29
Spotlight A showcase of research and scholarship in selected articles from 2014

2014 G3: Genes|Genomes|Genetics Spotlight

Embed Size (px)

DESCRIPTION

A showcase of research and scholarship in selected articles from G3: Genes|Genomes|Genetics in 2014

Citation preview

  • SpotlightA showcase of research and scholarship in selected articles from 2014

  • EDITOR-IN-CHIEF

    Brenda J. AndrewsUniversity of Toronto

    EXECUTIVE EDITOR

    Tracey DePellegrin

    DEPUTY EDITOR, COMPLEX TRAITS

    Dirk Jan de KoningSwedish University of Agricultural Sciences

    DEPUTY EDITOR, HUMAN GENETICS

    Stephen W. SchererThe Hospital for Sick Children & University of Toronto

    SENIOR EDITORS

    Katrien M. DevosUniversity of Georgia

    Susan L. ForsburgUniversity of Southern California

    R. Scott HawleyStowers Institute for Medical Research

    Stephen I. WrightUniversity of Toronto

    ASSISTANT EDITOR

    Cristy Gelling

    ASSISTANT MANAGING EDITOR

    Ruth Isaacson

    ASSOCIATE EDITORS

    Eduard AkhunovKansas State University

    Danika L. BannaschUniversity of California, Davis

    Judith BermanUniversity of Minnesota & Tel Aviv University

    James A. BirchlerUniversity of Missouri

    Charles BooneUniversity of Toronto

    Michael BoutrosDKFZ & University of Heidelberg

    Rachel BremBuck Institute for Research on Aging

    Julie BrillThe Hospital for Sick Children

    David T. BurkeUniversity of Michigan Medical School

    Rita M. CantorUniversity of California, Los Angeles

    Susan CelnikerLawrence Berkeley National Laboratory

    Aravinda ChakravartiJohns Hopkins University School of Medicine

    J. Michael CherryStanford University

    Timothy J. CloseUniversity of California, Riverside

    Barak A. CohenWashington University School of Medicine

    Josep M. ComeronUniversity of Iowa

    Gloria M. CoruzziNew York University

    William S. DavidsonSimon Fraser University

    Kelly DaweUniversity of Georgia

    2014 Editorial Board

  • Gustavo A. de los CamposUniversity of Alabama at Birmingham

    Job DekkerUniversity of Massachusetts Medical School

    Fred S. DietrichDuke University Medical Center

    Rebecca W. DoergePurdue University

    Aime M. Dudley1BDJD/PSUIXFTUDiabetes Research Institute

    Jay C. DunlapDartmouth Medical School

    Mark EstelleUniversity of California, San Diego

    Justin D. FarisUSDA-ARS Cereal Crops Research Unit

    David S. FayUniversity of Wyoming

    Justin C. FayWashington University in St. Louis

    Audrey GaschUniversity of Wisconsin-Madison

    David J. GreshamNew York University

    Erich GrotewoldThe Ohio State University

    David J. GrunwaldThe University of Utah

    Kris GunsalusNew York University

    Ira M. HallWashington University School of Medicine

    Jay R. HesselberthUniversity of Colorado School of Medicine

    Charles S. HoffmanBoston College

    James B. HollandUSDA & North Carolina State University

    Emma HuangCSIRO

    Timothy R. HughesUniversity of Toronto

    Scott A. JacksonUniversity of Georgia

    Sue L. JaspersenStowers Institute for Medical Research

    Stephen L. JohnsonWashington University School of Medicine

    Nicholas KatsanisDuke University

    Cynthia KenyonUniversity of California, San Francisco

    John K. KimUniversity of Michigan

    Yuseob KimEwha Womans University

    Rob J. KulathinalTemple University

    Siu Sylvia LeeCornell University

    Howard D. LipshitzUniversity of Toronto

    Jianxin MaPurdue University

    Christian R. MarshallThe Hospital for Sick Children

    Andrew S. McCallionJohns Hopkins University School of Medicine

    John H. McCuskerDuke University Medical Center

    Kim S. McKimRutgers University

    Donald G. MoermanUniversity of British Columbia

    Chad L. MyersUniversity of Minnesota

    Corey NislowUniversity of British Columbia

    Andrew H. PatersonUniversity of Georgia

    Peter PfaffelhuberUniversity of Freiburg

    Patrick C. PhillipsUniversity of Oregon

    Eric M. PhizickyUniversity of Rochester Medical Center

    Craig S. PikaardIndiana University

    David D. PollockUniversity of Colorado School of Medicine

    Julia E. RichardsUniversity of Michigan School of Public Health

    Jasper RineUniversity of California, Berkeley

    Antonis RokasVanderbilt University

    Jeffrey Ross-IbarraUniversity of California, Davis

    Fritz P. RothUniversity of Toronto

    Matthew S. SachsTexas A&M University

    Helen K. SalzCase Western Reserve University

    Michael J. ScanlonCornell University

    David S. SchneiderStanford University

    Robert A. SclafaniUniversity of Colorado School of Medicine

    Tanja SlotteUniversity of Stockholm

    Marcus B. SmolkaCornell University

    Lars M. SteinmetzEuropean Molecular Biology Laboratory & Stanford University

    Hidenori TachidaKyushu University

    Kevin ThorntonUniversity of California, Irvine

    David W. ThreadgillTexas A&M University

    Sarah A. TishkoffUniversity of Pennsylvania

    Olga TroyanskayaPrinceton University

    Mike TyersUniversit de Montral

    Veronica J. VielandNationwide Childrens Hospital

    Marian WalhoutUniversity of Massachusetts Medical School

    Marilyn WarburtonUSDA-ARS Corn Host Plant Resistance Research Unit

    Jonathan F. WendelIowa State University

    Brian S. YandellUniversity of Wisconsin-Madison

    Zhenbiao YangUniversity of California, Riverside

    Nevin D. YoungUniversity of Minnesota

    Dani ZamirThe Hebrew University of Jerusalem

    Monique ZetkaMcGill University

  • 2Extensive Differences in Gene Expression Between Symbiotic and Aposymbiotic Cnidarians Erik M. Lehnert, Morgan E. Mouchka, Matthew S. Burriesci, Natalya D. Gallo, Jodi A. Schwarz, and John R. PringleG3: Genes | Genomes | Genetics February 2014 4:277295

    SEA ANEMONE & FRIENDS Coral reefs around the world are bleaching, a threat caused by breakdown of the symbiosis between the coral animals and the dinoflagellate algae that live within their cells. Unfortunately, this crucial symbiotic partnership is poorly understood. Lehnert et al. studied gene expression patterns associated with the symbiotic state using the sea anemone Aiptasia. This fast-growing cousin of corals maintains a similar symbiotic relationship with dinoflagellates, but it can also survive without its symbiotic friends. This image shows Aiptasia hosting different concentrations of dinoflagellate symbionts. Although the anemone tissue is nearly transparent, the dinoflagellates are visible via their red chlorophyll fluorescence. Image courtesy of Jan C. DeNofrio.

  • 3What makes us different from other journals? G3 was DPRQJWKHUVWWROODQLPSRUWDQWQLFKHDVDVRFLHW\UXQopen access journal with the same high standards for VFLHQWLFULJRUuDQGWKHVDPHTXDOLW\RIUHYLHZVuDVLWVsister journal GENETICS. G3 has established itself as a IRUXPIRUQGLQJVDQGUHVRXUFHVXVHIXOWRWKHJHQHWLFVFRPPXQLW\UHJDUGOHVVRISHUFHLYHGLPSDFWRUQRYHOW\6XEPLVVLRQVODVW\HDUZHUHXSE\DQGZHpYHDGGHGeditors in human genetics, bioinformatics, statistical, FURSVKDQGSRSXODWLRQJHQHWLFVDQGJHQRPLFV

  • 4IN THEIR OWN WORDS

    $VDQDXWKRURIVHYHUDOSDSHUVRQJHQRPLFSUHGLFWLRQLQ*,QGLWPXFKIDVWHUWKDQRWKHUMRXUQDOVDQGWKHUDSLGWXUQRYHULVGRQHZLWKRXWDIIHFWLQJWKHVFLHQWLFTXDOLW\DQGHIFLHQF\RIWKHUHYLHZ7RSURYLGHJRRGDQGVWURQJVFLHQWLFUHDVRQVZK\DQDUWLFOHLVDFFHSWHGRUrejected is a fundamental aim of an editor. I am impressed by the editors DEBHDMBXRBHDMSHB@BJMNVKDCFLDMS@MCSGDQLCDSDQLHM@SHNM

    SNHLOQNUDSGDRBHDMSHBPT@KHSXNESGDO@ODQRUWKHHIIRUWWRJLYHappropriate reasons if the article is rejected.

    Jos Crossa (MSDQM@SHNM@K,@HYD@MC6GD@S(LOQNUDLDMS"DMSDQ"(,,83

    ,KDYHSDUWLFXODUO\DSSUHFLDWHGWKDWWKHUHYLHZHUVDQGHGLWRUVRI*HYDOXDWHDSDSHUDVDQH[LVWLQJERG\RIZRUN3GD&@OOQN@BG@KKNVDCTRSNOTAKHRGSGQDDO@ODQRSGHRXD@QHMQDBNQCSHLD with RQO\UHYLVLRQVWKDWZHUHFUXFLDOIRUVXSSRUWLQJWKHSDSHUVpFRQFOXVLRQVr,@HSQDX@)#TMG@L 4MHUDQRHSXNE6@RGHMFSNM

    *KDVGHOLYHUHGRQLWVSURPLVHWRSXEOLVKUHVHDUFKRIWKHVDPHTXDOLW\as GENETICS, but without regard for impact of the research. Far from just names on the masthead, SGDDCHSNQRS@JDETKKQDRONMRHAHKHSXENQSGDL@MTRBQHOSRVDDCHSqVDQD@KKXV@MSSGD@TSGNQRSNOTAKHRG

    SGDADRSONRRHAKDL@MTRBQHOSR3GD$CHSNQH@K!N@QCOQNUHCDR@M

    @L@YHMFMDSVNQJNERBHDMSHRSRWRDVNIRUDVHFRQGRSLQLRQRUWRQHtune our decisions.

    #HQJ)@MCD*NMHMF #DOTSX$CHSNQENQ"NLOKDW3Q@HSR& 2VDCHRG4MHUDQRHSXNE FQHBTKSTQ@K2BHDMBDR

  • GENESTOGENOMES.ORG

    In 2014 the GSA journals launched Genes to Genomes, a blog about genetics and genomics research and scholarly publishing. The blog features the stories behind the latest research in GENETICS and G3, guest posts from young UHVHDUFKHUVDQGOHDGHUVLQWKHHOGDQGSXEOLVKLQJWLSVDQGDQQRXQFHPHQWVfrom our editors. Visit GSSOFDMDRSNFDMNLDRNQF to read the latest posts and subscribe! Below are a few popular posts from 2014:

    5

    Genes to Genomes the GSA journals blog

    'NVSGDB@SFNSHSRRONSR @MCGD@QHMFOQNAKDLR 7KHLQWULJXLQJUHDVRQPDQ\FDWVKDYHDwhite belly, white socks, or other patches of white fur. ,PDJHFUHGLW.R]LUR+DVHJDZD&&%

  • 6INVESTIGATIONS

    Species-Level Deconvolution of Metagenome Assemblies with Hi-CBased Contact Probability Maps )NRGT@-!TQSNM(U@M+H@BGJN,@HSQDX@)#TMG@L@MC)@X2GDMCTQD

    G3: Genes | Genomes | Genetics July 2014 4:13391346

    EDITORS NOTE7KHqPHWDJHQRPHVrSURGXFHGE\VKRWJXQVHTXHQFLQJRIPLFURELDOFRPPXQLWLHVDUHMXPEOHGFROOHFWLRQVRIVHTXHQFHVIURPGLIIHUHQWspecies and domains. Burton and Liachko et al. introduced a powerful QHZDSSURDFKWKDWDOORZVZKROHJHQRPHVHTXHQFHVRILQGLYLGXDOPLFURELDOVSHFLHVWREHXQWDQJOHGIURPPL[HGVDPSOHV&RYHUDJHRIWKLVZRUNZDVIHDWXUHGLQ%LR,7:RUOG7KH6FLHQWLVW*HQRPH:HEDQG%LWHVL]H%LR

    ABSTRACT Microbial communities consist of mixed populations of organisms, including unknown species in unknown abundances. These communities DUHRIWHQVWXGLHGWKURXJKPHWDJHQRPLFVKRWJXQVHTXHQFLQJEXWVWDQGDUGOLEUDU\FRQVWUXFWLRQPHWKRGVUHPRYHORQJUDQJHFRQWLJXLW\LQIRUPDWLRQWKXVVKRWJXQVHTXHQFLQJDQGde novo assembly of a metagenome typically yield a collection of contigs that cannot readily be grouped by species. Methods IRUJHQHUDWLQJFKURPDWLQOHYHOFRQWDFWSUREDELOLW\PDSVe.g., as generated by WKH+L&PHWKRGSURYLGHDVLJQDORIFRQWLJXLW\WKDWLVFRPSOHWHO\LQWUDFHOOXODUand contains both intrachromosomal and interchromosomal information. Here, ZHGHPRQVWUDWHKRZWKLVVLJQDOFDQEHH[SORLWHGWRUHFRQVWUXFWWKHLQGLYLGXDOgenomes of microbial species present within a mixed sample. We apply this approach to two synthetic metagenome samples, successfully clustering the genome content of fungal, bacterial, and archaeal species with more than 99% DJUHHPHQWZLWKSXEOLVKHGUHIHUHQFHJHQRPHV:HDOVRVKRZWKDWWKH+L&signal can secondarily be used to create scaffolded genome assemblies of LQGLYLGXDOHXNDU\RWLFVSHFLHVSUHVHQWZLWKLQWKHPLFURELDOFRPPXQLW\ZLWKKLJKHUOHYHOVRIFRQWLJXLW\WKDQVRPHRIWKHVSHFLHVpSXEOLVKHGUHIHUHQFHJHQRPHV

  • 7UNTANGLING THE MIX This soccer-ball-like network diagram from Burton and Liachko et al. illustrates the genomes of 12 yeast species assembled from a metagenomic sequencing sample. Image courtesy of Joshua N. Burton.

  • 8INVESTIGATIONS

    The Yeast Ess1 Prolyl Isomerase Controls Swi6 and Whi5 Nuclear Localization #@UHC SDMBHN"@RR@MCQ@!@QMDR3GNL@R,#TMB@M(@M,6HKKHR @MC2SDUDM#'@MDR

    G3: Genes | Genomes | Genetics March 2014 4:523537

    EDITORS NOTE3UHYLRXVO\WKHRQO\NQRZQWDUJHWRIWKH\HDVW(VVSURO\Oisomerase was RNA polymerase II. In this work, Atencio et al. showed that (VVLVFUXFLDOIRUWKHQXFOHDUORFDOL]DWLRQRIWZRFHOOF\FOHUHJXODWRUV7KH\proposed that Ess1 induces a conformational switch within the transcription IDFWRUVpQXFOHDUWDUJHWLQJVHTXHQFHVLQUHVSRQVHWRSKRVSKRU\ODWLRQE\F\FOLQGHSHQGHQWNLQDVHV

    ABSTRACT The Ess1 prolyl isomerase from Saccharomyces cerevisiae and its human ortholog, Pin1, play critical roles in transcription by regulating 51$SRO\PHUDVH,,,QKXPDQFHOOV3LQDOVRUHJXODWHVDYDULHW\RIVLJQDOLQJSURWHLQVDQG3LQPLVH[SUHVVLRQLVOLQNHGWRVHYHUDOKXPDQGLVHDVHV7Rgain insight into Ess1/Pin1 function, we carried out a synthetic genetic array VFUHHQWRLGHQWLI\QRYHOWDUJHWVRI(VVLQ\HDVW:HLGHQWLHGSRWHQWLDOWDUJHWVRI(VVLQWUDQVFULSWLRQVWUHVVDQGFHOOF\FOHSDWKZD\V:HIRFXVHGRQWKHFHOOF\FOHUHJXODWRUV6ZLDQG:KLERWKRIZKLFKVKRZKLJKO\regulated nucleocytoplasmic shuttling during the cell cycle. Surprisingly, Ess1 did not control their transcription but instead was necessary for their nuclear localization. Ess1 associated with Swi6 and Whi5 in vivo and bound GLUHFWO\WRSHSWLGHVFRUUHVSRQGLQJWRWKHLUQXFOHDUORFDOL]DWLRQVHTXHQFHVin vitro%LQGLQJE\(VVZDVVLJQLFDQWRQO\LIWKH6ZLDQG:KLSHSWLGHVZHUHSKRVSKRU\ODWHGDW6HU3URPRWLIVWKHWDUJHWVLWHVRIF\FOLQGHSHQGHQWkinases. On the basis of these results, we propose a model in which Ess1 induces a conformational switch (cis-transLVRPHUL]DWLRQDWSKRVSKR6HU3URVLWHVZLWKLQWKHQXFOHDUWDUJHWLQJVHTXHQFHVRI6ZLDQG:KL7KLVVZLWFKwould promote nuclear entry and/or retention during late M and G1 phases and might work by stimulating dephosphorylation at these sites by the Cdc14 SKRVSKDWDVH7KLVLVWKHUVWVWXG\WRLGHQWLI\WDUJHWVRI(VVLQ\HDVWRWKHUthan RNA polymerase II.

  • 9INVESTIGATIONS

    Pattern and Distribution of Deleterious Mutations in Maize 2N@MD,DYLNTJ@MC)DEEQDX1NRR(A@QQ@

    G3: Genes | Genomes | Genetics January 2014 4:163171

    EDITORS NOTE )ROORZLQJWKHODQGPDUNGLVFRYHU\RIKHWHURVLVK\EULGYLJRULQPDL]HWKHEXONRIWKHFURSLVQRZJURZQIURPK\EULGVRILQEUHGOLQHVOne model for the extreme success of hybrid maize is that complementation masks the effects of many deleterious mutations. This work reported the results RIWKHUVWVFDQIRUGHOHWHULRXVPXWDWLRQVLQPDL]HVXJJHVWLQJDPHDQLQJIXOUROHfor complementation in heterosis.

    ABSTRACT Most nonsynonymous mutations are thought to be deleterious EHFDXVHRIWKHLUHIIHFWRQSURWHLQVHTXHQFHDQGDUHH[SHFWHGWREHUHPRYHGRUNHSWDWORZIUHTXHQF\E\WKHDFWLRQRIQDWXUDOVHOHFWLRQ1RQHWKHOHVVWKHHIIHFWRISRVLWLYHVHOHFWLRQRQOLQNHGVLWHVRUGULIWLQVPDOORULQEUHGSRSXODWLRQVPD\DOVRLPSDFWWKHHYROXWLRQRIGHOHWHULRXVDOOHOHV'HVSLWHWKHLUSRWHQWLDOWRDIIHFWFRPSOH[WUDLWSKHQRW\SHVGHOHWHULRXVDOOHOHVDUHGLIFXOWWRVWXG\SUHFLVHO\EHFDXVHWKH\DUHRIWHQDWORZIUHTXHQF\+HUHZHPDGHXVHRIJHQRPHZLGHJHQRW\SLQJGDWDWRFKDUDFWHUL]HGHOHWHULRXVYDULDQWVLQDODUJHSDQHORIPDL]HLQEUHGOLQHV:HVKRZWKDWGHVSLWHVPDOOHIIHFWLYHSRSXODWLRQVL]HVDQGLQEUHHGLQJPRVWSXWDWLYHO\GHOHWHULRXV613VDUHLQGHHGDWORZIUHTXHQFLHVZLWKLQLQGLYLGXDOJHQHWLFJURXSV:HQGWKDWJHQHVDVVRFLDWHGZLWKDQXPEHURIFRPSOH[WUDLWVDUHHQULFKHGIRUGHOHWHULRXVYDULDQWVTogether, these data are consistent with the dominance model of heterosis, LQZKLFKFRPSOHPHQWDWLRQRIQXPHURXVORZIUHTXHQF\ZHDNGHOHWHULRXVYDULDQWVFRQWULEXWHWRK\EULGYLJRU

  • 10

    INVESTIGATIONS

    Genomic and Phenotypic Characterization of a Wild Medaka Population: Towards the Establishment of an Isogenic Population Genetic Resource in Fish ,HJG@HK2OHU@JNU3GNL@R. TDQ1@UHMCQ@/DQ@U@KH(@M#TMG@L#HQJ#NKKD

    R@N%TIHX@L@ SRTRGH3NXNC@3NLNXTJH HYT8NGDH,HM@JTBGH%DKHW+NNRKH

    *HXNRGH-@QTRD$V@M!HQMDX@MC)N@BGHL6HSSAQNCS

    G3: Genes | Genomes | Genetics March 2014 4:433445

    EDITORS NOTE7KHPHGDNDLVDFHQWXU\ROGJHQHWLFPRGHORQWKHULVHDJDLQ/RQJVWXGLHGE\VFLHQWLVWVLQ-DSDQLWKDVEHHQUHGLVFRYHUHGE\WKHZLGHUUHVHDUFKFRPPXQLW\GXULQJWKHODVWGHFDGHDVDH[LEOHWRROIRUYHUWHEUDWHJHQHWLFV3DUWRIWKHPHGDNDpVDSSHDORYHULWV]HEUDVKUHODWLYHVLVLWVDPHQDELOLW\WRLQEUHHGLQJ,QWKLVZRUN6SLYDNRYDQG$XHUet al. laid the groundwork for a SODQQHGQHDULVRJHQLFSDQHORIOLQHVGHULYHGIURPDZLOGSRSXODWLRQ

    ABSTRACT Oryzias latipesPHGDNDKDVEHHQHVWDEOLVKHGDVDYHUWHEUDWHJHQHWLFPRGHOIRUPRUHWKDQDFHQWXU\DQGUHFHQWO\KDVEHHQUHGLVFRYHUHGRXWVLGHLWVQDWLYH-DSDQ7KHSRZHURIQHZVHTXHQFLQJPHWKRGVQRZPDNHVLWSRVVLEOHWRUHLQYLJRUDWHPHGDNDJHQHWLFVLQSDUWLFXODUE\HVWDEOLVKLQJDQHDULVRJHQLFSDQHOGHULYHGIURPDVLQJOHZLOGSRSXODWLRQ+HUHZHFKDUDFWHUL]HWKHgenomes of wild medaka catches obtained from a single Southern Japanese SRSXODWLRQLQ.L\RVXDVDSUHFXUVRUIRUWKHHVWDEOLVKPHQWRIDQHDULVRJHQLFSDQHORIZLOGOLQHV7KHSRSXODWLRQLVIUHHRIVLJQLFDQWGHWULPHQWDOSRSXODWLRQVWUXFWXUHDQGKDVDGYDQWDJHRXVOLQNDJHGLVHTXLOLEULXPSURSHUWLHVVXLWDEOHfor the establishment of the proposed panel. Analysis of morphometric traits LQYHUHSUHVHQWDWLYHLQEUHGVWUDLQVVXJJHVWVSKHQRW\SLFPDSSLQJZLOOEHIHDVLEOHLQWKHSDQHO,QDGGLWLRQKLJKWKURXJKSXWJHQRPHVHTXHQFLQJRIWKHVHPHGDNDVWUDLQVFRQUPVWKHLUHYROXWLRQDU\UHODWLRQVKLSVRQOLQHVRIJHRJUDSKLFVHSDUDWLRQDQGSURYLGHVIXUWKHUHYLGHQFHWKDWWKHUHKDVEHHQOLWWOHVLJQLFDQWLQWHUEUHHGLQJEHWZHHQWKH6RXWKHUQDQG1RUWKHUQPHGDNDSRSXODWLRQVLQFHWKH6RXWKHUQ1RUWKHUQSRSXODWLRQVSOLW7KHVHTXHQFHdata suggest that the Southern Japanese medaka existed as a larger older SRSXODWLRQWKDWZHQWWKURXJKDUHODWLYHO\UHFHQWERWWOHQHFNDSSUR[LPDWHO\\HDUVDJR,QDGGLWLRQZHGHWHFWSDWWHUQVRIUHFHQWSRVLWLYHVHOHFWLRQin the Southern population. These data indicate that the genetic structure of WKH.L\RVXPHGDNDVDPSOHVLVVXLWDEOHIRUWKHHVWDEOLVKPHQWRIDYHUWHEUDWHQHDULVRJHQLFSDQHODQGWKHUHIRUHLQEUHHGLQJRIOLQHVEDVHGRQWKLVpopulation has commenced. Progress of this project can be tracked at KWWSZZZHELDFXNELUQH\VUYPHGDNDUHISDQHO.

  • 11

    OLD & NEW Medaka have been kept as aquarium fish since the 17th century, with domesticated varieties in a range of colors. Body color mutants were key to early medaka research, including Tatuo Aidas 1921 GENETICS paper that was the first to demonstrate Y-linked inheritance in any organism. This 1835 illustration by Baien Mouri shows white and orange-red medaka varieties. From the National Diet Library Digital Collections, Japan, http://www.ndl.go.jp.

  • 12

    INVESTIGATIONS

    Multigenic Natural Variation Underlies Caenorhabditis elegans Olfactory Preference for the Bacterial Pathogen Serratia marcescens $KHY@ADSG$&K@SDQ,@SSGDV51NBJL@M@MC"NQMDKH@(!@QFL@MM

    G3: Genes | Genomes | Genetics February 2014 4:265276

    EDITORS NOTE C. elegans smells its way through the world, using FKHPRVHQVDWLRQWRVHHNIRRGDYRLGGDQJHUDQGQGPDWHV7KLVZRUNdissected the complex genetic architecture of preference for the odor of certain bacteria. The authors also compared two common methods for identifying QTLs, and suggested that the odor preference QTLs were more GLIFXOWWRGHWHFWZLWKUHFRPELQDQWLQEUHGOLQHVWKDQZLWKLQWURJUHVVLRQOLQHVEHFDXVHRIH[WHQVLYHHSLVWDWLFLQWHUDFWLRQV

    ABSTRACT The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We DVNHGKRZQDWXUDOJHQHWLFYDULDWLRQFRQWULEXWHVWRFKRLFHEHKDYLRUIRFXVLQJRQGLIIHUHQFHVLQROIDFWRU\SUHIHUHQFHEHKDYLRUEHWZHHQWZRZLOGW\SHC. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The GLYHUJHQW+DZDLLDQVWUDLQ&%KDVDZHDNHUDWWUDFWLRQWRSerratia than the 1VWUDLQDQGWKLVEHKDYLRUDOGLIIHUHQFHKDVDFRPSOH[JHQHWLFEDVLV$WOHDVWWKUHHTXDQWLWDWLYHWUDLWORFL47/VIURPWKH&%+DZDLLVWUDLQ+:ZLWKlarge effect sizes lead to reduced Serratia preference when introgressed into DQ1JHQHWLFEDFNJURXQG7KHVHORFLLQWHUDFWDQGKDYHHSLVWDWLFLQWHUDFWLRQVwith at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the DUFKLWHFWXUHRIPDPPDOLDQPHWDEROLFDQGEHKDYLRUDOWUDLWV

  • 13

    INVESTIGATIONS

    Sequencing, Assembling, and Correcting Draft Genomes Using Recombinant Populations ,@SSGDV6'@GM2HLN59G@MF@MC+DNMHD",NXKD

    G3: Genes | Genomes | Genetics April 2014 4:669679

    EDITORS NOTE$VVHPEOLQJQRQPRGHORUJDQLVPJHQRPHVde novo is challenging. Current methods produce thousands of assembled pieces, none RIZKLFKDUHDVVLJQHGWRFKURPRVRPHVDQGPDQ\RIZKLFKKDYHHUURUV7KHPHWKRGGHVFULEHGLQWKLVZRUNVROYHVERWKRIWKHVHSUREOHPVE\VHTXHQFLQJDUHFRPELQDQWSRSXODWLRQZKLFKDOORZVDVVHPEO\RIDKLJKTXDOLW\JHQRPHVLPXOWDQHRXVZLWKKLJKFRQGHQFHPDUNHULGHQWLFDWLRQDQG47/PDSSLQJ

    ABSTRACT Current de novoZKROHJHQRPHVHTXHQFLQJDSSURDFKHVRIWHQDUHLQDGHTXDWHIRURUJDQLVPVODFNLQJVXEVWDQWLDOSUHH[LVWLQJJHQHWLFGDWDProblems with these methods are manifest as: large numbers of scaffolds that DUHQRWRUGHUHGZLWKLQFKURPRVRPHVRUDVVLJQHGWRLQGLYLGXDOFKURPRVRPHVPLVDVVHPEO\RIDOOHOLFVHTXHQFHVDVVHSDUDWHORFLZKHQWKHLQGLYLGXDOVEHLQJVHTXHQFHGDUHKHWHUR]\JRXVDQGWKHFROODSVHRIUHFHQWO\GXSOLFDWHGVHTXHQFHVLQWRDVLQJOHORFXVUHJDUGOHVVRIOHYHOVRIKHWHUR]\JRVLW\+HUHZHpropose a new approach for producing de novo ZKROHJHQRPHVHTXHQFHVuZKLFKZHFDOOUHFRPELQDQWSRSXODWLRQJHQRPHFRQVWUXFWLRQuWKDWVROYHVPDQ\of the problems encountered in standard genome assembly and that can be DSSOLHGLQPRGHODQGQRQPRGHORUJDQLVPV2XUDSSURDFKWDNHVDGYDQWDJHRIQH[WJHQHUDWLRQVHTXHQFLQJWHFKQRORJLHVWRVLPXOWDQHRXVO\EDUFRGHDQGVHTXHQFHDODUJHQXPEHURILQGLYLGXDOVIURPDUHFRPELQDQWSRSXODWLRQ7KHVHTXHQFHVRIDOOUHFRPELQDQWVFDQEHFRPELQHGWRFUHDWHDQLQLWLDOde novo DVVHPEO\IROORZHGE\WKHXVHRILQGLYLGXDOUHFRPELQDQWJHQRW\SHVWRFRUUHFWassembly splitting/collapsing and to order and orient scaffolds within linkage groups. Recombinant population genome construction can rapidly accelerate WKHWUDQVIRUPDWLRQRIQRQPRGHOVSHFLHVLQWRJHQRPHHQDEOHGV\VWHPVE\VLPXOWDQHRXVO\SURGXFLQJDKLJKTXDOLW\JHQRPHDVVHPEO\DQGSURYLGLQJJHQRPLFWRROVHJKLJKFRQGHQFHVLQJOHQXFOHRWLGHSRO\PRUSKLVPVIRUimmediate applications. In populations segregating for important functional WUDLWVWKLVDSSURDFKDOVRHQDEOHVVLPXOWDQHRXVPDSSLQJRITXDQWLWDWLYHWUDLWORFLWe demonstrate our method using simulated Illumina data from a recombinant population of Caenorhabditis elegans and show that the method can produce a KLJKGHOLW\KLJKTXDOLW\JHQRPHDVVHPEO\IRUERWKSDUHQWVRIWKHFURVV

  • 14

    INVESTIGATIONS

    Distinct and Predictive Histone Lysine Acetylation Patterns at Promoters, Enhancers, and Gene Bodies -HRG@1@I@FNO@K)@RNM$QMRS/Q@CHOS@1@X)HD6T,HBG@DK9G@MF,@MNKHR*DKKHR

    @MC!HMF1DM

    G3: Genes | Genomes | Genetics1RYHPEHUt

    EDITORS NOTE Because different types of histone lysine acetylations WHQGWRFRRFFXULQWKHJHQRPHWKH\DUHJHQHUDOO\FRQVLGHUHGUHGXQGDQW7KLVZRUNGHVFULEHGSUHGLFWLYHSDWWHUQVRIKLVWRQHDFHW\ODWLRQVXJJHVWLQJWKH\KDYHGLYHUVHDQGGLVWLQFWIXQFWLRQDOUROHV%HWWHUXQGHUVWDQGLQJWKHVHJHQRPLFSDWWHUQVFRXOGUHYHDOVWUDWHJLHVIRULQFUHDVLQJWKHVSHFLFLW\RIKLVWRQHGHDFHW\ODVHEDVHG+,9DQGFDQFHUWUHDWPHQWV

    ABSTRACT,QHXNDU\RWLFFHOOVKLVWRQHO\VLQHVDUHIUHTXHQWO\DFHW\ODWHG+RZHYHUXQOLNHPRGLFDWLRQVVXFKDVPHWK\ODWLRQVKLVWRQHDFHW\ODWLRQPRGLFDWLRQVDUHRIWHQFRQVLGHUHGUHGXQGDQW$VVXFKWKHIXQFWLRQDOUROHVRIGLVWLQFWKLVWRQHDFHW\ODWLRQVDUHODUJHO\XQH[SORUHG:HSUHYLRXVO\GHYHORSHGDQDOJRULWKP5)(&6WRGLVFRYHUWKHPRVWLQIRUPDWLYHPRGLFDWLRQVDVVRFLDWHGZLWKWKHFODVVLFDWLRQRUSUHGLFWLRQRIPDPPDOLDQHQKDQFHUV+HUHZHXVHGWKLVWRROWRLGHQWLI\WKHPRGLFDWLRQVPRVWSUHGLFWLYHRISURPRWHUVHQKDQFHUVDQGJHQHbodies. Unexpectedly, we found that histone acetylation alone performs well in GLVWLQJXLVKLQJWKHVHXQLTXHJHQRPLFUHJLRQV)XUWKHUZHIRXQGWKHDVVRFLDWLRQof characteristic acetylation patterns with genic regions and association of FKURPDWLQVWDWHZLWKVSOLFLQJ7DNHQWRJHWKHURXUZRUNXQGHUVFRUHVWKHGLYHUVHIXQFWLRQDOUROHVRIKLVWRQHDFHW\ODWLRQLQJHQHUHJXODWLRQDQGSURYLGHVVHYHUDOtestable hypotheses to dissect these roles.

  • 15

    INVESTIGATIONS

    The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now 2S@BH@1$MFDK%QDC2#HDSQHBG#H@MM@&%HRJ&@HK!HMJKDX1@L@!@K@JQHRGM@M

    ,@QH@""NRS@MYN2DKHM@2#VHFGS!DMI@LHM"'HSY*@KO@M@*@QQ@1NADQS2-@RG

    2GT@H6DMF$CHSG#6NMF/@TK+KNXC,@QDJ22JQYXODJ2ST@QS1,HX@R@SN

    ,@SS2HLHRNM@MC),HBG@DK"GDQQX

    G3: Genes | Genomes | Genetics March 2014 4:389398

    EDITORS NOTE$IWHU\HDUVWKHUVWHXNDU\RWLFJHQRPHHYHUVHTXHQFHGZDVXSJUDGHGWRDQHZUHIHUHQFHVHTXHQFHLQ%HVLGHVGHVFULELQJWKHUHVHTXHQFLQJDQGDQQRWDWLRQXSGDWHWKLVDUWLFOHGHWDLOVWKHJHQHDORJLFDOKLVWRU\RIWKH6&UHIHUHQFHVWUDLQDQGWKHKLVWRU\RIWKHHDUO\VHTXHQFLQJefforts during the 1990s.

    ABSTRACT The genome of the budding yeast Saccharomyces cerevisiae was WKHUVWFRPSOHWHO\VHTXHQFHGIURPDHXNDU\RWH,WZDVUHOHDVHGLQDVWKHwork of a worldwide effort of hundreds of researchers. In the time since, the \HDVWJHQRPHKDVEHHQLQWHQVLYHO\VWXGLHGE\JHQHWLFLVWVPROHFXODUELRORJLVWVDQGFRPSXWDWLRQDOVFLHQWLVWVDOORYHUWKHZRUOG0DLQWHQDQFHDQGDQQRWDWLRQRIWKHJHQRPHVHTXHQFHKDYHORQJEHHQSURYLGHGE\WKHSaccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C UHIHUHQFHJHQRPHVHTXHQFHZDVXSGDWHGUHFHQWO\LQLWVUVWPDMRUXSGDWHVLQFH7KHQHZYHUVLRQFDOOHGq6&rZDVGHWHUPLQHGIURPDVLQJOH\HDVWFRORQ\XVLQJPRGHUQVHTXHQFLQJWHFKQRORJLHVDQGVHUYHVDVWKHDQFKRUIRUIXUWKHULQQRYDWLRQVLQ\HDVWJHQRPLFVFLHQFH

  • 16

    INVESTIGATIONS

    An X-Linked Sex Ratio Distorter in Drosophila simulans That Kills or Incapacitates Both Noncarrier Sperm and Sons 6HKKH@L11HBD

    G3: Genes | Genomes | Genetics October 2014 4:18371848

    EDITORS NOTE$QHZIRUPRIJHQRPLFFRQLFWZDVUHFHQWO\SUHGLFWHGE\WKHDXWKRURIWKLVZRUNVH[XDOO\DQWDJRQLVWLF]\JRWLFGULYHRIWKHVH[FKURPRVRPHV6$='6$='RFFXUVZKHQJHQHVRQRQHVH[FKURPRVRPHLQan XY father kill the sex of offspring that does not carry the killer chromosome. 7KLVZRUNSURYLGHVHYLGHQFHIRUWKHRSHUDWLRQRI6$='LQWKHPRGHODrosophila simulans.

    ABSTRACT*HQRPLFFRQLFWRFFXUVZKHQDJHQRPLFFRPSRQHQWJDLQVDUHSURGXFWLYHDGYDQWDJHDWWKHH[SHQVHRIWKHRUJDQLVPDVDZKROH;OLQNHGVHJUHJDWLRQGLVWRUWHUVNLOORULQFDSDFLWDWH

  • 17

    MUTANT SCREEN REPORT

    A Genetic Screen Based on in Vivo RNA Imaging Reveals Centrosome-Independent Mechanisms for Localizing gurken Transcripts in Drosophila 1HOODH'@X@RGH2,@QJ6@HMVQHFGS2NOGHD)+HCCDKK2GDDM@,/HMBGHM

    2ST@QS'NQRVDKK@MC#@UHC(RG'NQNVHBY

    G3: Genes | Genomes | Genetics April 2014 4:749760

    EDITORS NOTE Transport of gurken mRNA along microtubules establishes WKHPDMRUERG\D[HVRIWKHGHYHORSLQJDrosophila oocyte. This Mutant Screen Report describes a screen for maternal mutations that disrupt localization of XRUHVFHQWO\ODEHOHGgurkenDQGSURYLGHVHYLGHQFHRIORFDOL]DWLRQPHFKDQLVPVindependent of the centrosome.

    7KHVHDUWLFOHVSUHVHQWWKHUHVXOWVRIPXWDQWVFUHHQVLQDSHHUUHYLHZHGIRUPDWGHVLJQHGWRPDNHLWIDVWDQGHDV\IRUDXWKRUVWRVXEPLWIRUUHYLHZHUVto rapidly assess, and for readers to easily understand the screen and its UHVXOWV7KH5HSRUWVIXOOORQHRI*pVJRDOVWRPDNHXVHIXOGDWDDYDLODEOHWRWKHFRPPXQLW\DVTXLFNO\DVSRVVLEOH

    ABSTRACT:HKDYHVFUHHQHGFKURPRVRPHDUP/IRUHWK\OPHWKDQHVXOIRQDWHLQGXFHGPXWDWLRQVWKDWGLVUXSWORFDOL]DWLRQRIXRUHVFHQWO\ODEHOHGgurken (grk) messenger (m)RNA, whose transport along microtubules establishes both major ERG\D[HVRIWKHGHYHORSLQJDrosophilaRRF\WH5DSLGLGHQWLFDWLRQRIFDXVDWLYHPXWDWLRQVE\VLQJOHQXFOHRWLGHSRO\PRUSKLVPUHFRPELQDWLRQDOPDSSLQJDQGZKROHJHQRPLFVHTXHQFLQJDOORZHGXVWRGHQHQLQHFRPSOHPHQWDWLRQJURXSVaffecting grk mRNA localization and other aspects of oogenesis, including alleles of elg1, scaf6, quemao, nudE, Tsc2/gigas, rasp, and Chd5/WrbDQGVHYHUDOQXOOalleles of the armitage3LZLSDWKZD\JHQH$QDO\VLVRIDQHZO\LQGXFHGkinesin light chainDOOHOHVKRZVWKDWNLQHVLQPRWRUDFWLYLW\LVUHTXLUHGIRUERWKHIFLHQWgrk mRNA localization and oocyte centrosome integrity. We also show that initiation of the dorsoanterior localization of grk mRNA precedes centrosome localization, VXJJHVWLQJWKDWPLFURWXEXOHVHOIRUJDQL]DWLRQFRQWULEXWHVWREUHDNLQJD[LDOV\PPHWU\WRJHQHUDWHDXQLTXHGRUVRYHQWUDOD[LV

  • 18

    INVESTIGATIONS

    Revised Annotations, Sex-Biased Expression, and Lineage-Specific Genes in the Drosophila melanogaster Group 1DADJ@G+1NFDQR+HMF2G@N)@KD@K22@MI@J/DSDQ MCNKE@SSN@MC*DUHM13GNQMSNM

    G3: Genes | Genomes | Genetics December 2014 4:23452351

    EDITORS NOTE DrosophilaVSHFLHVSURYLGHH[FHOOHQWPRGHOVIRUFRPSDUDWLYHJHQRPLFVEXWDVLGHIURPD. melanogaster, genome annotations DUHQRW\HWFRPSUHKHQVLYHRIWHQODFNLQJLQIRUPDWLRQRQOLQHDJHVSHFLFJHQHVDOWHUQDWLYHLVRIRUPVDQGXQWUDQVODWHGUHJLRQV5RJHUVet al. used WLVVXHDQGVH[VSHFLF51$VHTXHQFLQJGDWDWRVLJQLFDQWO\LPSURYHJHQHPRGHOVIRUVHYHUDONH\Drosophila reference genomes.

    ABSTRACT+HUHZHSURYLGHUHYLVHGJHQHPRGHOVIRUD. ananassae, D. yakuba, and D. simulans, which include untranslated regions and empirically YHULHGLQWURQH[RQERXQGDULHVDVZHOODVRUWKRORJJURXSVLGHQWLHGXVLQJDIX]]\UHFLSURFDOEHVWKLWEODVWFRPSDULVRQ8VLQJWKHVHUHYLVHGDQQRWDWLRQVZHSHUIRUPGLIIHUHQWLDOH[SUHVVLRQWHVWLQJXVLQJWKHFXILQNVVXLWHWRSURYLGHDEURDGRYHUYLHZRIGLIIHUHQWLDOH[SUHVVLRQEHWZHHQUHSURGXFWLYHWLVVXHVDQGthe carcass. We identify thousands of genes that are differentially expressed across tissues in D. yakuba and D. simulans, with roughly 60% agreement in expression patterns of orthologs in D. yakuba and D. simulans. We identify VHYHUDOFDVHVRISXWDWLYHSRO\FLVWURQLFWUDQVFULSWVSRLQWLQJWRDFRPELQDWLRQRIWUDQVFULSWLRQDOUHDGWKURXJKLQWKHJHQRPHDVZHOODVSXWDWLYHJHQHIXVLRQDQGVVLRQHYHQWVDFURVVWD[D:HIXUWKHUPRUHLGHQWLI\KXQGUHGVRIOLQHDJHVSHFLFJHQHVLQHDFKVSHFLHVZLWKQREODVWKLWVDPRQJWUDQVFULSWVRIDQ\RWKHUDrosophila species, which are candidates for neofunctionalized proteins and a SRWHQWLDOVRXUFHRIJHQHWLFQRYHOW\

  • 19

    INVESTIGATIONS

    Performance of High-Throughput Sequencing in Complete Size-Spectrum Genetic Variation Discovery MCX6HMF"GTM/@MF)DEEQDX1,@B#NM@KC1X@M*"8TDM5@MDRR@,'@XDR

    @MC2SDOGDM62BGDQDQ

    G3: Genes | Genomes | Genetics January 2014 4:6365

    EDITORS NOTE+LJKWKURXJKSXWQH[WJHQHUDWLRQVHTXHQFLQJLVLQFUHDVLQJO\used to identify mutations in disease studies. But can the short reads generated by these methods and existing annotation tools detect the full spectrum of KXPDQJHQRPLFYDULDWLRQ"3DQJet al.V\VWHPDWLFDOO\FRPSDUHGKXPDQKLJKWKURXJKSXWVHTXHQFLQJGDWDWRD6DQJHUVHTXHQFHGUHIHUHQFHDQGIRXQGWKDWPDQ\LQGHOVDQGFRS\QXPEHUYDULDQWVZHUHPLVVHGE\FXUUHQWPHWKRGV

    ABSTRACT:HREVHUYHGWKDWFXUUHQWKLJKWKURXJKSXWVHTXHQFLQJDSSURDFKHVRQO\GHWHFWHGDIUDFWLRQRIWKHIXOOVL]HVSHFWUXPRILQVHUWLRQVGHOHWLRQVDQGFRS\QXPEHUYDULDQWVFRPSDUHGZLWKDSUHYLRXVO\SXEOLVKHG6DQJHUVHTXHQFHGKXPDQJHQRPH7KHVHQVLWLYLW\IRUGHWHFWLRQZDVWKHORZHVWLQWKHWRESVL]HUDQJHDQGDW'1$UHSHDWVZLWKFRS\number gains harder to delineate than losses. We discuss strategies for GLVFRYHULQJWKHIXOOVSHFWUXPRIJHQHWLFYDULDWLRQQHFHVVDU\IRUGLVHDVHassociation studies.

  • 20

    INVESTIGATIONS

    The Genetic Architecture of Seed Composition in Soybean Is Refined by Genome-Wide Association Scans Across Multiple Populations )TRSHM-5@TFGM1@MC@KK+-DKRNM0HIH@M2NMF/DQQX!"QDF@M@MC9DMFKT+H

    G3: Genes | Genomes | Genetics1RYHPEHUt

    EDITORS NOTE Soybean is recognized as a major contributor to worldwide IRRGSURGXFWLRQDQGDVLJQLFDQWVRXUFHRIELRGLHVHO7KHVHDXWKRUVXVHGKLJKGHQVLW\JHQRW\SLQJGDWDIURPWKH86'$6R\EHDQ*HUPSODVP&ROOHFWLRQVWRH[SORUHWKHXWLOLW\RIJHQRPHZLGHDVVRFLDWLRQVFDQVLQVR\EHDQDQGWRH[DPLQHWKHJHQHWLFDUFKLWHFWXUHDQGUHQH47/VIRUNH\HFRQRPLFWUDLWVVHHGSURWHLQDQGRLOOHYHOV

    ABSTRACT6R\EHDQRLODQGPHDODUHPDMRUFRQWULEXWRUVWRZRUOGZLGHIRRGSURGXFWLRQ&RQVHTXHQWO\WKHJHQHWLFEDVLVIRUVR\EHDQVHHGFRPSRVLWLRQKDVEHHQLQWHQVHO\VWXGLHGXVLQJIDPLO\EDVHGPDSSLQJ3RSXODWLRQEDVHGPDSSLQJDSSURDFKHVLQWKHIRUPRIJHQRPHZLGHDVVRFLDWLRQ*:$VFDQVKDYHEHHQDEOHWRUHVROYHORFLFRQWUROOLQJPRGHUDWHO\FRPSOH[TXDQWLWDWLYHtraits (QTL) in numerous crop species. Yet, it is still unclear how soybeans XQLTXHSRSXODWLRQKLVWRU\ZLOODIIHFW*:$VFDQV8VLQJRQHRIWKHSRSXODWLRQVin this study, we simulated phenotypes resulting from a range of genetic architectures. We found that with a heritability of 0.5, ~100% and ~33% of the DQGVLPXODWHG47/FDQEHUHFRYHUHGUHVSHFWLYHO\ZLWKDIDOVHSRVLWLYHrate of less than ~610 per marker tested. Additionally, we demonstrated that FRPELQLQJLQIRUPDWLRQIURPPXOWLORFXVPL[HGPRGHOVDQGFRPSUHVVHGOLQHDUPL[HGPRGHOVLPSURYHV47/LGHQWLFDWLRQDQGLQWHUSUHWDWLRQ:HDSSOLHGWKHVHLQVLJKWVWRH[SORULQJVHHGFRPSRVLWLRQLQVR\EHDQUHQLQJWKHOLQNDJHJURXS,(chromosome 20) protein QTL and identifying additional oil QTL that may allow some decoupling of highly correlated oil and protein phenotypes. Because WKHYDOXHRISURWHLQPHDOLVFORVHO\UHODWHGWRLWVHVVHQWLDODPLQRDFLGSUROHwe attempted to identify QTL underlying methionine, threonine, cysteine, DQGO\VLQHFRQWHQW0XOWLSOH47/ZHUHIRXQGWKDWKDYHQRWEHHQREVHUYHGLQIDPLO\EDVHGPDSSLQJVWXGLHVDQGHDFKWUDLWH[KLELWHGDVVRFLDWLRQVDFURVVmultiple populations. Chromosomes 1 and 8 contain strong candidate alleles IRUHVVHQWLDODPLQRDFLGLQFUHDVHV2YHUDOOZHSUHVHQWWKHVHDQGDGGLWLRQDOdata that will be useful in determining breeding strategies for the continued LPSURYHPHQWRIVR\EHDQpVQXWULHQWSRUWIROLR

  • IMMUNE REPERTOIRE In 2014, the GSA journals launched a contest inviting image submissions related to genetics and genomics. The winning entry was created by Jian Han, of the HudsonAlpha Institute for Biotechnology. It depicts an imprint tree map, with each rectangle representing a unique gene combination of B or T cell receptors, and the ability to defend against a particular antigen. The larger the rectangle, the more expressed the gene combination. Imprints provide not only a quick graphical representation of the overall diversity of an individuals immune repertoire, but are also personalized artwork.

    21

    COVER ART CONTEST WINNER

  • 22

    INVESTIGATIONS

    Genome Sequence of Saccharomyces carlsbergensis, the Worlds First Pure Culture Lager Yeast MCQD@6@KSGDQ M@'DRRDKA@QS@MC)QFDM6DMCK@MC

    G3: Genes | Genomes | Genetics May 2014 4:783793

    EDITORS NOTE Crisp lagers taste different from robust ales because they DUHEUHZHGZLWKDFROGDGDSWHGK\EULGWKHODJHU\HDVW7KLVDUWLFOHGHVFULEHGWKHJHQRPHDQGHYROXWLRQRISaccharomyces carlsbergensis, the strain that NLFNVWDUWHGWKHLQGXVWULDOVFDOHODJHUEXVLQHVVLQ

    ABSTRACT/DJHU\HDVWEHHUSURGXFWLRQZDVUHYROXWLRQL]HGE\WKHLQWURGXFWLRQRISXUHFXOWXUHVWUDLQV7KHUVWHVWDEOLVKHGODJHU\HDVWVWUDLQLVknown as the bottom fermenting Saccharomyces carlsbergensis, which was originally termed Unterhefe No. 1 by Emil Chr. Hansen and has been used in production in since 1883. S. carlsbergensisEHORQJVWRJURXS,6DD]W\SHlager yeast strains and is better adapted to cold growth conditions than JURXS,,)URKEHUJW\SHODJHU\HDVWVe.g., the Weihenstephan strain WS34/70. +HUHZHVHTXHQFHGS. carlsbergensisXVLQJQH[WJHQHUDWLRQVHTXHQFLQJtechnologies. Lager yeasts are descendants from hybrids formed between a S. cerevisiae parent and a parent similar to S. eubayanus. Accordingly, the S. carlsbergensis0EJHQRPHLVVXEVWDQWLDOO\ODUJHUWKDQWKHMb S. cerevisiaeJHQRPH%DVHGRQWKHVHTXHQFHVFDIIROGVV\QWHQ\WRthe S. cerevisiae genome, and by using directed polymerase chain reaction for gap closure, we generated a chromosomal map of S. carlsbergensis FRQVLVWLQJRIXQLTXHFKURPRVRPHV:HSUHVHQWHYLGHQFHIRUJHQRPHDQGFKURPRVRPHHYROXWLRQZLWKLQS. carlsbergensisYLDFKURPRVRPHORVVDQGORVVRIKHWHUR]\JRVLW\VSHFLFDOO\RISDUWVGHULYHGIURPWKHS. cerevisiae SDUHQW%DVHGRQRXUVHTXHQFHGDWDDQGYLDXRUHVFHQFHDFWLYDWHGFHOOsorting analysis, we determined the ploidy of S. carlsbergensis. This inferred that this strain is basically triploid with a diploid S. eubayanus and haploid S. cerevisiae genome content. In contrast the Weihenstephan strain, ZKLFKZHUHVHTXHQFHGLVHVVHQWLDOO\WHWUDSORLGFRPSRVHGRIWZRGLSORLGS. cerevisiae and S. eubayanusJHQRPHV%DVHGRQFRQVHUYHGWUDQVORFDWLRQVbetween the parental genomes in S. carlsbergensis and the Weihenstephan VWUDLQZHSURSRVHDMRLQWHYROXWLRQDU\DQFHVWU\IRUODJHU\HDVWVWUDLQV

  • 23

    WORMS IN THE FIELD The nematode Caenorhabditis remanei is an obligate outcrosser with separate males (fanned tail) and females (pointed tail). In contrast to its primarily self-reproducing relative, C. elegans, natural populations of C. remanei display large amounts of genetic variation, providing an ideal model system for capitalizing on functional knowledge gained from C. elegans for use in studies of molecular population genetics. Image courtesy of Kristin Sikkink.

    1DBDMS&KNA@K2DKDBSHUD2VDDONMSGD@FD/GNROG@SHCXKHMNRHSNK

    .'*HM@RD1DFTK@SNQNESGD(MRTKHM+HJD2HFM@KHMF/@SGV@X6HSGHM

    Caenorhabditis remanei 5LFKDUG-RYHOLQ-HQQLIHU6&RPVWRFN$VKHU'&XWWHUDQG3DWULFN&3KLOOLSVG3: Genes | Genomes | Genetics June 2014 4:11231133

    1@OHC$UNKTSHNMNE/GDMNSXOHB/K@RSHBHSX@MC2GHESHMF3GQDRGNKCRNE

    &DMDSHB RRHLHK@SHNMHMSGD-DL@SNCDCaenorhabditis remanei Kristin L. Sikkink, Rose M. Reynolds, Catherine M. Ituarte, William A. Cresko, and Patrick C. PhillipsG3: Genes | Genomes | Genetics June 2014 4:11031112

  • 24

    MULTIPARENTAL POPULATIONS

    In September 2014, the GSA journals launched an ongoing special collection featuring articles on QTL mapping in multiparental populations (MPPs). We continue to welcome submissions of both experimental and methodological FRQWULEXWLRQVLQDOOW\SHVRIRUJDQLVPV3XEOLVKLQJLQWKHFROOHFWLRQZLOOJLYHyour article greater exposure, both to prominent researchers working with MPPs and to the wider readership of GENETICS and G3.

    GSSOVVVFDMDSHBRNQFRHSDLHRBLTKSHO@QDMS@K>ONOTK@SHNMRWGSLK

    ,DSGNCR

    ,TKSHOKD0T@MSHS@SHUD3Q@HS M@KXRHR4RHMF!@XDRH@M-DSVNQJR Scutari et al. Genetics September 2014 198:129137

    6GNKD&DMNLD M@KXRHRNE,TKSHDMUHQNMLDMSNQ,TKSHSQ@HS03+HM, &(" Arunas P. Verbyla et al. G3: Genes | Genomes | Genetics September 2014 4:15691584

    0T@MSHS@SHUD3Q@HS+NBTR,@OOHMF,DSGNCRENQ#HUDQRHSX.TSAQDC,HBD Gatti et al. G3: Genes | Genomes | Genetics September 2014 4:16231633

    4RDETKMDRRNE,TKSHO@QDMS@K/NOTK@SHNMRNE,@HYDZea mays+ENQ&DMNLD!@RDC/QDCHBSHNM Lehermeier et al. Genetics September 2014 198:316

    1- 2DP KHFMLDMSSN(MCHUHCT@KHYDC&DMNLDR(LOQNUDR3Q@MRBQHOS ATMC@MBD

    $RSHL@SDRHM,TKSHO@QDMS/NOTK@SHNMR Munger et al. Genetics September 2014 198:5973

    1@OHC(CDMSHB@SHNMNE,@INQ$EEDBS&DMDR4RHMFSGD"NKK@ANQ@SHUD"QNRR Ram et al. Genetics September 2014 198:7586

    &DMDQ@K,NCDKHMF%Q@LDVNQJENQ&DMNLD [email protected],TKSHO@QDMS@K

    /NOTK@SHNMR =KHQJet al. Genetics September 2014 198:87101

    'HFG1DRNKTSHNM&DMDSHB,@OOHMFNE"NLOKDW3Q@HSREQNL@"NLAHMDC M@KXRHRNE

    F2@MC CU@MBDC(MSDQBQNRR,HBD Parker et al. Genetics September 2014 198:103116

    "G@Q@BSDQHYHMF4MBDQS@HMSXHM'HFG#DMRHSX,@OREQNL,TKSHO@QDMS@K/NOTK@SHNMR Ahfock et al. Genetics September 2014 198:117128

    !@XDRH@M,NCDKHMFNE'@OKNSXOD$EEDBSRHM,TKSHO@QDMS/NOTK@SHNMR =KDQJet al. Genetics September 2014 198:139156

  • /K@MSR FQHBTKSTQD

    +HMJ@FD#HRDPTHKHAQHTLVHSG+HMJ@FD M@KXRHRNE,TKSHKHMD"QNRRDR1DUD@KR

    #HEEDQDMS,TKSH@KKDKHB03+ENQ'XAQHC/DQENQL@MBDHMSGD%KHMS@MC#DMS'DSDQNSHB

    &QNTORNE,@HYD Giraud et al. Genetics December 2014 198:17171734

    3GD&DMDSHB!@RHRNE-@STQ@K5@QH@SHNMHM2DDC2HYD@MC2DDC-TLADQ@MC3GDHQ

    [email protected] thaliana, &("+HMDR Gnan et al. Genetics December 2014 198:17511758

    M$HFGS/@QDMS,TKSHO@QDMS CU@MBDC&DMDQ@SHNM(MSDQ"QNRR/NOTK@SHNMENQ

    6HMSDQ2NVM6GD@S"QD@SHNM/QNODQSHDR@MC5@KHC@SHNM Mackay et al. G3: Genes | Genomes | Genetics September 2014 4:16031610

    CTKS/K@MS#DUDKNOLDMSHM3QHSHB@KD3QHSHBNRDB@KD6HSSL@BJ(R"NMSQNKKDCAX

    #XM@LHB&DMDSHB/@SSDQMRNE1DFTK@SHNM Wrschum et al. G3: Genes | Genomes | Genetics September 2014 4:15851591

    ,TKSHO@QDMS@K,@OOHMFNE/K@MS'DHFGS@MC%KNVDQHMF3HLD03+HM/@QSH@KKX

    (RNFDMHB2NQFGTL%@LHKHDR Higgins et al. G3: Genes | Genomes | Genetics September 2014 4:15931602

    3GD&DMDSHB QBGHSDBSTQDNE,@HYDZea mays+*DQMDK6DHFGS#DSDQLHM@SHNM $OYDUH]3UDGRet al. G3: Genes | Genomes | Genetics September 2014 4:16111621

    MHL@KR,DCHB@K1DRD@QBG

    'HFG1DRNKTSHNM&DMDSHB,@OOHMFHMSGD#HUDQRHSX.TSAQDC,NTRD/NOTK@SHNM

    (CDMSHDRApobec1@R@"@MCHC@SD&DMDENQ SGDQNRBKDQNRHR Smallwood et al. G3: Genes | Genomes | Genetics December 2014 4:23532363

    &DMDSHB1DFTK@SHNMNEZfp30"7"+@MC-DTSQNOGHKHB(M@LL@SHNMHM,TQHMD+TMF Rutledge et al. Genetics October 2014 198:735745

    (CDMSHB@SHNMNE@-NUDK&DMDENQ#H@ADSHB3Q@HSRHM1@SR,HBD@MC'TL@MR Tsaih et al. Genetics September 2014 198:1729

    4RHMFDrosophila melanogaster3N(CDMSHEX"GDLNSGDQ@OX3NWHBHSX&DMDR King et al. Genetics September 2014 198:3143

    %HMD,@OOHMF-HBNSHMD1DRHRS@MBD+NBHHMDrosophila4RHMF@,TKSHO@QDMS CU@MBDC&DMDQ@SHNM(MSDQ"QNRR/NOTK@SHNM Marriage et al. Genetics September 2014 198:4557

    25

  • Why publish in GENETICS & G3?

    Fast Decisions, Fast Access

    Tired of reformatting manuscripts? We welcome initial submissions in any format DQGLPSRVHQROLPLWVRQOHQJWKJXUHVRUVXSSOHPHQWDOLQIRUPDWLRQ3OXVZHanswer pre-submission inquiries within days, and can even fast-track handling in some circumstances.

    Within days of initial manuscript submission, we will let you know whether the manuscript will be sent for review. For reviewed manuscripts, the editors strive to reach a decision in less than 30 days. For revised papers, more than 90% are accepted without an additional round of reviews.

    'HFG0T@KHSX1DUHDV/DDQ$CHSNQR

    Ever struggled with an unclear decision letter or reviews that dont give you a clue about where to start your revision? Our journals are known for providing insightful and helpful reviews.

    Your manuscripts will be handled by practicing scientists like you, who understand IURPH[SHULHQFHZKDWLWWDNHVWRWHOODVLJQLFDQWVWRU\WRFUHDWHDXVHIXOPHWKRGor resource, or to extract meaning from large datasets. Rather than simply tally reviewer votes, your editor synthesizes the reviews into a single, clear decision letter that offers guidance and explains rationales for all decisions, helping to improve your papers impact.

    4IMETORSTDECISION!BOUTAMONTH

    Initial call on whether to send for review takes just days.

    At least TWOEDITORS consult on every decision.

    #ONSOLIDATEDCLEARFEEDBACKFROMYOUREDITOR

    'HFLVLRQOHWWHUSDUVHVUHYLHZVWRRIIHUVSHFLF guidance for revisions.

    Average time from submission to acceptance is LESSTHANWEEKS

  • 2HRSDQ)[email protected]@MREDQ

    If you submit a manuscript to GENETICS that reports high-quality and XVHIXOQGLQJVuEXWODFNVWKHEURDGDSSHDOVLJQLFDQFHRUQRYHOW\RIa published GENETICS articleyou may be offered a transfer to G3. This seamless process either guarantees review at G3, or G3 editors will use the GENETICS reviews to offer a decision within days.

    ESDQ BBDOS@MBD

    Within days, manuscripts are published Early Online, indexed in PubMed, and available to colleagues. You may be selected for highlights in GENETICS, cover art, press releases, promotion on blogs, social media, and other outreach. We enhance discovery and use of your research, which in turn increases its impact.

    "NLLTMHSX2TOONQS

    Our journals are run by and for scientists under the aegis of the Genetics Society of America. GSA represents us, advocates for us, convenes us, publicizes us, provides educational resources, and fosters our work.

    GENETICS and G3 have long been committed to integrating with community resources. We recently partnered with Cold Spring Harbor Laboratories to enable seamless deposits of manuscripts from GENETICS and G3 submission systems straight into bioRxiv, and have for years supported arXiv deposits. Articles feature links to model organism databases like SGD, FlyBase, and WormBase. In 2015, were providing custom templates for authors who use LaTex, saving them time at submission.

    Access to Data

    Our data policy, instituted in 2009, requires that all primary data DQGVRXUFHFRGHDVVRFLDWHGZLWKWKHPDQXVFULSWpVQGLQJVPXVWEHpublicly available, either as supplemental information or in a public repository like Dryad, FigShare, and GenBank. Besides providing everything needed for replication, this policy allows your research to KDYHWKHJUHDWHVWSRVVLEOHLPSDFWDQGWRHQVXUHWKDW\RXUQGLQJVwill be used for years to come.

    1RWVXUHLI\RXUZRUNLVDJRRGWIRURXUMRXUQDOV"7EWELCOMEPRESUBMISSIONINQUIRIES

    Button 26: Button 41: Button 43: Button 44: Button 45: Button 46: Button 27: Button 28: Button 29: Button 30: Button 31: Button 32: Button 33: Button 34: Button 35: Button 36: Button 37: Button 38: Button 39: Button 40: Button 24: Button 23: Button 2: Button 3: Button 4: Button 5: Button 6: Button 7: Button 8: Button 9: Button 10: Button 11: Button 22: Button 21: Button 20: Button 19: Button 18: Button 17: Button 16: Button 15: Button 14: Button 13: Button 12: