42
13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 20

13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Embed Size (px)

Citation preview

Page 1: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

13 Benthic Life Habits

Notes for Marine Biology: Function, Biodiversity,

EcologyBy Jeffrey S. Levinton

©Jeffrey S. Levinton 2001

Page 2: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Important benthic lifestyles

• Benthos

• Epibenthic

• Burrowers

• Borers

• Infaunal, Semi-infaunal

• Benthic swimmers

• Interstitial

Page 3: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Benthos - size classification

• Macrobenthos - shortest dimension < 0.5 mm

• Meiobenthos - smaller than 0.5 mm, greater than 0.1 mm

• Microbenthos - < 0.1 mm

Page 4: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Feeding Classification

• Suspension feeders

• Deposit feeders

• Herbivores (macroalgae or microalgae)

• Carnivores

• Scavengers

Page 5: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Food classification ambiguities

• Herbivores could be classified as suspension feeders who feed on planktonic microalgae

• Carnivores could be classified as suspension feeders who feed on zooplankton

Page 6: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Life in Mud and Sand

Page 7: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Life in Mud and Sand

Particle size - important parameterCurrent strengthSorting - variation of current strength, poorversus well sorted sediment

Page 8: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Life in Mud and Sand

Particle size - measures

Median grain diameter - measured usuallyby sieving and weighing size fractions

Silt-clay fraction - % of weight of sediment< 62m

Page 9: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Ripple marks on an intertidal sand flat

Sedimentary Structures

Page 10: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Burrowing in sediment

• Burrowers use hydromechanical and mechanical digging mechanisms to move through the sediment

• Watery sediments with high silt clay content have thixotropy - as you move through sediment it takes yet less force to continue to move

Page 11: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Burrowing in sediment 2

• Hydromechanical burrowing - combines muscle contraction working against rigid, fluid filled chamber (skeleton)

• Form penetration anchor first to allow further extension of body into sediment

• Form terminal anchor to allow pulling of rest of body into the sediment

Page 12: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Burrowing in sediment -bivalvefoot

Muscle contraction

PA = penetration anchorTA = terminal anchor

PA

TA

Hydromechanicalburrowing

Circularmuscles

Longitudinalmuscles

Page 13: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Longitudinal musclecontracting

Circular musclecontracting

Terminalanchor

Eversion ofpharynx

Pentetrationancthor

Lugworm, Arenicola marina

Page 14: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Burrowing in sediment 4

Mechanical displacementburrowing

Inarticulate brachiopod burrows by scissoring2 valves back and forth, which displaces sediment

Page 15: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Burrowing in sediment 5Biogenic structures - burrowing and processingof sediment affects sedimentary structures

1. Burrowing in mud increases watercontent of sediment2. Increases grain size (pellets)3. Alters vertical and 3-D mechanical, chemicalstructure

Page 16: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Burrowing in sediment 8Biogenic graded bedding

Annelid ingests small particles at depth and deposits them on surface

Page 17: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Interstitial animals

• Live in the pore waters of sediment, usually sand grains

• Belong to many taxonomic groups

• All share elongate, wormlike form, in order to move through tight spaces

Page 18: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Interstitial animals 2

Polychaete Gastrotrich Opisthobranch gastropod

Harpacticoid Hydroid copepod

Page 19: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Soft-Sediment Microzone

• Strong vertical chemical gradients

• Gradients strongly affected by biological activity

Oxic

Anoxic

Redox Potential Discontinuity

exchange

Page 20: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Soft-Sediment Microzone 4

Page 21: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Soft-Sediment Microzone 5

• Microbial types also vary with depth below the sediment water interface

• Towards the surface, aerobic bacteria dominate (energetically most efficient to use oxidation)

• Deeper, bacteria present that can live in the absence of oxygen and can produce energy through various chemical means

Page 22: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Soft-Sediment Microzone 6

Aerobic bacteria (use oxygen to break down organic substrates)

Fermenting bacteria (break down organic cpds. --> alcohols,fatty acids)

Sulfate reducing bacteria (reduce SO4 to H2S)

Methanogenic bacteria (break down organic cpds. --> methane)

RPDRPD

Page 23: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Benthic Feeding Types

Page 24: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit Feeders

• Feed upon sediment, within the sediment or at sediment surface

• Head-down deposit feeders feed within the sediment at depth, usually on fine particles, defecate at surface

• Surface browsers often feed on surface microorganisms such as diatoms

Page 25: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit Feeders 2

Surface tentaclefeeding polychaete

Tentacle feedingbivalve

Surface siphonatefeeding bivalve

Deep feedingpolychaete Surface feeding

amphipod Deep feeding polychaete

Page 26: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Surface trace of burrow of the Lugworm, Arenicola marina

(Anglesey, North Wales)

feces

Burrowopening

Page 27: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Arenicola marina burrow cross section

Page 28: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit feeders 3

• Microbial stripping hypothesis: deposit feeders are most efficient at digesting and assimilating benthic microbes (diatoms, bacteria)

Page 29: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit feeders 4

• Microbial stripping hypothesis: deposit feeders are most efficient at digesting and assimilating benthic microbes (diatoms, bacteria)

• In some sediments non-living organic matter is abundant, so even a low assimilation efficiency returns some nutrition for deposit feeders

Page 30: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit feeders 5

• Microbial stripping hypothesis: deposit feeders are most efficient at digesting and assimilating benthic microbes (diatoms, bacteria)

• At some times of years, fresh phytoplankton sinks and is added to the bottom: another source of non-living food for deposit feeders

Page 31: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit feeders 6

• Microbial stripping hypothesis: deposit feeders are most efficient at digesting and assimilating benthic microbes (diatoms, bacteria)

• Detritus from seaweeds is probably more digestible than detritus from seagrasses and marsh grasses, which have much relatively indigestible cellulose

Page 32: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit feeders 7

• Deposit feeders feed on sedimentary grains, microbial organisms living on particulate organic particles

• Feeding activity accelerates microbial attack - grazing stimulates microbial metabolism, results in tearing apart of organic particles

Page 33: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Deposit feeders 9

Ingestion of sediment

EgestionTransport to

surface of deep sediment

POM,(mechanically,

Chemically,Transformed)

Metal, sulfur,dissolved organiccarbon exchange

Metal, sulfur,dissolved organiccarbon exchange

Sedimentstirring

Free-burrowing bivalvePOM deposition

RPD

Stimulationof microbial

growthTube

Microbialconsumption

Page 34: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Suspension Feeders

• Feed on small particles, low Reynolds number

• Passive versus active suspension feeders

Page 35: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Suspension Feeders 2

Bivalve, x-section Polychaete Serpula Barnacle

Page 36: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Suspension Feeders 3

Sea squirt Styela montereyensisPassive suspension feeding mechanism

Page 37: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Suspension Feeders 4

Encounters of particles with fibers

= fiberDirectinterception

SievingInertial

impaction

Motileparticle

deposition

Gravitationaldeposition

Page 38: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Suspension Feeders 4

Encounters of particles with fibers

= fiberDirectinterception

SievingInertial

impaction

Motileparticle

deposition

Gravitationaldeposition

Page 39: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Carnivores

oystercatcherBivalve Cuspidaria

Crab Callinectes sapidus

PolychaeteGlycera

Gastropod Nucella

Page 40: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Herbivores

Parrot fish

Chiton

radula

Polychaete Nereis vexillosa

Urchins

Page 41: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

Cellulose feeder

Bivalve Teredo

foot Greatly elongated mantleObtains nitrogenwith symbioticnitrogen fixing bacteria

Page 42: 13 Benthic Life Habits Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001

The End