. 3marks

ii. Findthevalueofαforwhich Argzz1

2

56

=

π. 1mark

2015SPECMATHEXAM2 16

SECTION 2 – Question 3–continued

Question 3 (10marks)Amanufacturerofbowtieswishestodesignanadvertisinglogo,representedbelow,wheretheupperboundarycurveinthefirstandsecondquadrantsisgivenbytheparametricrelations

x=sin(t), y t t=12sin ( ) tan ( ) for t∈ −

π π3 3, .

Thelogoissymmetricalaboutthex-axis.

y

x

–1

1

–1 1O

a. Findanexpressionfor dydx

intermsoft. 2marks

17 2015SPECMATHEXAM2

SECTION 2 – Question 3–continuedTURN OVER

b. Findtheslopeoftheupperboundarycurvewhere t = π6.Giveyouranswerintheform

a bc

,wherea,bandcarepositiveintegers.1mark

c. i. Verifythatthecartesianequationoftheupperboundarycurveis y x

x=

2

22 1.

1mark

ii. Statethedomainforxoftheupperboundarycurve. 1mark

2015SPECMATHEXAM2 18

SECTION 2 – continued

d. Showthat ddx

x x

x

ddx

x xarcsin( )( ) =−

+ −( )2

11

2

22 bysimplifyingtheright-handsideofthis

equation. 2marks

e. Hencewritedownanantiderivative intermsofx,tobeevaluatedbetweentwoappropriateterminals,andfindtheareaoftheadvertisinglogo. 3marks

19 2015SPECMATHEXAM2

SECTION 2 – Question 4–continuedTURN OVER

Question 4 (12marks)Thepositionvector

�r( )t ,fromoriginO,ofamodelhelicoptertsecondsafterleavingthegroundis

givenby

� � �r i( ) cos sint t t

= +

+ +

50 25

3050 25

30π π jj k+

25t�

where�i isaunitvectortotheeast,

�j isaunitvectortothenorthand

�k isaunitvectorvertically

up.Displacementcomponentsaremeasuredinmetres.

a. i. Findthetime,inseconds,requiredforthehelicoptertogainanaltitudeof60m. 1mark

ii. FindtheangleofelevationfromOofthehelicopterwhenitisatanaltitudeof60m.Giveyouranswerindegrees,correcttothenearestdegree. 2marks

b. Afterhowmanysecondswillthehelicopterfirstbedirectlyabovethepointoftake-off? 1mark

2015SPECMATHEXAM2 20

SECTION 2 – continued

c. Showthatthevelocityofthehelicopterisperpendiculartoitsacceleration. 3marks

d. Findthespeedofthehelicopterinms–1,givingyouranswercorrecttotwodecimalplaces. 2marks

e. Atreetophaspositionvector� � � �r i j k= + +60 40 8 .

Findthedistanceofthehelicopterfromthetreetopafterithasbeentravellingfor45seconds.Giveyouranswerinmetres,correcttoonedecimalplace. 3marks

21 2015SPECMATHEXAM2

SECTION 2 – Question 5–continuedTURN OVER

Question 5 (12marks)Aboatrampattheedgeofadeeplakeisinclinedatanangleof10°tothehorizontal.A250kg boattrailerontherampisunhitchedfromacarandamanattemptstolowerthetrailerdowntherampusingaropeparalleltotheramp,asshowninthediagrambelow.

lake 10°

boat trailer

rope

F~

Assumenegligiblefrictionforcesinthissituation.

a. Calculatetheconstantforce,Fnewtons,thatwouldberequiredtopreventthetrailerfrommovingdowntheramp.Giveyouranswercorrecttothenearestnewton. 1mark

b. Ifthemanexertsaforceof200Nviatherope,findtheaccelerationofthetrailerdowntheramp,assumingnegligiblefrictionforcesandairresistance.Giveyouranswerinms–2,correcttothreedecimalplaces. 2marks

c. Usingyourresultforaccelerationfrom part b.,findthespeedofthetrailerinms–1,correcttotwodecimalplaces,afterithasmoved30mdowntheramp,havingstartedfromrest. 2marks

2015SPECMATHEXAM2 22

SECTION 2 – Question 5–continued

Whenthetrailerrollsintothewater,itstops,thensinksverticallyfromrestsothatitsdepth xmetresaftertsecondsisgivenbythedifferentialequation

d xdt

dxdt

2

2 1 4 7= −

.

d. i. Showthattheabovedifferentialequationcanbewrittenas

1 4 1 77

. dxdv v

= − +−

, where v dxdt

= . 2marks

ii. Hence,showbyintegrationthat1.4x=–v–7loge(7–v)+7loge(7). 1mark

WhenthetrailerhassunktoadepthofDmetres,itisdescendingatarateof5ms–1.

iii. FindD,correcttoonedecimalplace. 1mark

23 2015SPECMATHEXAM2

iv. Writedownadefiniteintegralforthetime,inseconds,takenforthetrailertosinktothedepthofDmetresandevaluatethisintegralcorrecttoonedecimalplace. 3marks

END OF QUESTION AND ANSWER BOOK

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Instructions

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2015

SPECMATH 2

Specialist Mathematics formulas

Mensuration

area of a trapezium: 12 a b h+( )

curved surface area of a cylinder: 2π rh

volume of a cylinder: π r2h

volume of a cone: 13π r2h

volume of a pyramid: 13 Ah

volume of a sphere: 43 π r

3

area of a triangle: 12 bc Asin

sine rule: aA

bB

cCsin sin sin

= =

cosine rule: c2 = a2 + b2 – 2ab cos C

Coordinate geometry

ellipse: x ha

y kb

−( )+

−( )=

2

2

2

2 1 hyperbola: x ha

y kb

−( )−

−( )=

2

2

2

2 1

Circular (trigonometric) functionscos2(x) + sin2(x) = 1

1 + tan2(x) = sec2(x) cot2(x) + 1 = cosec2(x)

sin(x + y) = sin(x) cos(y) + cos(x) sin(y) sin(x – y) = sin(x) cos(y) – cos(x) sin(y)

cos(x + y) = cos(x) cos(y) – sin(x) sin(y) cos(x – y) = cos(x) cos(y) + sin(x) sin(y)

tan( ) tan( ) tan( )tan( ) tan( )

x y x yx y

+ =+

−1 tan( ) tan( ) tan( )tan( ) tan( )

x y x yx y

− =−

+1

cos(2x) = cos2(x) – sin2(x) = 2 cos2(x) – 1 = 1 – 2 sin2(x)

sin(2x) = 2 sin(x) cos(x) tan( ) tan( )tan ( )

2 21 2x x

x=

function sin–1 cos–1 tan–1

domain [–1, 1] [–1, 1] R

range −

π π2 2, [0, �] −

π π2 2,

3 SPECMATH

Algebra (complex numbers)z = x + yi = r(cos θ + i sin θ) = r cis θ

z x y r= + =2 2 –π < Arg z ≤ π

z1z2 = r1r2 cis(θ1 + θ2) zz

rr

1

2

1

21 2= −( )cis θ θ

zn = rn cis(nθ) (de Moivre’s theorem)

Calculusddx

x nxn n( ) = −1

x dx

nx c nn n=

++ ≠ −+∫ 1

111 ,

ddxe aeax ax( ) =

e dx

ae cax ax= +∫ 1

ddx

xxelog ( )( ) = 1

1xdx x ce= +∫ log

ddx

ax a axsin( ) cos( )( ) =

sin( ) cos( )ax dxa

ax c= − +∫ 1

ddx

ax a axcos( ) sin( )( ) = −

cos( ) sin( )ax dxa

ax c= +∫ 1

ddx

ax a axtan( ) sec ( )( ) = 2

sec ( ) tan( )2 1ax dx

aax c= +∫

ddx

xx

sin−( ) =−

12

1

1( )

1 02 2

1

a xdx x

a c a−

=

+ >−∫ sin ,

ddx

xx

cos−( ) = −

12

1

1( )

−=

+ >−∫ 1 0

2 21

a xdx x

a c acos ,

ddx

xx

tan−( ) =+

12

11

( )

aa x

dx xa c2 2

1

+=

+

−∫ tan

product rule: ddxuv u dv

dxv dudx

( ) = +

quotient rule: ddx

uv

v dudx

u dvdx

v

=

2

chain rule: dydx

dydududx

=

Euler’s method: If dydx

f x= ( ), x0 = a and y0 = b, then xn + 1 = xn + h and yn + 1 = yn + h f (xn)

acceleration: a d xdt

dvdt

v dvdx

ddx

v= = = =

2

221

2

constant (uniform) acceleration: v = u + at s = ut +12

at2 v2 = u2 + 2as s = 12

(u + v)t

TURN OVER

SPECMATH 4

END OF FORMULA SHEET

Vectors in two and three dimensions

r i j k~ ~ ~ ~= + +x y z

| r~ | = x y z r2 2 2+ + = r~ 1. r~ 2 = r1r2 cos θ = x1x2 + y1y2 + z1z2

Mechanics

momentum: p v~ ~= m

equation of motion: R a~ ~= m

friction: F ≤ µN