49
1 Signals and Systems Lecture 25 •The Laplace Transform •ROC of Laplace Transform •Inverse Laplace Transform

1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

Embed Size (px)

Citation preview

Page 1: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

1

Signals and SystemsLecture 25

•The Laplace Transform

•ROC of Laplace Transform

•Inverse Laplace Transform

Page 2: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

2

Appendix Partial Fraction Expansion

Consider a fraction polynomial:

)(

)(

)()(

012

21

1

012

21

1

mnwhere

asasasas

bsbsbsbsb

sD

sNsX

nn

nn

n

mm

mm

mm

Discuss two cases of D(s)=0, for distinct root

and same root.

Chapter 9 The Laplace Transform

Page 3: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

3

(1) Distinct root:

)())((

)(

21

012

21

1

n

nn

nn

n

sss

asasasassD

n

i i

i

n

n

n

mm

mm

mm

s

A

s

A

s

A

s

A

sss

bsbsbsbsbsX

1

2

2

1

1

21

012

21

1

)())(()(

thus

Chapter 9 The Laplace Transform

Page 4: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

4

Calculate A1 :

Multiply two sides by (s-1):

n

n

s

sA

s

sAAsXs

)()(

)()( 1

2

1211

1|)()( 11 ssXsALet s=1, so

isi sXsAi |)()(Generally

Chapter 9 The Laplace Transform

Page 5: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

5

(2) Same root:

)())(()(

)(

211

012

21

1

nrrr

nn

nn

n

ssss

asasasassD

n

n

r

rrrr

nrrr

mm

mm

mm

s

A

s

A

s

A

s

A

s

A

ssss

bsbsbsbsbsX

1

1

1

11

1

12

1

11

211

012

21

1

)()()(

)())(()()(

thus

),,2,1(

|)()(

nrri

sXsAiisi

For first order poles:

Chapter 9 The Laplace Transform

Page 6: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

6

r

n

n

r

r

rr

r

ss

A

s

A

sAsAAsXs

)]([

)()()()(

11

1

111112111

Multiply two sides by (s-1)r :

For r-order poles:

1|)()( 111 s

r sXsASo

1|)]'()[( 112 s

r sXsA

1|)]()[(

)!1(

1 111

srr

r sXsr

A

Chapter 9 The Laplace Transform

Page 7: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

7

9.3 The Inverse Laplace Transform

dejXtx

or

dejX

jXFetx

etxF

jsdteetxjX

dtetxsX

tj

tj

t

t

tjt

st

)(

1

)(2

1)(

)(2

1

)]([)(

])([

)()()(

)()(

So

j

j

stdsesXj

tx

)(

2

1)(

Chapter 9 The Laplace Transform

Page 8: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

8

The calculation for inverse Laplace transform:

(1) Integration of complex function by equation.

(2) Compute by Fraction expansion.

General form of X(s):

n

i i

i

n

n

s

A

s

A

s

A

s

AsX

1

2

2

1

1)(

Important transform pair:

polerighttue

polelefttue

s t

t

ii

i

),(

),(1

Example 9.9 9.10 9.11

Chapter 9 The Laplace Transform

Page 9: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

9

Chapter 9 The Laplace Transform

§9.3 The Inverse Laplace Transform

ROC

dsesXj

tx stj

j

21

defining

a 0

j j

j

Example 9.9

21

1

sssX

Determine the inverse Laplace transform for all possible ROC.

Page 10: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

10

Chapter 9 The Laplace Transform

§9.4 Geometric evaluation of the Fourier transform

几何求值 from the Pole-Zero plot

1

1

i

n

i

i

m

i

αj

jMjX

i

j

i

ij ij

Pole vector: ijii eAj

Zero vector: ijii eBj

iAiB

i i

Page 11: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

11

Chapter 9 The Laplace Transform

2

1Re

2/1

1

s

ssXExample 9.12

§9.4.1 First-Order System

txtyty

tueth t

/1

τ——time constant (时间常数)

controls the speed of response of first-order systems

Page 12: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

12

Chapter 9 The Laplace Transform

§9.4.2 Second-Order System

0, 1

.1 2121

ss

sH

21,maxRe s

1

21

jjjH

2

1

2

1 .2

22

nnsssH

2

1

2 2H s

s s

n 2 , 1/ 2

Page 13: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

13

Chapter 9 The Laplace Transform

§9.4.3 All-Pass Systems (全通系统)

Constant jH

First-Order System

j

1

1 j1A

1

1 j1B

1

1

j

jjH

零极点相对于 jω轴对称

1

1

j

jjH

1

12 1 tgjHjH

全通系统:零极点个数相同,且相对于 jω轴对称。

11 BA

Page 14: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

14

Chapter 9 The Laplace Transform

§9.5 Properties of the Laplace Transform

§9.5.1 Linearity of the Laplace Transform

sbXsaXtbxtax L2121

sXtx L11 1RRoc

sXtx L22 2RRoc

21 RRRoc

Page 15: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

15

Chapter 9 The Laplace Transform

Example 9.13

1Re 21

12

s

sssX

1Re 1

11

s

ssX

j

12

j

1

2

121

s

sXsXsX

2Re s

2tx t e u t

j

2

Page 16: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

16

Chapter 9 The Laplace Transform

§9.5.2 Time Shifting

0L0

stesXttx

sXtx L RRoc

RRoc

Example kTttx

k

0

Re 0s

1

1 sTX s

e

j

pole-zero plot

Tj2

Tj2

Page 17: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

17

sXtx L

Chapter 9 The Laplace Transform

§9.5.3 Shifting in s-Domain

0L0 ssXetx ts

RRoc

0Re sRRoc

ROC的边界平移

j

2r

21 Re rsr

1r

j

0201 ReReRe srssr

01 Re sr 02 Re sr

Page 18: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

18

Chapter 9 The Laplace Transform

20

2L

0cos

s

stut 0Re s

20

20L

0sin

s

tut 0Re s

tute at0cos

20

2L

as

as as Re

tute at0sin

20

20L

as

as Re

Page 19: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

19

Chapter 9 The Laplace Transform

§9.5.4 Time Scaling

sXtx L RRoc

asXa

atx /1L aRRoc

sXtx L

RRoc

When 1a

Page 20: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

20

Chapter 9 The Laplace Transform

1

22

se t

1Re1 s 1

j

1

4

42

2

se t

2Re2 s 2

j

2

4/1

12

2

1

se

t

2

1Re

2

1 s 2

1

j

2

1

Page 21: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

21

Chapter 9 The Laplace Transform

§9.5.5 Conjugation

sXtx L RRoc

sXtx L RRoc

txtx sXsX

Page 22: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

22

Chapter 9 The Laplace Transform

§9.5.6 Convolution Property

sXtx L11 1RRoc

sXtx L22 2RRoc

sXsXtxtx L2121 21 RRRoc

2Re 2

11

ss

ssX

1Re 1

22

ss

ssX

121 sXsX sRe ttxtx 21

Page 23: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

23

Chapter 9 The Laplace Transform

Example ? 213

22

1 txtxtuetxtuetx tt

不存在傅立叶变换

5

1

5

1 3221 tuetuetxtx tt

Page 24: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

24

Chapter 9 The Laplace Transform

§9.5.7 Differentiation in the Time Domain

sXtx L RRoc

RRoc ssXdt

tdx L

1

0 t

tx

2 4 6 8

Example

Determine sX

2

1 2 2 2

1 2 Re 0

1

s s

s

e eX s X s X s s

s e

Page 25: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

25

§9.5.8 Differentiation in the s-Domain

Chapter 9 The Laplace Transform

sXtx L RRoc

RRoc ds

sdXttx L

2

1

astute Lat

as Re

3

2 1

2

1

astuet Lat

as Re

Page 26: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

26

Chapter 9 The Laplace Transform

more generally,

1

1

!

1

n

Latn

astuet

n as Re

1

1

!

1

n

Latn

astuet

n as Re

Page 27: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

27

Chapter 9 The Laplace Transform

Example

1Re 21

12

sss

esX

s

Determine tx

Solution:

1111 1211

2

tuetuetuet

tuetuetutetxttt

ttt

Page 28: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

28

Chapter 9 The Laplace Transform

Example 11

tuet

tx at

Determine sX

s

assX

ln

as ,0maxRe

Page 29: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

29

Chapter 9 The Laplace Transform

§9.5.9 Integration in the Time Domain

sXtx L RRoc

sXs

dxt 1L

0Re sRRoc

ROC的变化:

① R 与 无公共部分,积分的拉氏变换不存在。 0Re s

tuetx t

1Re 1

1

s

ssX

的积分不存在拉氏变换 tx

0

j

1

Page 30: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

30

Chapter 9 The Laplace Transform

② R 与 部分重叠。 0Re s

tuetx t 2

dxt

0

j

2

③ R 与 部分重叠。 0Re s

1Re 21

sss

ssX

s ss

dxt

1Re21

1L

0

j

12

s s-

L 2Re2

1

s s-s

2Re02

1L

Page 31: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

31

Chapter 9 The Laplace Transform

§9.5.10 The Initial- and Final-Value Theorems

初值定理和终值定理1. The Initial-Value Theorem

0 , 0 ttx Contains no impulses or higher order singularities at the origin.

ssXxs

lim0 为真分式 sX

321

122

sss

sssX

ssXxs

lim0

1321

12lim

2

sss

ssss

Page 32: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

32

Chapter 9 The Laplace Transform

2. The Final-Value Theorem

0 , 0 ttx

的极点均在 jω轴左侧,允许在 s=0有一个一阶极点 sX

ssXtxxst 0limlim

asas

sX

Re 1

0 a① 0limlim0

ssXtxst

0 a② 11

limlim0

s

stxst

0 a③ 终值不存在。

Page 33: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

33

1 1 Re ln

1 sTX s s aae T

Chapter 9 The Laplace Transform

§9.5.11 运用基本性质求解拉氏变换

0

k

k

x t a t kT

Example 1

Determine sX

j

aT

ln1

Example 2

1 Re 0

1 sX s s

s e

Determine tx

k 0

1 k

x t u t - k

Page 34: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

34

Chapter 9 The Laplace Transform

Example 3

22

2 Re 0

1X s s

s

Determine tx

00 2 2

0

sin Re 0Ltu t ss

sin cosx t t t t u t

Page 35: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

35

Chapter 9 The Laplace Transform

§9.7 Analysis and Characterization of LTI Systems

Using the Laplace Transform

ty th

sH sY

tx

sX

thtxty

sHsXsY

sH ——System Function or Transfer Function

Page 36: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

36

Chapter 9 The Laplace Transform

For a system with a rational system function,

causal maxRe sROC

§9.7.2 Stability (稳定性)

stable axisjω ROC

§9.7.1 Causality

Causal maxRe sROC

Page 37: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

37

Chapter 9 The Laplace Transform

Example 9.20 21

1

ss

ssH

j

21

j

21

j

21

2Re a s

Causal , unstable system

2Re1 b s-

noncausal , stable system

1Re c s

anticausal , unstable system(反因果)

Page 38: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

38

系统因果、稳定

Chapter 9 The Laplace Transform

sH 的极点均在 轴左侧,

j

maxRe s

如果 为有理函数 sH

Stability of Causal System

Consider the following causal systems

1

1 a

ssH ——Stable

21

1 b

sssH ——unstable

Page 39: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

39

Chapter 9 The Laplace Transform

Causal maxRe sROC

For a system with a rational system function,

causal maxRe sROC

stable axisjω ROC

Page 40: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

40

Chapter 9 The Laplace Transform

§9.7.3 LTI Systems Characterized by Linear Constant-Coefficient

Differential Equations

txtydt

tdy3

k

kM

kkk

kN

kk dt

txdb

dt

tyda

00

ROCk

k

N

k

kk

M

k

sa

sb

0

0

sX

sYsH

Page 41: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

41

Chapter 9 The Laplace Transform

Example Consider a causal LTI system whose input and

output related through an linear constant-coefficient

differential equation of the form

tx

y t

3 2y t y t y t x t

Determine the unit step response of the system.

21 1

2 2t ts t e e u t

Page 42: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

42

Chapter 9 The Laplace Transform

Example 9.24

Consider a RLC

circuit in Figure 9.27+

R L

C

-

+ ty

tx

-

Figure 9.27

LCsLRs

LCsH

/1/

/12

Page 43: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

43

Chapter 9 The Laplace Transform

Example 9.25

Consider an LTI system with input ,

Output .

(a) Determine the system function.

(b) Justify the properties of the system.

(c) Determine the differential equation of the system.

tuet x t3

tueet y tt 2

3 Re 1

1 2

sH s s -

s s

3 2 3y t y t y t x t x t

Page 44: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

44

Chapter 9 The Laplace Transform

Example Consider a causal LTI system ,

tbutuethdt

tdh t 42 .2

t-etyt-etx tt 6

1 .1 22

b——unknown constant

Determine the system function and b. sH

2 Re 0

4H s s

s s

Page 45: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

45

Chapter 9 The Laplace Transform

Example 9.26 An LTI system:

1. The system is causal.

2. is rational and has only two poles: s= - 2 and s=4.

3. 4. Determine 01 tytx

sH

40 h sH

Example 9.26 An LTI system:

1. The system is causal.

2. is rational and has only two poles: s=-2 and s=-4.

3. 4. Determine 01 tytx

sH

40 h sH

42

4

ss

ssH 4Re s

Page 46: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

46

Chapter 9 The Laplace Transform

Example 9.27

已知一因果稳定系统, 为有理函数,有一极点

在 s=-2处,原点( s=0)处没有零点,其余零极点未知,

判断下列说法是否正确。

sH

1. 的傅立叶变换收敛。 teth 3

2. 0

dtth

3. 为一因果稳定系统的单位冲激响应。 tth

4. 至少有一个极点。

dt

tdh

5. 为有限长度信号。 th

Page 47: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

47

Chapter 9 The Laplace Transform

6. sHsH

在 s=-2处有极点 在 s=+2处有极点

7. 2lim

sHs

无法判断正确与否。

Page 48: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

48

Chapter 9 The Laplace Transform

例 设信号 是系统函数为

的因果全通系统的输出。

1. 求出至少有两种可能的输入 都能产生 。

tuety t2 1

1

s

ssH

tf ty

2. 若已知

问输入 是什么?

dttf

tf

3. 如果已知存在某个稳定(但不一定因果)的系统,

它若以 作输入,则输出为 ,问这个输入

是什么?系统的单位冲激响应是什么?

tf ty

tf

Page 49: 1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

49

Problem Set

• P728 9.28

• P729 9.31