36
Vibrio Genomes Naama Dekel, Koshlan Mayer- Blackwell, Marcus Schicklberger, Holly Sewell, Will Stork June 23 rd 2010

Vibrio Genomes

  • Upload
    june

  • View
    68

  • Download
    0

Embed Size (px)

DESCRIPTION

Vibrio Genomes. Naama Dekel , Koshlan Mayer-Blackwell, Marcus Schicklberger , Holly Sewell, Will Stork June 23 rd 2010. Comparison with Vibrio splendidus LGP32. Which of these genomes is not like the others?. 2010-PA1E. 2010-HA8H. 2009-PA16E. 2009-HA7E. Finding the Core Genome. - PowerPoint PPT Presentation

Citation preview

Page 1: Vibrio  Genomes

Vibrio GenomesNaama Dekel, Koshlan Mayer-Blackwell,Marcus Schicklberger, Holly Sewell, Will Stork

June 23rd 2010

Page 2: Vibrio  Genomes

Comparison with Vibrio splendidus LGP32

2009-HA7E2009-PA16E2010-HA8H2010-PA1E

Which of these genomes is not like the others?

Page 3: Vibrio  Genomes

2009-HA7E 2009-PA16E

2010-PA1E2010-HA8H

98 128

308994

17 2554

26

518

45320

0 0

3669

Finding the Core Genome

Is this an accurate representation?

Core?

Page 4: Vibrio  Genomes

2009-HA7E 2009-PA16E

2010-PA1E2010-HA8H

162 183

4311176

1 103189

49

761

37670

1 0

121

Finding the Core Genome95% “Species” Cutoff

“Species” Core?

Page 5: Vibrio  Genomes

Core Gene Tree

2010-HA8H is completely different from the other organisms!

0.28318

2010-HA8H

0.00490.00536

0.00

124

0.00124

2009-PA16E and 2009-HA7E are most closely related

Page 6: Vibrio  Genomes

16s RNA tree

2010-HA8H

2009-PA16E2010-PA1E2009-HA7E

Page 7: Vibrio  Genomes

Pathway/Functional differences

What functions are unique to 2010-HA8H?2010-HA8H:

Polymyxin Resistance

Siderophore biosynthesis

2010-PA1EXylitol transport and utilization

What functions make the three similar organisms distinct?

Page 8: Vibrio  Genomes

Function differences: Polymyxin Resistance in 2010-HA8H

Polymyxin B

Polymyxin: Antibiotic that is selectively toxic for Gram-negative lipopolysaccharide outer membranes

Naturally produced by Bacillus polymyxaBest BLAST: Shewanella sediminis

Page 9: Vibrio  Genomes

Function differences: Aerobactin in 2010-HA8H

Page 10: Vibrio  Genomes

Function differences: Aerobactin in 2010-HA8H

Page 11: Vibrio  Genomes

Function differences: Aerobactin in 2010-HA8H

Page 12: Vibrio  Genomes
Page 13: Vibrio  Genomes
Page 14: Vibrio  Genomes

Pathway differences: Where does Xylitol come from?

P. Mieke et al. 1988

D-glucuronate degredation Ixylose degredation II

L-arabinose degredation II

xylithol

Page 15: Vibrio  Genomes

Xylulose-5-P

Xylitol-5-P

Xylitol

Pentose Phosphate Pathway

NAD+NADH

aerobic

anaerobicEthanolAcetatePyruvate

Pathway differences: Xylitol Import and Degradation in 2010-PA1E

phosphoketolase

Transcriptional regulator of

xylitol utilization

Xylitol dehydrogenase

Xylitol ABC transporter, periplasmic substrate

Xylitol ABC transporter, permease

Xylitol ABC transporter, ATP

binding

Xylulose kinase

3ATP +

Page 16: Vibrio  Genomes

Elaboration of MLSA

Polymorphisms up and downstream

Possible recombination events

How quickly do polymorphisms accumulate outside the housekeeping genes?

Page 17: Vibrio  Genomes

HA7E (2009)

HA7E (2009)

PA16E (2009)

PA1E (2010)

PA1E (2010)

PA16E (2009)

Recombination events upstream of recA

Page 18: Vibrio  Genomes

recA upstream 10-20 kb

HA7E (2009)

PA16E (2009)

PA1E (2010)

Recombination events upstream of recA

Page 19: Vibrio  Genomes

HA7E (2009)

PA16E (2009)

PA1E (2010)

HA7E (2009)

PA16E (2009)

PA1E (2010)

HA7E (2009)

PA16E (2009)

PA1E (2010)

Page 20: Vibrio  Genomes

recA upsteam 30 – 40 kb

HA7E (2009)

PA16E (2009)

PA1E (2010)

Recombination events upstream of recA

Page 21: Vibrio  Genomes

Polymorphisms in a 1000 bp region upstream of recA

A A G A C T A G A C C C G T G C G T A A G G G G A T T A A G G G G G T A G A T G A A T C G A T G T A A T C A A G A G C A T C A A G A A A G A C C G G T C G G G G A T A A T C A A A A A C A A C A A A A

Polymorphisms

Page 22: Vibrio  Genomes

ompK

mdh

Comparison to other “MLSA” genes

Page 23: Vibrio  Genomes

gyrB

“Hmm, hmm, yes…veeery interesting. Something is going on here…!” (Paul)

Summary:

Comparison to other “MLSA” genes

Page 24: Vibrio  Genomes

Genetic differences

Large Contig Alignment

Identifying Insertion Sequences

Analysis of nucleotide signatures

What are the sources and maintenance of diversity?

Page 25: Vibrio  Genomes

Large Contig Alignment

Page 26: Vibrio  Genomes

Identifying Insertion Sequences

Page 27: Vibrio  Genomes

2010-HA8H and 2010-PA1E full genome analysis

Page 28: Vibrio  Genomes

2010-HA8H and 2010-PA1E full genome analysis

Page 29: Vibrio  Genomes
Page 30: Vibrio  Genomes

Unique GenesVibrio

Non VibrioPhage/Mobile Element

0

20

40

60

80

100

120

140

160

180

Total Unique Genes Total Quasi Unique Genes

META-BLASTOMICS RESULTS

  Genes Vibrio Non VibrioPhage/Mobile Element

Total Unique Genes 141 103 38 22Total Quasi Unique Genes 180 162 18 27

Page 31: Vibrio  Genomes

Vibrio Virbio.splendidus Vibrio.vulnificus Vibrio.cholera0

20

40

60

80

100

120

The Origins and Maintenance of Diversity

META-BLASTOMICS RESULTSTotal Unique Genes 141PercentageIn at least one Vibrio 103 73%In at least one Model Vibrio 58 41%In a Single Model Vibrio 15 11%In 2 Model Vibrio 22 16%In 3 Model Vibrio 21 15%

Page 32: Vibrio  Genomes
Page 33: Vibrio  Genomes

SummaryAnalysis of Core Genome:

2010-HA8H has low similarity to the other sequences

Functional/Pathway differences:2010-HA8H: Polymyxin Resistance and Arabactin 2010-PA1E: Xylitol Transport and Utilization

Elaboration of MLSA:No distinct pattern of recombination events among the three compared strains.

Genetic differences: may arise from phage integration events, where

most unique genes appear to come from other vibrio species.

Page 34: Vibrio  Genomes

Physical and Chemical Environment

Organism

Gene

Function

Page 35: Vibrio  Genomes

Thanks!

Hopkins 2010 Class, Teaching Team and Intern

Page 36: Vibrio  Genomes

16s RNA tree

2010-HA8H

2009-PA16E

2010-PA1E

2009-HA7E