15
Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7 Projektowania fundamentu bezpośredniego według Eurokodu 7 – wybrane zagadnienia Eurokod 7 jest jedną z norm, ze zbioru europejskich norm projektowania konstrukcji budowlanych. Dotyczy projektowania geotechnicznego i składa się z dwóch części, pierwszej: Zasady ogólne [1] i drugiej: Rozpoznanie i badanie podłoża gruntowego [2]. Ponadto przy projektowaniu geotechnicznym trzeba też odwołać się m.in. do dwóch innych eurokodów [3, 4]. W tych materiałach skupiono się głównie na EC7-1 [1] w zakresie projektowania fundamentów bezpośrednich, poruszając tylko wybrane zagadnienia z Rozdziału 6: Fundamenty bezpośrednie oraz stosownych załączników. 1 Stany graniczne nośności W obrębie stanu granicznego nośności (ULS) Eurokod 7 wymienia następujące rodzaje stanów granicznych zniszczenia: EQU – utrata stanu równowagi statycznej; GEO – zniszczenie lub nadmierne odkształcenie podłoża gruntowego; STR – zniszczenie wewnętrzne lub nadmierne odkształcenie konstrukcji względnie elementów konstrukcyjnych, w tym również podstaw fundamentowych, pali, ścian podziemnych; UPL – utrata równowagi konstrukcji lub gruntu, spowodowana siłami wyporu wody; HYD – pęcznienie wodne, erozja wewnętrzna i przebicie hydrauliczne; W przypadku fundamentów bezpośrednich do podstawowych stanów granicznych nośności zalicza się utratę nośności [5]: gruntu pod fundamentem w wyniku jego wyparcia (GEO), gruntu pod fundamentem w wyniku ścięcia (GEO), przez konstrukcję fundamentu w wyniku działających w nim sił (STR). Trzeba też pamiętać o sytuacjach szczególnych, np. gdy fundament jest posadowiony na zboczu lub w jego pobliżu obowiązuje sprawdzenie stateczności ogólnej podłoża i związanych z nim budowli. Odbywa się to również w ramach stanu GEO i w klasycznym rozumieniu jest to sprawdzenie stateczności skarpy/zbocza. 2 Sprawdzenie stanów granicznych STR i GEO w sytuacjach trwałych i przejściowych Rozpatrując stan graniczny zniszczenia albo nadmiernego odkształcenia elementu konstrukcyjnego © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.1/15

1 Stany graniczne nośności - Adam Duda PPadam.duda.pracownik.put.poznan.pl/files/EC7-F.B.-wersja...W obrębie stanu granicznego nośności (ULS) Eurokod 7 wymienia następujące

  • Upload
    others

  • View
    7

  • Download
    1

Embed Size (px)

Citation preview

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    Projektowania fundamentu bezpośredniego według Eurokodu 7 – wybrane zagadnienia

    Eurokod 7 jest jedną z norm, ze zbioru europejskich norm projektowania konstrukcji budowlanych. Dotyczy projektowania geotechnicznego i składa się z dwóch części, pierwszej: Zasady ogólne [1] i drugiej: Rozpoznanie i badanie podłoża gruntowego [2]. Ponadto przy projektowaniu geotechnicznym trzeba też odwołać się m.in. do dwóch innych eurokodów [3, 4]. W tych materiałach skupiono się głównie na EC7-1 [1] w zakresie projektowania fundamentów bezpośrednich, poruszając tylko wybrane zagadnienia z Rozdziału 6: Fundamenty bezpośrednie oraz stosownych załączników.

    1 Stany graniczne nośności

    W obrębie stanu granicznego nośności (ULS) Eurokod 7 wymienia następujące rodzaje stanów granicznych zniszczenia:

    EQU – utrata stanu równowagi statycznej;

    GEO – zniszczenie lub nadmierne odkształcenie podłoża gruntowego;

    STR – zniszczenie wewnętrzne lub nadmierne odkształcenie konstrukcji względnie elementów konstrukcyjnych, w tym również podstaw fundamentowych, pali, ścian podziemnych;

    UPL – utrata równowagi konstrukcji lub gruntu, spowodowana siłami wyporu wody;

    HYD – pęcznienie wodne, erozja wewnętrzna i przebicie hydrauliczne;

    W przypadku fundamentów bezpośrednich do podstawowych stanów granicznych nośności zalicza się utratę nośności [5]:– gruntu pod fundamentem w wyniku jego wyparcia (GEO),– gruntu pod fundamentem w wyniku ścięcia (GEO),– przez konstrukcję fundamentu w wyniku działających w nim sił (STR).Trzeba też pamiętać o sytuacjach szczególnych, np. gdy fundament jest posadowiony na zboczu lub w jego pobliżu obowiązuje sprawdzenie stateczności ogólnej podłoża i związanych z nim budowli. Odbywa się to również w ramach stanu GEO i w klasycznym rozumieniu jest to sprawdzenie stateczności skarpy/zbocza.

    2 Sprawdzenie stanów granicznych STR i GEO w sytuacjach trwałych i przejściowych

    Rozpatrując stan graniczny zniszczenia albo nadmiernego odkształcenia elementu konstrukcyjnego

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.1/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    lub części podłoża (STR i GEO), należy wykazać, że:

    Ed ≤ Rd EC7-1 2.5

    Ed – wartość obliczeniowa efektu oddziaływańRd – wartość obliczeniowa oporu przeciw oddziaływaniu

    3 Obliczeniowe efekty oddziaływań

    3.1 Rodzaje oddziaływań (EC0 p.4.1.1) ze względu na ich zmienność w czasie:

    – oddziaływania stałe (G), np. ciężar własny konstrukcji, umocowane urządzenie, nawierzchnia jezdni i oddziaływania pośrednie wywołane przez skurcz i nierównomierne osiadania,

    – oddziaływania zmienne (Q), np. obciążenie zmienne stropów w budynkach, belek i dachów, oddziaływania wiatru lub obciążenie śniegiem,

    – oddziaływania wyjątkowe (A), np. wybuch lub uderzenie przez pojazd.

    3.2 Wartości charakterystyczne oddziaływań (EC0 p.4.1.2)Wartość charakterystyczna oddziaływania Fk jest główną wartością reprezentatywną i należy

    określać ją– jako wartość średnią, wartość górną lub dolną albo jako wartość nominalną,– w dokumentacji projektowej, pod warunkiem, że zostanie zachowana zgodność z metodami podanymi w E1

    Wartość charakterystyczną oddziaływania stałego Gk należy ustalać następująco:– jeżeli zmienność G można uważać za mała, można posługiwać się jedną pojedynczą wartością Gk,– jeżeli zmienności G nie można uważać za mała, należy posługiwać się dwiema wartościami: wartością wyższą Gk,sup i wartością niższą Gk,inf.

    Ciężar własny konstrukcji określać można pojedynczą wartością charakterystyczną i obliczać dla nominalnych wymiarów i średniej masy jednostkowej, patrz [4]

    Wartość charakterystyczna oddziaływania zmiennego Qk odpowiada albo:– wartości górnej z założonym prawdopodobieństwem, że nie zostanie ona przekroczona lub wartości dolnej z założonym prawdopodobieństwem jej osiągnięcia w określonym okresie powrotu,– albo wartości nominalnej, którą przyjmować można w przypadku kiedy rozkład statyczny nie jest znany.

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.2/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    3.3 Wartości reprezentatywne oddziaływańWartość reprezentatywna Frep

    Frep = ψ · Fk

    ψ – współczynnik do przekształcenia wartości charakterystycznych na wartości reprezentatywne

    Dla obciążeń/oddziaływań trwałych G, ψ = 1,0.

    Dla oddziaływań zmiennych (EC0 p.4.1.3) występuje kilka wartości ψi, przykładowo jedne można stosować dla obciążeń zmiennych wiodących (np. obciążeń długotrwałych), inne dla obciążeń zmiennych towarzyszących (np. obciążeń krótkotrwałych). Mamy: Ψ0, Ψ1, Ψ2 – są to współczynniki uwzględniające prawdopodobieństwo (równoczesnego) oddziaływania/efektu oddziaływania (patrz EC0, Załącznik A1).

    3.4 Wartości obliczeniowe oddziaływańFd = γF · Frep

    γF – współczynnik częściowy do oddziaływań

    Współczynniki częściowe do oddziaływań można stosować albo do samych oddziaływań (Frep), albo do ich efektów (E)

    Ed = E{γF Frep; Xk/γM;ad}/γR; EC7-1 2.6aalbo

    Ed = γE E{Frep; Xk/γM;ad}/γR; EC7-1 2.6b

    Współczynniki częściowe do oddziaływań (γF) lub do efektów oddziaływań (γE)

    Oddziaływanie SymbolZestaw

    A1 A2

    StałeNiekorzystne γG 1.35 1

    Korzystne γG 1 1

    ZmienneNiekorzystne γQ 1.5 1.3

    Korzystne γQ 0 0

    3.5 Przykład – wyznaczanie obliczeniowej wartości oddziaływaniaPrzykład 1

    Wyznaczyć obliczeniową wartość składowej pionowej oddziaływań Vd w podstawie stopy fundamentowej o wymiarach B = L = 2 m, wysokości h = 0,5 m, posadowionej na głębokości D = Dmin = 1,0 m. Na stopę przekazywane jest obciążenie (oddziaływanie) od słupa o przekroju

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.3/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    kwadratowym 0.4 x 0.4 m. Oddziaływania charakterystyczne wynoszą: - siła pionowa stała NG;k = 600 kN, - siła pionowa zmienna, długotrwała NQ;k = 200 kN, obciążenia te wyznaczono w podstawie słupa z uwzględnieniem jego zagłębienia 0.5 m poniżej naziomu przy fundamencie. Na zasypkę fundamentu użyto MSa (piasku średniego) o ciężarze objętościowym γk = 18.5 kN/m³.

    Obciążenie przekazywane przez podstawę fundamentu na podłoże gruntowe, składa się z ciężaru własnego fundamentu G1, ciężaru zasypki G2 oraz obciążeń N przekazywanych przez słup.

    Wyznaczamy wartości charakterystyczne oddziaływań– samego fundamentu

    Fundament jest elementem żelbetowym, beton zwykły przy zwykłym procencie zbrojenia (Tablica A.1 [4]), zatem γk = 24 + 1 = 25 kN/m³.V1 = 2 · 2 · 0.5 = 2,0 m³; G1;k = 2.0 · 25 = 50 kN

    – gruntu na odsadzkach (zasypki)V2 = 2 – 0.4 · 0.4 · 0.5 = 1.92 m³; G2;k = 1.92 · 18.5 = 35.5 kN

    – od słupa wartości te mamy podane:NG;k = 600 kN, NQ;k = 200 kN,

    Wyznaczamy wartości reprezentatywne oddziaływańDo oddziaływań stałych ψ = 1.0, więc wartości charakterystyczne obciążeń stałych (G) stają

    się od razu wartościami reprezentatywnymi. Dla obciążenia zmiennego NQ;k, ponieważ jest to obciążenie zmienne długotrwałe, formalnie za [3] można uznać, że jest to wartość towarzysząca oddziaływania zmiennego (ψ Qk) i również przyjąć ψ = 1.0. Logika na pewno nam to nakazuje (przyjąć do obliczeń pełne obciążenie NQ;k), a poza tym postępujemy zgodnie z „literą prawa” - Eurokodów.

    Wyznaczamy wartości obliczeniowe oddziaływań

    Wartość obliczeniowa zależy od zestawu współczynników częściowych do obciążeń1

    Zestaw A1* sytuacja gdy obciążenie pionowe jest niekorzystne, np. sprawdzenie warunku na wypieranie gruntu spod fundamentu

    Vd;A1 = 1.35 · 50 + 1.35 · 35.5 + 1.35 · 600 + 1.5 · 200 = 1225.5 kN

    ** sytuacja gdy obciążenie pionowe jest korzystne, np. sprawdzenie warunku na przesuw fundamentuVd';A1 = 1.0 · 50 + 1.0 · 35.5 + 1.0 · 600 + 0 · 200 = 685.5 kN

    Zestaw A2* sytuacja gdy obciążenie pionowe jest niekorzystne, np. sprawdzenie warunku na wypieranie gruntu spod fundamentu

    Vd;A2 = 1.0 · 50 + 1.0 · 35.5 + 1.0 · 600 + 1.3 · 200 = 945.5 kN

    ** sytuacja gdy obciążenie pionowe jest korzystne, np. sprawdzenie warunku na przesuw fundamentuVd';A2 = 1.0 · 50 + 1.0 · 35.5 + 1.0 · 600 + 0 · 200 = 685.5 kN

    1 Formalnie do oddziaływań (γF) lub do efektów oddziaływań (γE)

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.4/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    4 Opory (nośności) obliczeniowe

    Wartość obliczeniowa oporu - Rd przeciw oddziaływaniu - Fd

    Rd = Rk / γR

    γR – współczynnik częściowy do oporu lub nośności

    Współczynniki częściowe można stosować

    albo do parametrów gruntu (X)Rd = R{γF Frep; Xk/γM;ad} EC7-1 2.7a

    ad – wartość obliczeniowa wielkości geometrycznej

    albo do odporów (nośności)Rd = R{γF Frep; Xk;ad}/γR; EC7-1 2.7b

    albo do obu tych wielkościRd = R{γF Frep; Xk/γM;ad} EC7-1 2.7c

    Współczynniki częściowe do oporu/nośności (γR)

    Nośność SymbolZestaw

    R1 R2 R3

    Nośność podłoża γR;v 1 1.4 1

    Przesunięcie (poślizg) γR;h 1 1.1 1

    Po co jest zestaw R3, który jest identyczny jak R1? ….. Hmm, pewnie dlatego, że dzięki temu mamy 3 zestawy, a nie tylko 2 ;-)

    5 Parametry geotechniczne przyjmowane do obliczeń

    Ogólnie można stwierdzić, że w ujęciu EC7 sposób przyjmowania parametrów geotechnicznych jest bardziej skomplikowany, niż w polskiej normie dotyczącej posadowienia bezpośredniego [6]. Biorąc jednak po uwagę fakt, że przyjęcie odpowiednich/rzeczywistych parametrów geotechnicznych jest jednym z najważniejszych, jak nie najważniejszym etapem projektowania geotechnicznego, „skomplikowanie” to jest zapewne uzasadnione. Sposób przyjmowania parametrów geotechnicznych przedstawiony jest w EC7-2 m.in. na schemacie (Rys. 1). Tok wyznaczania tych parametrów usystematyzowano w pracy [5]. Poniżej wypunktowano jedynie poszczególne kroki, po szczegółowy opis należy sięgnąć do źródła.

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.5/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    Rys. 1 – Schemat wyboru wyprowadzonych wartości parametrów geotechnicznych [2]

    Krok 1. PomiaryObejmuje badania terenowe (np. wiercenia, sondowania) i laboratoryjne (np. wilgotność,

    granice konsystencji, parametry wytrzymałościowe).

    Krok 2. Wartości wyprowadzone Na podstawie analizy wyników pomiarów, uzyskuje się wartości wyprowadzone parametrów

    geotechnicznych.

    Krok 3. Model geotechnicznyOpracowuje się model geotechniczny, przy czym pod tym pojęciem rozumie się – schemat

    podziału na warstwy w podłożu (przekrój geotechniczny) z przypisanymi do nich wartościami parametrów charakterystycznych lub obliczeniowych. Przekrój ten musi uwzględniać lokalizację obiektu a przynajmniej poziom(y) posadowienia fundamentów.

    Krok 4. Wybór wartości charakterystycznejUwzględniając liczbę wyników dla określonej warstwy, stosując odpowiednie metody

    statystyczne, dokonuje się wyboru wartości charakterystycznej.

    Krok 5. Wartości obliczeniowe (patrz punkt 5.3)

    Opisana powyżej procedura jest wariantem idealistycznym zakładającym, że wszystkie parametry geotechniczne, a przynajmniej większość z nich będzie wyprowadzona z pomiarów. Jest to podobne do metody A wyznaczania parametrów geotechnicznych z normy [6]. Częściej i chętniej jest/była stosowana metoda B. Podobną ścieżkę wyznaczania parametrów geotechnicznych można

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.6/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    zastosować w zgodzie z EC72, wyprowadzając je z normowych tablic wartości charakterystycznych przy bezpiecznym ich oszacowaniu (Rys. 2).

    Rys. 2 – Schemat wyznaczania wartości obliczeniowych parametrów geotechnicznych [5]

    5.1 Charakterystyczne wartości parametrów geotechnicznychXk – symbol charakterystycznej wartości właściwości materiału (tu parametru geotechnicznego; X oznacza dowolny parametr geotechniczny, np. γ, c, Φ).

    EC0 definiuje tą wartość w następujący sposób:Wartość charakterystyczna (Xk lub Rk) – wartość właściwości materiału lub wyrobu, odpowiadająca założonemu prawdopodobieństwu nie przekroczenia w teoretycznie nieograniczonej serii prób. Zwykle odpowiada ona określonemu kwantylowi przyjętego rozkładu statystycznego określonej właściwości materiału lub wyrobu. W pewnych okolicznościach za wartość charakterystyczną przyjmuje się wartość nominalną.

    Kilka argumentów z EC7-1 pokazujących, że można zastosować „metodę B lub C” do wyznaczenia wartości charakterystycznej parametru geotechnicznego:

    P. 2.4.5.2 Wartości charakterystyczne parametrów geotechnicznych(1)P Wyboru wartości charakterystycznej parametrów geotechnicznych należy dokonać na podstawie wyników oraz wartości wyprowadzonych z badań laboratoryjnych i terenowych, uzupełnionych ogólnie uznanym doświadczeniem.

    2 Przynajmniej wydaje się, że można.

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.7/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    (12)P W przypadku korzystania z tablic normowych wartości charakterystycznych, zależnych od parametrów z badań gruntu, wartość charakterystyczną należy wyznaczać jako wartość możliwie najbezpieczniejszą.

    W końcu najbardziej uniwersalne pojęcie:wartość wyprowadzona (ekspercka)

    i dalej:- wartością wyprowadzoną może być dowolna wartość charakterystyczna lub obliczeniowa.

    Skoro dowolna i ekspercka a eksperckimi, potwierdzonymi i zweryfikowanymi, kilkudziesięcioma latami praktyki, są wartości parametrów geotechnicznych w normie [6], to czy EC7 zabrania ich stosować? Problematyczny może tu być fakt, że norma [6] formalnie wygasła 31.03.2010 r. i zastąpił ją właśnie Eurokod 7. Mimo to odpowiedź na postawione pytanie brzmi – nie zabrania.

    5.2 Efektywne parametry wytrzymałościoweW obliczeniach nośności podłoża EC7 wprowadza efektywne parametry wytrzymałościowe

    gruntu, tj. c' – efektywną spójność gruntu oraz φ' – efektywny kąt tarcia wewnętrznego. Jest to osobne, złożone zagadnienie, dlatego odsyłam do [7,8,9]

    Dla warunków gruntowych i układu obciążeń podanych w ćwiczeniach projektowych można przyjąć:φ' = φu(n) oraz c' = cu(n) ; φu(n) i cu(n) z normy [6].

    5.3 Obliczeniowe wartości parametrów geotechnicznychXd – symbol obliczeniowej wartości parametru geotechnicznego

    Xd = Xk / γM

    Współczynniki częściowe do parametrów geotechnicznych (γM)

    Parametr gruntu SymbolZestaw

    M1 M2

    Kąt tarcia wewnętrznego a γφ' 1 1.25

    Spójność efektywna γc' 1 1.25

    Wytrzymałość na ścinanie bez odpływu γcu 1 1.4

    Wytrzymałość na ściskanie jednoosiowe γqu 1 1.4

    Ciężar objętościowy γγ 1 1a Współczynnik ten stosuje się do wartości tan φ'

    Sposób wyznaczenia obliczeniowej wartości kąta tarcia wewnętrznego gruntu

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.8/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    Przyjmijmy charakterystyczną wartość kąta tarcia wewnętrznego, np. Φ'k = 30.3 °.W zestawie M1 (γφ' = 1) wartość charakterystyczna jest od razu wartością obliczeniową.Φ'd;M1 = 30.3 °

    W zestawie M2, przy γφ' = 1.25 wartość obliczeniową Φ'd obliczamy w sposób następujący:Φ'k = 30.3 ° tanΦ'k = tan30.3 ° = 0.585tanΦ'd = 0.585 / 1.25 = 0.468 → Φ'd = arctan 0.468 = 25.1 °Φ'd;M2 = 25.1 °

    6 Podejścia obliczeniowe

    Dla sprawdzenia czy nie wystąpi stan graniczny zniszczenia lub nadmiernego odkształcenia, należy stosować określone kombinacje zestawów współczynników częściowych w trzech podejściach obliczeniowych.

    6.1 Podejście obliczeniowe 1Kombinacja 1: A1 „+” M1 „+” R1Kombinacja 2: A2 „+” M2 „+” R1

    6.2 Podejście obliczeniowe 2Kombinacja: A1 „+” M1 „+” R2

    6.3 Podejście obliczeniowe 3Kombinacja: (A1* lub A2┴ ) „+” M2 „+” R3* do oddziaływań konstrukcji┴ do oddziaływań geotechnicznych

    Tu chyba pojawia się odpowiedź, po co jest zestaw R3 współczynników częściowych do oporu/nośności (γR) – jest dlatego, że mamy 3 podejścia obliczeniowe. Proszę sobie przez chwilę wyobrazić jak nieeuropejsko wyglądałby następujący zapis tej kombinacji: (A1* lub A2┴ ) „+” M2 „+” R1.... tak wiem, wygląda to strasznie.

    Decyzje, które podejście obliczeniowe obowiązuje w danym kraju, może podjąć lokalny komitet normalizacyjny i podaje w załączniku krajowym. W Polsce reguluje to załącznik krajowy [10], który zaleca przyjmowanie 2 podejścia obliczeniowego (pkt. 6.2). To raczej nie ogranicza projektanta, który może uznać za właściwe inne podejście.

    7 Stany GEO dla fundamentu bezpośredniego

    Stan GEO dla fundamentu bezpośredniego obejmuje nośność podłoża (warunek na

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.9/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    wypieranie gruntu spod fundamentu) oraz nośność na przesunięcie.

    7.1 Nośność podłożaPrzy wyznaczaniu nośności podłoża EC7 rozróżnia tzw. warunki bez odpływu i warunki z

    odpływem.

    Dla podanych w ćwiczeniu projektowym warunków gruntowych i układu obciążeń, należy przyjąć warunki z odpływem.

    7.1.1 Warunek obliczeniowy nośności podłożaDla wszystkich stanów granicznych nośności należy sprawdzić, czy spełniona jest nierówność

    Vd ≤ Rd

    gdzie:Vd – wartość obliczeniowa obciążenia V (pionowego, składowej pionowej)Rd – nośność obliczeniowa podłoża gruntowego pod fundamentem (wartość obliczeniowa oporu przeciw oddziaływaniu),

    Wartość Vd powinna zawierać ciężar fundamentu i materiału zasypowego oraz parcia gruntu, jako siły korzystne lub niekorzystne. Ciśnienie wody nie spowodowane naciskiem fundamentu należy włączyć do obliczeń jako oddziaływanie.

    7.1.2 Nośność obliczeniowa podłoża gruntowego pod fundamentem

    Nośność obliczeniowa podłoża = Opór graniczny podłoża

    7.1.2.1 Nośność podłoża – warunki bez odpływuNośność obliczeniową w warunkach bez odpływu można wyznaczyć ze wzoru:

    Rk/A’ = (π + 2) · cu · bc · sc · ic + q

    gdzie:A' – efektywne obliczeniowe pole powierzchni fundamentu, [m²],cu – wytrzymałość gruntu na ścinanie bez odpływu, [kN/m²],q – naprężenie od nadkładu lub obciążenia w poziomie podstawy fundamentu, [kN/m²]

    oraz bezwymiarowe współczynniki:

    - wpływ nachylenia podstawy fundamentu:bc = 1 - 2α / (π + 2)

    - współczynnik kształtu podstawy fundamentu:sc = 1 + 0,2 (B'/L')

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.10/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    - nachylenie obciążenia, spowodowane obciążeniem poziomym H:ic = 0.5(1 + √(1 - H / (A' ∙ cu))z zastrzeżeniem, że H ≤ A' ∙ cu

    Dla fundamentów prostokątnych A' = B' ∙ L', gdzie: B' = B – 2eB, L' = L – 2eL, patrz Rysunek 3.

    7.1.2.2 Nośność podłoża – warunki z odpływemNośność obliczeniową w warunkach z odpływem można wyznaczyć ze wzoru:

    R/A' = c' ∙ Nc ∙ bc ∙ sc ∙ ic + q' ∙ Nq ∙ bq ∙ sq ∙ iq + 0,5 γ' ∙ B' ∙ Nγ ∙ bγ ∙ sγ ∙ iγ

    gdzie:A' – efektywne obliczeniowe pole powierzchni fundamentu, [m²],c' – spójność efektywna gruntu, [kN/m²],q' – obliczeniowe efektywne naprężenie od nadkładu w poziomie podstawy fundamentu,[kN/m²],

    γ' – obliczeniowy efektywny ciężar objętościowy gruntu (do głębokości B) poniżej poziomu posadowienia, [kN/m³].

    oraz bezwymiarowe współczynniki:

    - współczynniki nośności:Nq = e π tanφ' ∙ tan²(45 + φ'/2)Nc = (Nq – 1) ∙ cotφ'Nγ = 2(Nq – 1) ∙ tanφ', jeżeli δ > φ'/2 (dla szorstkiej podstawy)

    - wpływ nachylenia podstawy fundamentu:bc = bq – (1 – bq) / (Nc ∙ tanφ')bq = bγ = (1 – α ∙ tanφ')²

    - współczynniki kształtu podstawy fundamentu:sq = 1 + (B'/L') sinφ'sγ = 1 – 0,3(B'/L')sc = (sq ∙ Nq – 1) / (Nq – 1)dla kwadratu lub koła B'/L' = 1dla ław fundamentowych: sq, sγ, sc = 1

    - nachylenie obciążenia, spowodowanego obciążeniem poziomym H:ic = iq – (1 – iq) / (Nc ∙ tanφ')iq = [1 – H/(V + A' ∙ c' ∙ cotφ')]miγ = [1 – H/(V + A' ∙ c' ∙ cotφ')]m+1gdzie: c' – adhezja pomiędzy podstawą fundamentu i gruntem,

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.11/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    dla HB: m = mb = [2 + (B'/L')] / [1 + (B'/L')]dla HL: m = mL = [2 + (L'/B')] / [1 + (L'/B')]

    W przypadku gdy składowa pozioma obciążenia działa w kierunku tworzącym kąt θ z kierunkiem L', wartość m można obliczyć ze wzoru: m = m0 = mL cos²θ + mB sin²θ

    Rys.3 (D1) Oznaczenia [1]

    7.2 Nośność podłoża na przesunięcieGdy obciążenie nie jest prostopadłe do podstawy fundamentu, należy sprawdzić nośność

    fundamentu na przesunięcie (poślizg) wzdłuż podstawy [1]. Przy fundamentach o podstawie płaskiej, jeżeli wielkość siły poziomej przekazywanej przez fundament na grunt nie przekracza 10% siły pionowej, sprawdzenie tego warunku można pominąć [5].

    7.2.1 Warunek obliczeniowy nośności podłoża na przesunięcie

    Hd ≤ Rd + Rp;d gdzie:

    Hd – obliczeniowa siła pozioma przesuwająca fundament,Rd – obliczeniowy opór ścinania,Rp;d – wartość obliczeniowa siły utrzymującej wywołanej przez parcie gruntu na boczną powierzchnię fundamentu.

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.12/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    7.2.2 Obliczeniowy opór ścinania

    7.2.2.1 W warunkach z odpływemWspółczynniki częściowe stosujemy albo do właściwości gruntu, albo do oporu gruntu, a

    obliczeniowy opór ścinania liczymy według jednego ze wzorów:

    Rd = Vd' · tanδd EC7-1 6.3aalbo

    Rd = (Vd' · tanδk) / γR;h EC7-1 6.3b 3

    gdzie:Vd' – wartość obliczeniowa efektywnego oddziaływania pionowego lub składowej całkowitego oddziaływania, działającej prostopadle do podstawy fundamentu,δd – obliczeniowy kąt tarcia na styku fundamentu i gruntu.

    Określając Vd', należy rozważyć, czy Hd i Vd' są oddziaływaniami współzależnymi czy niezależnymi.Obliczeniowy kąt tarcia na styku fundamentu i gruntu δd przyjmujemy:

    - dla betonowych fundamentów formowanych na gruncie: δd = φ'cv;d,- dla gładkich fundamentów prefabrykowanych: δd = 2/3φ'cv;d,

    φ'cv;d – obliczeniowy, efektywny kąt tarcia wewnętrznego w stanie krytycznymEfektywną spójność c' zaleca się pominąć.

    Na potrzeby ćwiczenia projektowego przyjąć φ'cv;d = φ'd

    7.2.2.2 W warunkach be odpływuWspółczynniki częściowe stosujemy albo do właściwości gruntu, albo do oporu gruntu, a

    obliczeniowy opór ścinania liczymy według jednego ze wzorów:

    Rd = Ac · cu;d EC7-1 6.4aalbo

    Rd = (Ac · cu;k) / γR;h EC7-1 6.4b 3

    gdzie:Ac – pole całkowitej powierzchni fundamentu przekazujące nacisk na grunt,cu – wytrzymałość gruntu na ścinanie bez odpływu.

    Jeżeli istnieje możliwość dostania się wody lub powietrza pomiędzy fundament i niezdrenowane

    3 Zgodnie z PN-EN 1997-1:2008/NA w Polsce stosujemy te wzory

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.13/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    podłoże spoiste, należy sprawdzić poniższą nierówność:Rd ≤ 0,4 Vd

    8 Porównanie oznaczeń według PN i EC7

    Porównanie oznaczeń według normy polskiej PN-B-03020:1981 i EC7Opis PN EC7wartość charakterystyczna

    – parametru

    – obciążenia /oddziaływania

    _(n) lub _ nx(n)

    Yn

    _ kxk

    Fk ; Ek

    wartość obliczeniowa

    – parametru

    – obciążenia /oddziaływania

    _(r) lub _ rx(r) = γm ∙ x

    (n)

    Yr = γf ∙ Yn

    _ dxd = xk / γMFd = γF ∙ Fk; Ed = γF ∙ Ek

    obliczeniowy ciężar objętościowy gruntu w strefie B pod fundamentem γ

    (r)B γ' *)

    obciążenie jednostkowe w poziomie posadowienia γ

    (r)D ∙ Dmin q'

    współczynniki nośności Nc, ND, NB Nc, Nq, Nγ

    współczynniki wpływu nachylenia wypadkowej obciążenia, spowodowane działaniem siły poziomej

    ic, iD, iB ic, iq ,iγ

    *) UWAGA! Nie utożsamiać jednoznacznie z ciężarem objętościowym gruntu pod wyporem wody.

    Dla osób, które opanowały projektowanie fundamentów według polskiej normy [6]

    Podobieństwo wzorów na opór graniczny podłoża QfN z [6] i Rd (p.7.1.2.2)Dokonując następujących modyfikacji we wzorze na QfN:

    - przyjmując oznaczenie zredukowanego pola podstawy fundamentu: A¯ = B¯ · L¯- oznaczając współczynniki kształtu w sposób następujący:m c = (1 + 0.3B¯/L¯) m D = (1 + 1.5B¯/L¯) m B = (1 - 0.25B¯/L¯)- uwzględniając dodatkowo wpływ nachylenia podstawy fundamentu [11]: icf, iDf, iBf ,

    otrzymujemy:

    QfNB/A¯= mc· NC· cu(r) · ic· icf + mD· ND· ρD

    (r) · g · Dmin· iD· iDf + mB· NB· ρB(r) · g · B¯· iB·

    iBf

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.14/15

    mailto:[email protected]

  • Materiały dydaktyczne - projektowania fundamentu bezpośredniego według Eurokodu 7

    a w EC7:

    R/A' = c' ∙ Nc ∙ bc ∙ sc ∙ ic + q' ∙ Nq ∙ bq ∙ sq ∙ iq + 0,5 γ' ∙ B' ∙ Nγ ∙ bγ ∙ sγ ∙ iγ

    W powyższych wzorach mamy trzy człony nośności, które uwzględniają kolejno: udział spójności gruntu + udział głębokości posadowienia + udział szerokości fundamentu

    Oczywiście wspomniane podobieństwo nie oznacza takich samych wartości nośności podłoża!

    9 Literatura

    [1] PN-EN 1997-1:2008: Eurokod 7: Projektowanie geotechniczne Część 1: Zasady ogólne.[2] PN-EN 1997-2:2009: Eurokod 7: Projektowanie geotechniczne Część 2: Rozpoznanie i badanie podłoża gruntowego.[3] PN-EN 1990:2004: Eurokod Podstawy projektowania konstrukcji.[4] PN-EN 1991-1-1:2004 : Eurokod 1: Oddziaływania na konstrukcje Część 1-1: Oddziaływania ogólne Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach.[5] Wysokiński L., Kotlicki W., Godlewski T.: Projektowanie geotechniczne według Eurokodu 7. ITB, 2011[6] PN-B-03020:1981: Grunty budowlane. Posadowienie bezpośrednie budowli. Obliczenia statyczne i projektowanie. [7] Pisarczyk S.: Mechanika gruntów. WPW, Warszawa, 1998[8] Pisarczyk S.: Gruntoznawstwo inżynierskie. PWN, Warszawa, 2001[9] Wiłun Z.: Zarys geotechniki. WKŁ, Warszawa, 2001[10] PN-EN 1997-1:2008/NA:2011: Eurokod 7: Projektowanie geotechniczne Część 1: Zasady ogólne; Załącznik krajowy.[11] PN-B-03010:1983: Ściany oporowe. Obliczenia statyczne i projektowanie.

    © [email protected] WERSJA II Poznań, grudzień 2012 r. Str.15/15

    mailto:[email protected]

    1 Stany graniczne nośności2 Sprawdzenie stanów granicznych STR i GEO w sytuacjach trwałych i przejściowych3 Obliczeniowe efekty oddziaływań3.1 Rodzaje oddziaływań (EC0 p.4.1.1) ze względu na ich zmienność w czasie:3.2 Wartości charakterystyczne oddziaływań (EC0 p.4.1.2)3.3 Wartości reprezentatywne oddziaływań3.4 Wartości obliczeniowe oddziaływań3.5 Przykład – wyznaczanie obliczeniowej wartości oddziaływania

    4 Opory (nośności) obliczeniowe5 Parametry geotechniczne przyjmowane do obliczeń5.1 Charakterystyczne wartości parametrów geotechnicznych5.2 Efektywne parametry wytrzymałościowe5.3 Obliczeniowe wartości parametrów geotechnicznych

    6 Podejścia obliczeniowe6.1 Podejście obliczeniowe 16.2 Podejście obliczeniowe 26.3 Podejście obliczeniowe 3

    7 Stany GEO dla fundamentu bezpośredniego7.1 Nośność podłoża7.1.1 Warunek obliczeniowy nośności podłoża7.1.2 Nośność obliczeniowa podłoża gruntowego pod fundamentem7.1.2.1 Nośność podłoża – warunki bez odpływu7.1.2.2 Nośność podłoża – warunki z odpływem

    7.2 Nośność podłoża na przesunięcie7.2.1 Warunek obliczeniowy nośności podłoża na przesunięcie7.2.2 Obliczeniowy opór ścinania7.2.2.1 W warunkach z odpływem7.2.2.2 W warunkach be odpływu

    8 Porównanie oznaczeń według PN i EC79 Literatura