25
10GE Link Design For Scrambled Encode David W. Martin September 27-29, 1999 York, UK

10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

  • Upload
    ngonga

  • View
    239

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

10GE Link Design ForScrambled Encode

David W. Martin

September 27-29, 1999

York, UK

Page 2: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 2September 27-29, 1999

Agenda

• Terminology

• Relationships

• Data Recovery

• Clock Recovery

• Jitter Tolerance

• Encode Complexity

• Performance

Page 3: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 3September 27-29, 1999

Terminology

• Digital Sum Variance (DSV)— the pk-pk difference between the min & max running sum of the data,

over the sequence length

• Baseline Wander— the variation, in the amplitude axis over time, of the data eye center

• DC Balanced— whether or not the sum of the data, over the sequence length, is zero

(where a data value of zero is counted as -1)

• Run Length— the number of consecutive one’s or zero’s (CID) in the data stream

• Transition Density— the number of data transitions over the sequence length

Page 4: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 4September 27-29, 1999

Relationships

• Digital Sum Variance -> Data Recovery— a data pattern with a large DSV can potentially cause baseline wander at

the RX data recovery block if the lower cutoff of the RX passband doesnot capture enough of the low frequency content in the data

• Run Length -> Clock Recovery/Jitter Tolerance— the longer the run of continuous identical digits (CID) in a data pattern

the higher the Q required for the clock recovery filter, for a higher Q(i.e. narrower bandwidth) clock recovery filter the lower the input jitterthat can be tracked by the RX

Page 5: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 5September 27-29, 1999

Data Recovery

• Data passband filter...

xPIN

TZA AGC

FrequencyDoubler Clock

RecoveryFilter

LimitingAmp

PhaseShifter

FF

Data passband filter is comprised of the net effect of decoupling cap’s(between circuits with different DC bias points or different technologies)and the upper cutoff of the AGC (or passband filter if no AGC).

RXFrontEnd

Page 6: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 6September 27-29, 1999

• The lower cutoff frequency required to avoid baselinewander induced data errors for a SONET signal is inthe 10s of kHz range

• Thus for 10G the capacitors selected need to be wellbehaved over ~6 orders of magnitude

—not a cost issue, just a design choice

• Note that if the RX front-end is integrated, with noAGC/decoupling cap’s, then the required lowfrequency cutoff is achieved inherently (i.e. near-DC)

Page 7: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 7September 27-29, 1999

Baseline Wander Power Penalty

4.5

0

SONET fp

FC fp

0.11 10

7�

fp

1 107

1 106

1 105

1 104

1 103

0.01 0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1/f0

dB

f1 - lower cutoff frequencyf0 - baud rate

operating pt of SONET data recovery circuitry

The SONET curve is plotted for the 72 CID pattern, which has an average interval between occurrences of ~7500 yrs.

Page 8: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 8September 27-29, 1999

• The upper cutoff frequency required for optimumsignal/noise is at about half the NRZ data rate

• Thus for 10G the upper cutoff frequency of theAGC/decoupling cap’s is ~5G

—not a cost issue, just a design choice

Scrambled encode not a cost issue for data recovery

Page 9: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 9September 27-29, 1999

Clock Recovery

• The longer the string of CID, the more signal energy is shiftedto harmonics of the fundamental

• The clock recovery filter bandwidth must then be narrower toreject those harmonics and the partner limiting amp must bemore sensitive to pick up the lower energy of the fundamental

fo

fo fo/3 fo/5

0.6

<<0.6

Page 10: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 10September 27-29, 1999

• The filter Q=f clk/BWflt

• For 10G SONET a filter with a 3dB BW of 15-20MHz orQ of ~600 is used (2nd order Butterworth)

• A filter with a Q of this order is a commodity

• The partner limiting amp typically has a gain of ~20dB,again a commodity part

Scrambled encode not a cost issue for clock recovery

Page 11: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 11September 27-29, 1999

Jitter Tolerance

• The clock recovery filter BW determines the RX inputjitter tolerance high frequency knee

fo

fo fo/3 fo/5

0.6

<<0.6

The wider the clockrecovery filter BW,the higher the kneefrequency of the RXjitter tolerance

Page 12: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 12September 27-29, 1999

• Input jitter tolerance (TP3)

Source: GR-1377-CORE (12/98), G.825 (02/99)

Frequency (Hz)

UIpp

10 2.4k 400k24k 4M

0.15

1.5

15

80M

The clock recovery filter BWdetermines the knee frequency

Page 13: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 13September 27-29, 1999

• The input jitter tolerance amplitude, in the knee region,from SONET OC-192 long reach can be relaxed for the10GE shorter reach environment by reallocating some ofthe optical impairment jitter budget

Topen - Jbounded - Jtrackable

σRHS + σRHS = Qtarget

where, Jbounded = Jpattern + Jpropagation + Rcvrimpl

Page 14: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 14September 27-29, 1999

• Example: Topen= 100ps

Jpattern= 15ps

Jpropagation= 2ps*

Rcvrimpl= 33ps

σRHS=σRHS= 1ps

Qtarget= 10

• Yields… Jtrackable= 30ps, twice the current mask value,thereby relaxing TX jitter generation/easing design

* IR, 10km, cooled DFB 0.3nm, laser tolerance +/-3nm, fiber zero tolerance +/-5nm, fiber dispersion slope 0.07ps/nm/km/nm

Page 15: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 15September 27-29, 1999

• Example 10GE jittergeneration (TP2)

Freq(Hz)

UIpp

10 80 k 4M

0.28

~15

80M

Relaxed jitter tolerance possible with scrambled encode

• Example 10GE inputjitter tolerance (TP3)

Freq(Hz)

UIpp

10 80 k 4M

0.30

15

80M

Page 16: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 16September 27-29, 1999

Encode Complexity

7 1 64 - 1518 12

IPG Preamble SFD Ethernet MAC frame

Idle frame

X43 + 1 Scrambling

12

Length, Type, HEC

1 2 64 - 1518 2

Type HEC scr Ethernet MAC frameLength

5

unused

10

Type HECLength unused

STS-192cSPE

HH

H

16,640 Octets

STS-192c Payload CapacityFixedStuff

63

9

3

Map into SONET

PCS

PMAPOH

Page 17: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 17September 27-29, 1999

4

STS-192c Envelope Capacity

9

90x192 octets3x192

TransportOverhead

H1 H3

A1 A2

HH

H

STS-192c Payload CapacityFixedStuff

POH

PMA

3

Map into SONET

X7 + X6 + 1 Scrambling

Page 18: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 18September 27-29, 1999

Note: Processing is at 155MHz, 64-bit wide.

Gate Count Comparison

8B/10B PHY STS-192c PHY Full SONET OH Processing8B/10B encoder: 4080 x43 + 1 scrambler: 90

length generation: 150HEC generation: 200POH generation: 500 full POH generation: 700pointer generation: 0 full pointer generation: 700LOH generation: 300 full LOH generation: 1300SOH generation: 500 full SOH generation: 700x7 + x6 + 1 scrambler: 75

8B/10B decoder: 2730 framer: 500byte align: 300x7 + x6 + 1 descrambler: 75SOH extraction: 500 full SOH extraction: 800LOH extraction: 300 full LOH extraction: 1200pointer processing: 800 full pointer processing: 1700POH extraction: 500 full POH extraction: 1000HEC delineation: 1000x43 + 1 descrambler: 90

8B/10B Total 6810 STS-192c Total 5880 Full OH proc increment 4700

Page 19: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 19September 27-29, 1999

Sublayer OH Byte STS-1#1 Notes STS-1#2-192 NotesA1 F6 F6A2 28 28J0 provision 00 (Z0)B1 calculate 00E1 00 00F1 00 00

SOH

D1-3 00 00

H1 62 93H2 0A

NDF idle,522 ptr offset FF

concatenationindicator

H3 00 00B2 00 unused 00 unusedK1 01 NR, CHID=1 00K2 10 CHID=1 00D4-12 00 00S1 F0 “Don’t Use” 00 (Z1)M1 00 unused 00 (Z2)

LOH

E2 00 00

J1 provisionB3 calculateC2 new codeG1 calculate P-REI, P-RDIF2 00H4 00

POH forSTS-192c

Z3-5 00

SummaryIn the TX direction, all OH values are hardwired defaults except:� J0: provisionable� B1: calculated� J1: provisionable� B3: calculated� G1: calculatedIn the RX direction, all OH values ignored except:� A1-2: used by framer� J0: compared against provisioned value� B1: compared against calculated value� H1-3: used by pointer processor� J1: compared against provisioned value� B3: compared against calculated value� G1: extracted

Proposed Minimal SONET OH Usage

Page 20: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 20September 27-29, 1999

• The gate count complexity for an 8B/10B or STS-192c PHYis very similar (actually slightly less for STS-192c)

Scrambled encode not a cost issue for digital processing

Page 21: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 21September 27-29, 1999

Performance

Compare 8B/10B vs SONET mapping delineation performance

MAC delineation

8B/10B delineation

encap delineation

SONET framer

ptr processor

(Recall no issue with error detection reduction, per Norival Figueira presentation Mtl-July’99)

Page 22: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 22September 27-29, 1999

SONET Encap FL due to:• > 1 error in header

SONET Framer FL due to:• > 1 error in frm pattern

SONET Ptr FL due to:• ptr corrupt, data emulation

SON ET com p onent frame loss

1.E -45

1.E -43

1.E -41

1.E -39

1.E -37

1.E -35

1.E -33

1.E -31

1.E -29

1.E -27

1.E -25

1.E -23

1.E -21

1.E -19

1.E -17

1.E -15

1.E -13

1.E -11

1.E -09

1.E -07

1.E -05

1.E -03

1.E -01

1.E + 01

1.E -15 1.E -14 1.E -13 1.E -12 1.E -11 1.E -10 1.E -09 1.E -08 1.E -07 1.E -06 1.E -05 1.E -04 1.E -03 1.E -02 1.E -01 1.E + 00

BER

Pro

ba

bil

ity

of

Fra

me

Fram er_Los s P ointer_Los s E nc ap_Los s

Page 23: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 23September 27-29, 1999

8B/10B layer FL due to:• error in /S/, /T/, /R/ characters, data emulation

SONET total vs 8B /10B frame loss

1.E -20

1.E -19

1.E -18

1.E -17

1.E -16

1.E -15

1.E -14

1.E -13

1.E -12

1.E -11

1.E -10

1.E -09

1.E -08

1.E -07

1.E -06

1.E -05

1.E -04

1.E -03

1.E -02

1.E -01

1.E + 00

1.E -15 1.E -14 1.E -13 1.E -12 1.E -11 1.E -10 1.E -09 1.E -08 1.E -07 1.E -06 1.E -05 1.E -04 1.E -03 1.E -02 1.E -01 1.E + 00

BER

Pro

ba

bil

ity

of

Fra

me

L

Frm _P tr_E nc ap_Los s 8B 10B _Los s

Page 24: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 24September 27-29, 1999

• Compare performance of proposed SONET mapping (10G) vs8B/10B (12.5G) at 1E-12 BER:

SONET MTTFL=1/2.00E-17/10E09=58 days

8B/10B MTTFL=1/3.17E-11/12.5E09=2.5 sec

SONET mapping MTTFL better than 8B/10B by ~ 2E06 at 1E-12

Page 25: 10GE Link Design For Scrambled Encode - IEEE 802ieee802.org/3/10G_study/public/sept99/martin_1_0999.pdf · 10GE Link Design For Scrambled Encode ... C2 new code G1 calculate P-REI,

Page 25September 27-29, 1999

Summary

• Scrambled encode not a cost issue for:— data recovery— clock recovery— jitter tolerance— digital processing (similar to 8B/10B)

• The encode proposal has significant performance advantages:— robust delineation— extended reach/relaxed link budget

• Scrambling at 10G has been field proven since 1995— parts readily available now

• Scrambling can operate over serial/parallel optics, MMF/SMF