2014 Vehicle Dynamics Objectiv Part 1

Embed Size (px)

Citation preview

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    1/18

    06/2013 Stefan Eitzinger, MSF/Graz 1Disclosure or duplication without consent is prohibited

    Vehicle dynamicsobjective assessment part 1

    Introduction

    vehicle dynamics in the development process

    subjective evaluation vs. objective evaluation of vehicle dynamics

    Measurement Equipment

    measurement of command signals (steering wheel angle, pedal position)

    equipment for measurement/analysis of cars mechanical behavior (toe-,

    camber angle, wheel speed)

    measurement of total vehicles response (yaw rate, side slip angle, roll

    angle)

    Testing Procedures

    longitudinal dynamics (straight ahead behaviour)

    lateral dynamics (cornering behaviour)

    lateral dynamic transfer characteristics (lateral transfer behaviour)

    driving stability tests (roll- and yaw stability)

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    2/18

    06/2013 Stefan Eitzinger, MSF/Graz 2Disclosure or duplication without consent is prohibited

    Vehicle dynamics in the development process

    Prototype

    Design

    Simulation

    Test Rig

    Virtual Model

    On-Vehicle Objective TestsSubjective Rating

    Validation of Geometry,

    Kinematics and Compliance

    Verification of

    Specifications

    Optimisation loop

    Release

    Optimisation loop

    Validation of Simulation Model

    Chassis Concept

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    3/18

    06/2013 Stefan Eitzinger, MSF/Graz 3Disclosure or duplication without consent is prohibited

    Subjective Rating Objective Testing

    L en kr ad wi nk el D im . MW SA MW SA

    M it te lw er t ( 0, 5- 4) s G ra d 3 1, 56 3 ,0 8 2 9, 42 2 ,9 5

    Giergeschwindigkeit

    Max imalwert Grad/s 10, 48 0,48 10, 66 0,51Peak -Res pons e-Time s 0,29 0,04 0,34 0,0590% Res pons e Time s 0,21 0,08 0,25 0,11bers chwingweit e % 24, 19 3,45 25, 13 4,66S ta ti on r we rt ( 3- 4 s ) G ra d/ s 8 ,2 8 0 ,1 2 8 ,3 4 0 ,1 4G ie rve rs t r kun gs fa k to r G ra d/ s /G ra d 0 ,2 6 0 ,0 3 0 ,2 9 0 ,0 3

    Querbeschleunigung

    Peak -Res pons e-Time s 0,56 0,11 0,69 0,1390% Res pons e Time s 0,33 0,08 0,41 0,11S tat ionr wert (3- 4 s ) m /s 4, 01 0, 02 4, 02 0, 04

    Schwimmwinkel

    S tat ionr wert (3- 4 s ) G rad 0, 74 0, 24 1, 00 0, 26

    Bewertungsma

    TB-Wert Grad*s 0,22 0,08 0,35 0,12TBN-Wert - 7,35 1,18 8,92 1,42

    t ei lb el ad en v ol lb el ad en

    Vehicle dynamicsOn Vehicle Tests

    + Driver-independent comparison of different vehicles

    + Results can be reproduced with high conformity

    + Lower requirements on the capabilities of the testdriver

    + Vehicle-comparison possible even after a long time

    + Results can be used for validation of simulated

    results

    + No equipment required

    + Immediate results

    + Highest sensitivity in direct comparisons

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    4/18

    06/2013 Stefan Eitzinger, MSF/Graz 4Disclosure or duplication without consent is prohibited

    definition of best-in-class

    proposals for improvements

    Tools:

    rating sheets, performance tables

    on-vehicle tests (professional /normal driver)

    spider diagrams

    specific target values for

    reproducible and comparable

    driving maneuvers

    Subjective Objective

    Tools:

    catalogue of maneuvers

    selection of target-values

    VD-measurements

    Calculation of selected target-

    values

    40 Cornering behaviour

    40 1010 Steering wheel angle gradient at 4 m/s R=100m (ISO 4138) 4.55/m/s40 1020 Self steering gradient at 4 m/s R=100m (ISO 4138) 0.28/m/s

    40 1030 Side slip angle gradient at 4 m/s R=100m (ISO4138) 0.31/m/s

    40 1040 Roll angle gradient (ISO4138) 0.4/m/s

    40 1050 Maximum roll angle R=100m (ISO4138) 3.53

    40 1060 Maximum lateral acceleration R=100m (ISO4138) 8.8m/s

    40 1080 Maximum yaw amplification (MSF internal Standard) 0.26/s

    40 1090 Minimum yaw amplification (MSF internal Standard) 0.21/s

    40 1100 Yaw amplification strictly monotonous decreasing from vch (MSF internal Standard) yes

    Chassis development - targets

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    5/1806/2013 Stefan Eitzinger, MSF/Graz 5Disclosure or duplication without consent is prohibited

    steering

    throttle position

    brake force

    toe-in

    camber

    wheel travel

    brake pressure

    wheel speed

    pitch angleroll angle

    yaw angle speed

    accelerations in all axis

    lateral velocity

    Measuring a vehicles behaviour - systematics

    controlled system

    (vehicle properties)

    control response

    (vehicle reaction)

    command signal

    (manoeuvre presetting)

    During vehicle dynamics measurements the driver usually presets the input butdoes not react to the vehicle's behaviour or path. This system of driver and vehicle

    can be seen as an open loopcontrol system. Not so when driving on public roads.

    Drivers actions Reaction of the carMechanical behaviour

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    6/1806/2013 Stefan Eitzinger, MSF/Graz 6Disclosure or duplication without consent is prohibited

    Chassis: original setup (except prototypes)

    Loading: > partially loaded (driver, measurement equipment, design load)> fully loaded (gross vehicle weight)

    Tires: original equipment tires, previously driven (150 km)

    Tire pressure: according manufacturer's data 0,05 bar (cold)

    Test track: flat, dry, const. friction coefficient

    Environment: max. wind speed 5m/s

    Testing conditions

    To ensure reproducible results the driver's influence must be

    minimized. Vehicle, test track and environmental conditions have tobe in defined conditions (ISO 15037-1). The following conditions must

    be fulfilled if not explicitly defined otherwise.

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    7/1806/2013 Stefan Eitzinger, MSF/Graz 7Disclosure or duplication without consent is prohibited

    roll: rotation round XV -axis ( )

    pitch: rotation round Y-axis ( )

    yaw: rotation round ZE -axis ( )

    X

    Y

    Z

    In all measurements the motion variables (velocities, accelerations,

    rotational speeds) are measured in the vehicle fixed intermediate

    coordinate system. This eliminates the gravitational influence due to

    pitching and rolling in the measured accelerations.

    Intermediate vehicle fixed coordinate system:

    Coordinate systems according DIN ISO 8855

    earth fixed coordinate system (XE, YE, ZE)

    vehicle fixed coordinate system in COG (XV, YV, ZV)

    vehicle fixed intermediate coordinate system in

    COG (X, Y, Z) (X-Y plain is parallel to XE-YEplain)

    Rotational degrees of freedom in the vehicle

    fixed coordinate system:

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    8/1806/2013 Stefan Eitzinger, MSF/Graz 9Disclosure or duplication without consent is prohibited

    In DIN ISO 8855 the motion variables of vehicles are defined. The sketch below shows the most

    important of them for a left turn manoeuvre under Ackermann-condition (ay

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    9/1806/2013 Stefan Eitzinger, MSF/Graz 11Disclosure or duplication without consent is prohibited

    Vehicle dynamics measurement equipment

  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    10/18

    06/2013 Stefan Eitzinger, MSF/Graz 12Disclosure or duplication without consent is prohibited

    1.) Measurement steering wheel / Steering Robot

    steering angle

    steering torque

    steering velocity

    Measuring of command signals (1)

    Controled system Control responseCommand signal

    measurement steering wheel from

    www.kistler.com(closed loop tests)

    steering robot from

    www.abd.uk.com

    (open loop tests)

    http://www.kistler.com/http://www.abd.uk.com/http://www.abd.uk.com/http://www.kistler.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    11/18

    06/2013 Stefan Eitzinger, MSF/Graz 13Disclosure or duplication without consent is prohibited

    Measuring of command signals(2)

    clutch-, brake pedal force

    3.) Pedal force sensor

    www.rieger-sensortechnik.de

    2.) Cable pull position sensor

    travel measurements

    (pedal-, wheel travel...

    Controlled system Control responseCommand signal

    www.celesco.com

    http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    12/18

    06/2013 Stefan Eitzinger, MSF/Graz 14Disclosure or duplication without consent is prohibited

    1.) Autocollimator

    toecamber

    steering kinematics

    Measuring of values used for system analysis (1)

    Controlled system Control responseCommand signal

    www.rudolph-optics.com/

    http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    13/18

    06/2013 Stefan Eitzinger, MSF/Graz 15Disclosure or duplication without consent is prohibited

    3.) Wheel Speed Sensor

    high resolution wheel speed (1024 pulses/rev)

    Measuring of values used for system analysis (2)

    Controlled system Control responseCommand signal

    www.gregory.de

    http://www.celesco.com/http://www.celesco.com/http://www.celesco.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    14/18

    06/2013 Stefan Eitzinger, MSF/Graz 16Disclosure or duplication without consent is prohibited

    www.corrsys-datron.deg...grid spacing

    gChanges of brightness on the road

    surface generates a speed

    proportional frequency in the photo

    electronics of the speed sensor. For

    sensing lateral speed the grid is V-

    shaped.

    1.) Optical speed sensor

    longitudinal speedlateral speed

    sideslip angle

    Controlled system Control responseCommand signal

    Measuring of vehicles response values (1)

    www.kistler.com

    http://www.kistler.com/http://www.kistler.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    15/18

    06/2013 Stefan Eitzinger, MSF/Graz 18Disclosure or duplication without consent is prohibited

    distance body - ground

    pitch angle (computed)

    roll angle (computed)

    3.) Laser distance sensor

    Measuring of vehicles response values (3)

    AL

    ah

    av

    atan[(ah-av)/AL]

    Controlled system Control responseCommand signal

    www.drwehrhahn.de

    http://www.kistler.com/http://www.kistler.com/http://www.kistler.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    16/18

    06/2013 Stefan Eitzinger, MSF/Graz 19Disclosure or duplication without consent is prohibited

    pitch rate

    roll rate

    yaw rate

    pitch angle

    roll angle

    yaw angle

    longitudinal accelerationlateral acceleration

    vertical acceleration

    path curve coordinates

    curve radius

    4.) Inertial measurement unit

    Measuring of vehicles response values (4)

    www.imar-navigation.de/

    Controlled system Control responseCommand signal

    http://www.kistler.com/http://www.kistler.com/http://www.kistler.com/http://www.kistler.com/http://www.kistler.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    17/18

    06/2013 Stefan Eitzinger, MSF/Graz 22Disclosure or duplication without consent is prohibited

    Data Recording

    www.dewetron.com, www.ni.com, www.datatranslation.com, www.panasonic.com, www.vector-informatik.de

    vehicle-CAN

    meas-CAN

    steering robot,

    meas. steering wheel

    odometer

    (speed sensor)

    laser-

    distance sensor

    gyro platform

    autocollimator

    cable pull-

    sensor

    further analogue sensors

    trigger, force sensors, ...

    analogue to

    CAN conv.

    http://www.kistler.com/http://www.kistler.com/http://www.kistler.com/http://www.kistler.com/http://www.kistler.com/
  • 8/12/2019 2014 Vehicle Dynamics Objectiv Part 1

    18/18

    06/2013 Stefan Eitzinger, MSF/Graz 23Disclosure or duplication without consent is prohibited

    Video: Steering Robot Demo

    http://localhost/var/www/apps/conversion/tmp/scratch_9/Filme/Lenkroboter%20und%20HAL.mpg