19
11.1 The Laplace Transform 11.2 Applications of Laplace Trans Chapter11 The Laplace Transform 拉拉拉拉拉

11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

Embed Size (px)

Citation preview

Page 1: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

11.1 The Laplace Transform

11.2 Applications of Laplace Transform

Chapter11 The Laplace Transform 拉普拉斯变

Page 2: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

1. Definition of the Laplace Transform

)()( sFtf

dtetftfLsF st

0

)()]([)(

js

The Laplace transform is an integral transformation of a function f(t) from the time domain into the complex frequency domain, giving F(s).

11.1 The Laplace Transform 拉普拉斯变换

The inverse Laplace transform 拉普拉斯反变换

dsesFj

tfsFLj

j

st

1

1

)(2

1)()]([1

Laplace transform pair 拉普拉斯变换对

complex frequency 复频率

Page 3: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

se

sdtetuLsF stst 11

1)]([)( 0

0

ase

as

dtedteetueLsF

tas

tasstatat

11

)]([)(

0)(

0

)(

0

1)()]([)( 0

0

edtettLsF st

(1)

(3)

(2)

Example 11.1 Determine the Laplace transform of each of the following functions:(1) u(t), (2) , and (3) )(tue at )(tSolution:

Page 4: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

2. Properties of the Laplace Transform

(1) Linearity 线性性质

)()()]()([ 22112211 sFasFatfatfaL

,)]([)( 11 tfLsF )]([)( 22 tfLsF If ,)]([)( tfLsF

(2) Time Shift 时移)()]()([ sFeatuatfL as

(3) Frequency Shift 频移)()]([ asFtfeL at

(4) Time Differentiation 微分

)0()(])(

[ fssFdt

tdfL

(5) Time Integration 积分

s

sFdttfL

t )(])([

0

Page 5: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

3. The Inverse Laplace Transform 拉普拉斯反变换

The inverse Laplace transform

dsesFj

tfsFLj

j

st

1

1

)(2

1)()]([1

The general form of

)(

)()(

sD

sNsF

(1) Decompose F(s)into simple terms using partial fraction expansion 部分分式展开 .

Steps to find the inverse Laplace transform:

(2) Find the inverse of each term by matching entries in table 14.2

Page 6: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

)())((

)()(

21 npspsps

sNsF

)()()()(

2

2

1

1

n

n

ps

k

ps

k

ps

ksF

ipsii sFpsk )()(

If

when pi is Simple Poles

the residue method: 留数法

(1) Simple Poles 单根Partial fraction expansion 部分分式展开

Page 7: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

Example 11.2 Find the inverse Laplace transform of

)4)(3)(1(

)2(6)(

sss

ssF

)4()3()1()( 321

s

k

s

k

s

ksF

1)4)(3(

)2(6)()1( 111

ss ss

ssFsk

3)4)(1(

)2(6)()3( 332

ss ss

ssFsk

4)1)(3(

)2(6)()4( 443

ss ss

ssFsk

)4(

4

)3(

3

)1(

1)(

sss

sF

043)( 43 teeetf ttt

By the residue method

Solution:

Page 8: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

)()(

)()(

qsps

sNsF

n p is repeated poles

)()()()(

)( 1221 sF

ps

k

ps

k

ps

ksF

nn

)()!1(

!2)(

11

23

21

tfetn

k

etktekektf

ptnn

ptptpt

The inverse transform

(2) Repeated Poles 重根

psn

n sFpsk )()(

psn

n sFpsds

dk )]()[(1

psn

n sFpsds

dk )]()[(

!2

12

2

2

Page 9: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

Example 11.3 Obtain g(t) if )3()1(

62)(

2

3

sss

sssG

1)1()3()(

2

s

D

s

C

s

B

s

AsG

2)3()1(

62)( 02

3

0

ss ss

ssssGA

25.2)1(

62)()3(

2

3

3

ss

sssGsB s

5.1)3(

62)()1( 1

3

12

ss ss

sssGsC

25.3)]()1[( 12 ssGs

ds

dD

Solution:

Page 10: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

1

25.3

)1(

5.1

)3(

25.22)(

2

sssssG

025.35.125.2)(2)( 3 teteetutg ttt

The inverse transform

Page 11: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

When )()( 1221 sFbass

AsAsF

02 bass

jbaa

p 22,1 )

2(

2

2)2

(,2

ab

a

))((

)( 112

21

jsjs

BsA

bass

AsA

)()()(

)(

)()(

)()(

1221

221

12211

sFs

B

s

sA

sFs

BsAsF

The poles

(3) Complex Poles 共轭复根

let

Page 12: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

)(sincos)( 111 tfteBteAtf tt

)()()(

)()( 122

122

1 sFs

B

s

sAsF

Page 13: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

11.2 Applications of Laplace Transform

(3) Take the inverse transform of the solution and thus obtain the solution in the time domain.

Steps in applying the Laplace transform:

(1) Transform the circuit from the time domain to the s domain.

(2) Solve the circuit using any circuit analysis technique with which we are familiar.

Page 14: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

(1) For a resistor

In the time domain )()( tRitv

In the s domain )()( sRIsV

1. Circuits Element Models

Rv(t) R

i(t)

RV(s) R

I(s)

Page 15: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

(2) For an inductor

In the time domaindt

tdiLtv

)()(

In the s domain )0()()( LissLIsV

v(t)

i(t)

LL V(s)

I(s)

)(Li

sL

)0-(Li

sL

Page 16: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

(3) For a capacitor

In the time domaindt

tdvCti

)()(

In the s domain

Cv(t)

i(t)

V(s)

I(s)

sC

1

sC

1

s

v )0(

s

v )0(

s

vsI

sCsV

)0()(

1)(

Page 17: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

(4) For the impedance

Under zero initial conditions:

)(

)()(

sI

sVsZ

)(

)(

)(

1)(

sV

sI

sZsY

Page 18: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

Example 11.4 Find vo(t) in the circuit. Assume vo(0-)=5V

10

+0.1Fv0(t)

V)(10 tue t

-A)(2 t10

Solution:

s

10

10 V0(s)

A210V

5

s

V1

10

s

Transform the circuit to the s-domain

Apply nodal analysis. At the top node

2/10

5)(

10

)(

101

10)( 0

00

ss

sVsVssV

)2)(1(

3525)(0

ss

ssV

2)1(

s

B

s

A

10|)()1( 10 ssVsA

15|)()2( 20 ssVsB

Thus 2

15

)1(

10)(0

ss

sV V)()1510()( 20 tueetv tt

Page 19: 11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换

部分电路图和内容参考了: 电路基础(第 3 版),清华大学出版社 电路(第 5 版),高等教育出版社 特此感谢!