1 Ortc Allan

Embed Size (px)

Citation preview

  • 8/2/2019 1 Ortc Allan

    1/24

    1

    Korea Winter Public ConferenceORTC 2011 ITRS

  • 8/2/2019 1 Ortc Allan

    2/24

    2

    1) Unchanged for 2010/11 MPU contacted M11) 2-year cycle trend through 2013; then 3-year trend to 20262) 60f2 SRAM 6t cell Design Factor

    3) 175f2

    Logic Gate 4t Design Factor4) Ongoing - evaluate alignment of nodes with latest M1 industrystatus and also High Performance/Low Power timing needs

    2) Unchanged for 2010/11 Tables:MPU Functions/Chip and ChipSize Models

    1) Design TWG Model for Chip Size and Density Model trends tied to

    technology cycle timing trends and cell design factors2) ORTC line item OverHead (OH) area model, includes non-active area

    3) Updated for 2010/11 Tables:MPU GLpr, GLphtrendssmoothed by PIDS modeling; but close to previoustargets

    4) Updated for 2010/11 Tables: Vdd Low operating and standbyline items from PIDS model track smoothed gate lengthchanges

    5) Added in 2011 Table ORTC-6 Battery Energy Storage(Watt-hours) Line Item from iNEMI Roadmap

    2011 Renewal ITRS ORTC Technology Trend Pre-Summary

  • 8/2/2019 1 Ortc Allan

    3/24

    3

    6) Updated in ORTC 2011 Tables - DRAM contacted M1:1) 1-year pull-in of M1 and bits/chip trends;2) no Flattening of DRAM M1 as with Flash Poly**

    3) 4f2 push out [to 2013];

    7) Updated in ORTC 2011 Tables - Flash Un-contacted Poly:1) 2+-year pull-in of Poly; however slower 4-year cycle (0.5x per

    8yrs) trend to 2020/10nm; then 3-year trend to 2022/8nm; then FlatPoly after 2022/8nm;

    2) and 3bits/cell extended to 2018; 4bits/cell delay to 20228) Updated in ORTC 2011 Tables - DRAM Bits/Chip and Chip Size Model:

    1) 3-year generation Moores Law bits/chip doubling cycle target (1-2yrdelay for smaller chip sizes

  • 8/2/2019 1 Ortc Allan

    4/24

    4

    10) Updated in ORTC 2011 Tables - ORTC Table 5 - Litho # of Mask CountsMPU, DRAM,

    1) Flash Survey inputs Updated2) Also IC Knowledge (ICK) model contribution to extend mask levels range

    11) Unchanged for 2011 - IRC 450mm Position:1) Timing Status

    1) Consortia work underway2) IDM and Foundry Pilot lines: 2013-14;3) Production: 2015-16

    2) SEMATECH/ISMI making good progress on 450mm program activities to meet the ITRS Timing

    1) Consortium operations are using 450mm early test wafer process, metrology and patterning capability tosupport Supplier development2) 193 immersion multiple exposure litho tools are under development to support consortium and manufacturers

    schedules3) 450mm increasing silicon demand is needed from consortium demonstrations to support development

    3) Europe momentum building - EEMI status reviewed with IRC in Potsdam4) FI TWG will extend 300mm wafer generation in parallel line item header with 450mm;

    1) Including Technology upgrade assumptions through end of roadmap2) Assuming compatibility of 300mm productivity extensions into the 450mm generation;

    5) Utilizing a new ITRS-based ICK Strategic commercial model , SEMATECH has developed300mm and 450mm 2009-2024 Range Scenarios for silicon and equipment demand

    12) Updated in 2011 - More than Moore white paper online at www.itrs.net1) New Moores Law and More Graphic update included in 2011 ITRS Executive Summary2) MtM Workshop completed in Potsdam, GE, in April and reviewed at Summer ITRS meeting3) New MEMS TWG and Chapter added to 2011 ITRS

    2011 Renewal ITRS ORTC Technology Trend Pre-Summary (cont.)

    http://www.itrs.net/http://www.itrs.net/
  • 8/2/2019 1 Ortc Allan

    5/24

    5

    Technology Pacing Cross-TWG Study Group (CTSG) work preparationfor 2012 Update:

    2011 Renewal ITRS ORTC Technology Trend Summary (cont.)

    IRC Equivalent Scaling Graphic Update Included in 2011 Update: Parallel bulk and SOI pathways; and Clarification of gate mobility

    materials pathway Proposals for pull-in placement of MuGFET [2012 Update work] and III/V Ge Timing [consider

    in 2013 ITRS work] (one IDM or Foundry company may lead technology production ramp)

    PIDS and FEP Memory Survey Proposal Updates Additional acceleration will be monitored

    FEP and Design and System Drivers Logic Monitor Monitor MPU and Leading Edge Logic technology trends

    A&P/Design Power Model Possible proposals for Power Dissipation "hot spot" model rather than chip area basis

    PIDS/Design Max On-chip Frequency vs Intrinsic Modeling Included in 2011 Update: New Max Chip Frequency trends (reset to 3.6Ghz/2010

    plus 4% CAGR trend) TBD PIDS Intrinsic Transistor and Ring Oscillator model Changes to 8% [from

    unchanged 2011 13% trend] PIDS Updates include MASTAR static modeling near-term and TCAD dynamiclong-term modeling

    Also equivalent scaling tradeoffs (FDSOI, MuGFET, III-V/Ge) with dimensionalscaling

    YE Defect Density Modeling New ORTC Defect Density model work moved to 2012 Update due to loss of

    modeling resources

  • 8/2/2019 1 Ortc Allan

    6/24

    6

    More than Moore: Diversification

    MoreMoore:

    Miniaturization

    BaselineCMOS:CP

    U,

    Memory,

    Logic

    BiochipsSensors

    ActuatorsHV

    PowerAnalog/RF Passives

    130nm

    90nm

    65nm

    45nm

    32nm

    22nm

    16 nm...V

    InformationProcessing

    Digital contentSystem-on-chip

    (SoC)

    Beyond CMOS

    Interacting with people and environment

    Non-digital contentSystem-in-package

    (SiP)

    Source: 2011 ITRS - Exec. Summary Fig. 4

    Figure 4 The Concept of Moores Law and More

  • 8/2/2019 1 Ortc Allan

    7/24

    7

    More Poly Dense Lines added in 2010 ITRS Update[Note: The ITRS does not utilize any single-product node designation reference; FlashPoly and DRAM M1 half-pitch are still Lithography drivers; however, other product

    technology trends may be drivers on individual TWG tables]

    Source: 2011 ITRS - Exec. Summary Fig. 1

    MetalPitch

    Typical DRAM/MPU/ASIC

    Metal Bit Line

    DRAM Pitch= DRAM Metal Pitch/2

    MPU/ASIC M1 Pitch= MPU/ASIC M1 Pitch/2

    Typical flash

    Un-contacted Poly

    FLASH Poly Silicon Pitch= Flash Poly Pitch/2

    32-64 Lines

    Poly

    Pitch

    Exec. Summary - Figure 1 Definition of Half-Pitch

  • 8/2/2019 1 Ortc Allan

    8/24Work in Progress - Do Not Publish

    8Months

    0-24

    Alpha

    Tool

    12 24-12

    Development Production

    Beta

    Tool

    Production

    Tool

    First

    Conf.

    Papers

    Proposal: First 1-2Companies

    Reaching

    CombinedProduction

    (work in Progress)2

    20

    200

    2K

    20K

    200K

    AdditionalLead-time:ERD/ERM

    Research andPIDS Transfer

    Volume(Wafers/Month)

    Source: 2009 ITRS - Exec. Summary Fig. 2a

    Figure 2a- (within an established wafer generation*)

    - *see also Figure 2a for ERD/ERM Research and PIDS Transfer timing; and also- Figure 6 (450mm topic) for Typical Wafer Generation Pilot and Production Ramp Curves

    Production Ramp-up Model and Technology/Cycle Timing

    Proposal

    For 2012Update Note:Fewer leadingIDM CompaniesRequiresAdaption ofDefinitionTo allow one

    IDM CompanyOr a FoundryRepresentingMany FablessCompaniesTo Lead aTechnology

    ProductionRamp Timing

  • 8/2/2019 1 Ortc Allan

    9/24

    9

    Months

    Alpha

    Tool

    Development Production

    Beta

    Tool

    Product

    Tool

    Volume(Wafers/Month)

    2

    20

    200

    2K

    20K

    200KResearch

    -72 0 24-48 -24-96

    Transfer toPIDS/FEP(96-72mo

    Leadtime)

    FirstTech. Conf.

    Device PapersUp to ~12yrs

    Prior to Product

    20192017201520132011 2021Hi-m Channel

    Example:

    1st2 Cos

    Reach

    Product

    FirstTech. Conf.

    Circuits PapersUp to ~ 5yrs

    Prior to Product

    Hi-m Channel Proposal - for 2013 ITRS work

    Source: 2011 ITRS - Exec. Summary Fig. 2b; plus:

    Figure 2b A Typical Technology Production Ramp Curve forERD/ERM Research and PIDS Transfer timing- including an example for III/V Hi-Mobility Channel Technology Timing Scenario- Acceleration to 2015 Scenario for the 2012 Update work

    [http://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-option]

    http://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-optionhttp://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-option
  • 8/2/2019 1 Ortc Allan

    10/24

    10

    2012 ITRS Update* 450mm Production Ramp-up Model[2011 ITRS Executive Summary Fig. 6 -A Typical Wafer Generation Pilot Line and Production Ramp Curve]

    Source: 2011 ITRS - Executive Summary Fig. 6

    *Note: the IRC recommended updating the ITRS 450mm Timing Graphic for use in the 2011 ITRS Special Topic and 2012 UpdateRoadmap guidance; based on SEMATECH guidance

    Volu

    me

    Years

    Alpha

    Tool

    Beta

    Tool

    Silicon is supporting developmentusing partially-patterned andprocessed test wafers ------ IDM & Foundry ------

    Pilot Lines

    Manufacturing

    Demonstrationsfocus on1xnm M1 half-pitchcapable tools

    Development Production

    Increasing450mm Silicon Demand

    From DemonstrationsBeta

    Tool

    Production

    Tool

  • 8/2/2019 1 Ortc Allan

    11/24

    11

    1

    10

    100

    1000

    1995 2000 2005 2010 2015 2020 2025 2030

    Nanometers(1

    e-9)

    Year of Production

    2011 ITRS - Technology Trends

    2011 ITRS Flash Pitch (nm) (un-contacted Poly) -[2-yr cycle to 2009; then 8-yr cycle to 2020; then 3-yr cycle to 2022/8nm; then flat]

    2011 ITRS DRAM Pitch (nm) (Contacted M1) -[2.5-yr cycle to 2008; 45nm pull-in to 2009; then 3-yrcyc le to 2026]

    2011 ITRS: 2011-2026

    3D - 8 layers

    3D - 128 layers

    PIDS 3DFlash :Looser Poly

    half-pitch2016-18/32;

    Then2019-21/28;

    Then2022-25/24

    Then2025-26/18nm

    ~5.5-yr

    Cycle

    Long-Term 19-26

    16nm

    2011 ITRS Figure 11ORTC Table 1 Graphical Trends Memory Half Pitch[With 2011 Flash 3D Scenario Overlay]

    Source: 2011 ITRS - Executive Summary Fig 3

  • 8/2/2019 1 Ortc Allan

    12/24

    12

    1

    10

    100

    1000

    1995 2000 2005 2010 2015 2020 2025 2030

    Nanometers(1e-9)

    Year of Production

    2011 ITRS - Technology Trends

    2009/10/11 ITRS MPU/ASIC Metal 1 (M1) Pitch (nm)[historical trailing at 2-yr cycle; extended to 2013; then 3-yr cycle]

    2009/10/11 ITRS MPU Printed Gate Length (GLpr) (nm)[3-yr cycle from 2011/35.3nm]

    2009/10/11 ITRS MPU Physical Gate Length (nm) [begin

    3.8-yr cyc le from 2009/29.0nm]

    2011 ITRS: 2011-2026

    Long-Term 19-26

    16nm

    2011 ITRS Figure 4ORTC Table 1 Graphical TrendsLogic (MPU and high-performance ASIC) Half Pitch and Gate Length

    Source: 2011 ITRS - Executive Summary Fig 4

  • 8/2/2019 1 Ortc Allan

    13/24

    2011 ITRS Figure 5 Equivalent Scaling Roadmap for Logic (MPU and high performance ASIC)Figure 5 ORTC Table 1 Graphical Trends (including overlay of 2009 industry logic nodes and ITRS trends

    for comparison); also including proposals for MugFET and III/V Ge accelerationfor 2012 ITRS Update work

    Metal

    High kGate-stack

    material

    2009 2012 2015 2018 2021

    Bulk

    FDSOI

    Multi-gate

    (on bulk or SOI)Structure

    (electrostatic

    control)

    Channel

    material

    Metal

    High k

    2nd generation

    Si + Stress

    S D

    High-

    InGaAs; Ge

    S D

    PDSOI

    Metal

    High k

    nth generation

    PossibleDelay

    PossiblePull -in

    13

    68nm 45nm 32nm 22nm 16nm2011 ITRS DRAM M1 :

    2011 ITRS MPU/hpASIC M1 : 76nm 65nm 54nm 45nm 38nm 32nm 27nm 19nm 13nm

    MPU/hpASIC Node: 45nm 32nm 22nm 16nm 11nm 8nm

    2011 ITRS hi-perf GLph : 32nm 29nm 29nm 27nm 24nm 22nm 20nm 15nm 12nm

    2011 ITRS hi-perf GLpr : 54nm 47nm 47nm 41nm 35nm 31nm 28nm 20nm 14nm

    45nm 32nm 11nm2011 ITRS Flash Poly : 54nm

    2011 ITWG Table Timing: 2007 2010 2013 2016 2019 2021

    Proposals - for 2012 Update work

    22-248nm

    20248nm

    22nm15nm

    11nm

    Source: 2011 ITRS - Executive Summary Fig 5

    Proposal - for 2013 ITRS work

    2011 ITRS Figure 4 ORTC Table 1 Graphical Trends

  • 8/2/2019 1 Ortc Allan

    14/24

    14

    1

    10

    100

    1000

    1995 2000 2005 2010 2015 2020 2025 2030

    Nanometers(1e-9)

    Year of Production

    2011 ITRS - Technology Trends

    2009/10/11 ITRS MPU/ASIC Metal 1 (M1) Pitch (nm)[historical trailing at 2-yr cycle; extended to 2013; then 3-yr cycle]

    2009/10/11 ITRS MPU Printed Gate Length (GLpr) (nm)[3-yr cycle from 2011/35.3nm]

    2009/10/11 ITRS MPU Physical Gate Length (nm) [begin

    3.8-yr cyc le from 2009/29.0nm]

    2011 ITRS: 2011-2026

    Long-Term 19-26

    16nm

    2011 ITRS Figure 4ORTC Table 1 Graphical TrendsLogic (MPU and high-performance ASIC) Half Pitch and Gate Length

    Source: 2011 ITRS - Executive Summary Fig 4

    2009/2010 ITRS Unchanged (except extend to new end period): 2011 ITRS:2011-2026; also ncludes 2012 Update Equivalent Scaling Proposals

    Equiv.Scaling

    Trade-off

    Strain

    HK/MG

    MuG-FET

    Hi-u,(tbd)

    ITRS 1999

    P. GarginiEquivalent

    ScalingConcept

    FDSOI

    PDSOI

    2011

    ITRS:ExtendM1;

    & GLpr;to 2026

    on3-yearCycle

    1995->2015Nodes

    360-11(10)

    ITRS M1 hp303-21nm

    ITRS GLph95-99-03-15360nm-90nm

    90nm-45nm45nm-17nm

    Gate Length+

    EquivalentScaling

    =Power &

    Performance

    Half-Pitch+

    Design

    FactorScaling

    [6t SRAM =60f2;

    4t Logic =175f2]

    EnablesMoores

    Law

    Functions/chip

    Also III/V; Ge from 2019-> 2015?

    Proposal for 2013 ITRSWork

    MugFET from 2015 -> 2011;Proposal for 2012 ITRS

    Work

    Updated Equivalent

    Scaling Proposal

    - for 2012 work

    2011 ORTC Figure 6

  • 8/2/2019 1 Ortc Allan

    15/24

    15

    1.00E-06

    1.00E-05

    1.00E-04

    1.00E-03

    1.00E-02

    1.00E-01

    1.00E+00

    1.00E+01

    1.00E+02

    1.00E+03

    1.00E+04

    1995 2000 2005 2010 2015 2020 2025 2030

    SquareMillim

    eters

    Year of Production

    2011 ITRS - Function Size

    2009 DRAM Cell area per bit (1 bits/cell) (um2)

    2009 Flash SLC area per bit (1 bits/cell) [SLC cell area/1] (um2)

    2009 Flash MLC Ave area per bit (2 bits/cell) [SLC cell area/2] (um2)2009 Flash MLC Ave area per bit (3 bits/cell) [SLC cell area/3] (um2)

    2009 Flash MLC Ave area per bit (4 bits/cell) [SLC cell area/4] (um2)

    2011 SRAM Cell (6-transistor) Area (um2)

    2011 Logic Gate (4-transistor) Area (um2)

    Long-Term 19-26

    2011 ITRS: 2011-2026

    2011 ORTC Figure 6Product Function

    Size Trends

    [transistor + capacitor]

    Source: 2011 ITRS - Executive Summary Fig 6

    PIDS NAND Fl h

    Pl Sh ll Di i l2011 ORTC Figure 6

  • 8/2/2019 1 Ortc Allan

    16/24

    16

    1.00E-06

    1.00E-05

    1.00E-04

    1.00E-03

    1.00E-02

    1.00E-01

    1.00E+00

    1.00E+01

    1.00E+02

    1.00E+03

    1.00E+04

    1995 2000 2005 2010 2015 2020 2025 2030

    SquareMillim

    eters

    Year of Production

    2011 ITRS - Function Size

    2009 DRAM Cell area per bit (1 bits/cell) (um2)

    2009 Flash SLC area per bit (1 bits/cell) [SLC cell area/1] (um2)

    2009 Flash MLC Ave area per bit (2 bits/cell) [SLC cell area/2] (um2)2009 Flash MLC Ave area per bit (3 bits/cell) [SLC cell area/3] (um2)

    2009 Flash MLC Ave area per bit (4 bits/cell) [SLC cell area/4] (um2)

    2011 SRAM Cell (6-transistor) Area (um2)

    2011 Logic Gate (4-transistor) Area (um2)

    Long-Term 19-26

    2011 ITRS: 2011-2026

    3D - 8 layers/16

    3D - 128 layers/ 25

    2016/32nm

    0.0039 um2

    2025/18nm0.000965 um2

    2016-202532nm-18nm

    = -6.193% CARRDimensional

    = -12.00%CARR Area= 0.8800x/yr

    0.5/5.5yrs =0.3165/9years

    3D Equiv.2016-2025

    1 - 128layers 41.674% CARR

    Area= 0.5833x/yr

    x0.8800/yr= 0.5133x/year

    2016/32nm0.00048 um2

    2025/32nm0.0030 um2

    MPU/ASIC

    AlignmentDesign TWGActual SRAM [60f2]

    & Logic Gate [175f2]

    DRAM4f2

    AddedWAS:Begin in

    2011IS: Delayed

    To 2013

    Flash [4f2]1) 2-yr CycleExtended to 2010;2) 3 bits/cell added2009-2011[and

    extended to 2020in the 2011 ITRS];3) 4 bits/cell movedfrom 2012 [to 2021in the 2011 ITRS]

    PIDS NAND FlashMulti-Layer 3D Model

    Plus Shallow Dimensional

    Reduction Rate Trend

    2011 ORTC Figure 6Product* FunctionSize Trends; plus

    [transistor + capacitor]

    Source: 2011 ITRS - Executive Summary Fig 6

    Fi 7 2011 ITRS P d t T h l T d

  • 8/2/2019 1 Ortc Allan

    17/24

    17

    0.01

    0.10

    1.00

    10.00

    100.00

    1000.00

    10000.00

    1995 2000 2005 2010 2015 2020 2025 2030

    Gigabits(1e9)andSquareMillimeters

    Year of Production

    2009 ITRS - Functions/chip and Chip Size

    2011 ITRS DRAM Functions per chip (Gbits)

    2011 ITRS Flash (Gbits) SLC [2-year cycle]

    2011 ITRS Functions per chip (Gbits) MLC (2 bits/cell)

    2011 ITRS Functions per chip (Gbits) MLC (3 bits/cell)

    2011 Functions per chip (Gbits) MLC (4 bits/cell)

    2011 Flash Chip size at production (mm2)

    2011 DRAM Chip size at production (mm2)

    Flash"Hwang's

    Law"~ 2x/1yr

    Flash~ 2x/3yrs

    Flash MLCExceeds1Tera-bit

    Average "Moore'sLaw" = 2x/2yrs

  • 8/2/2019 1 Ortc Allan

    18/24

    18

    10

    100

    1000

    10000

    100000

    1000000

    10000000

    1995 2000 2005 2010 2015 2020 2025 2030

    Million

    Transistors(1e6)andSqua

    reMillimeters

    Year of Production

    2011 ITRS - Functions/chip and Chip Size

    2011 ITRS Cost-Performance MPU Functions perchip at production (Mtransistorst)

    2011 ITRS High-Performance MPU Functions perchip at production (Mtransistors)

    2011 Cost-Performance MPU Chip s ize at

    production (mm2)

    2011 High-Performance MPU Chip s ize atproduction (mm2)

  • 8/2/2019 1 Ortc Allan

    19/24

    ORTC Table 5 Update: Litho TWG model for Mask Count

    MPU survey-based, mask counts peak 2014/(54 masks peak) EUV

    expected 2015

    DRAM referenced to MPU, mask counts peak 2012/(41 masks peak)EUV expected 2013

    Flash survey-based, mask counts peak 2012/(43 masks peak) EUVexpected 2013

    Sidewall image transfer technology IEDM papers should be evaluated

    Table 5 also includes NEW IC Knowledge (ICK)www.icknowledge.com modeled comparison targeting ITRS 2011Litho EUV timing; but extended out through 2024 using 2009-10 ITRS(www.itrs.net ) assumptions

    Limited YE Defect Density modeling resources requires delay ofupdate response to 2012 ITRS Update work

    19

    Fig 7a Litho 2011 Survey vs ICK 2011 ITRS based* Model

    http://www.icknowledge.com/http://www.itrs.net/http://www.itrs.net/http://www.icknowledge.com/
  • 8/2/2019 1 Ortc Allan

    20/24

    20

    Fig 7a - Litho 2011 Survey vs ICK 2011 ITRS-based* Model[*extended to 2024 based on 2009-24 ITRS www.itrs.net]

    20

    30

    40

    50

    60

    70

    80

    1995 2000 2005 2010 2015 2020 2025

    DRAM

    Flash

    MPU

    SEMATECHSurvey

    EUV timing:MPU

    in 2015;

    DRAM& Flash in

    2013

    LithoMaskCountb

    yProductCategory

    Actual < - > Forecast

    Source: 2011 ITRS - Executive Summary Fig. 7a

    450mm2015-2016

    Fig 7b Litho 2011 Survey vs ICK 2011 ITRS based* Model ( t )

    http://www.itrs.net/http://www.itrs.net/
  • 8/2/2019 1 Ortc Allan

    21/24

    21

    Fig. 7b - Litho 2011 Survey vs ICK 2011 ITRS-based Model (cont.)[*extended to 2024 based on 2009-24 ITRS www.itrs.net]

    20

    30

    40

    50

    60

    70

    80

    1995 2000 2005 2010 2015 2020 2025

    DRAM

    Flash

    MPU

    ICK StrategicModel*

    *Based onITRS

    2009-10 editions

    EUV timing:MPU

    in 2015;

    DRAM &Flash EUV in

    2013

    FlashCharge Trap

    in 2012;Multi-layer 3D

    begins2016

    MPUDelay EUV to

    2017

    LithoM

    askCountbyP

    roductCatego

    ry

    Actual < - > Forecast

    Source: 2011 ITRS - Executive Summary Fig. 7b

    450mm2015-2016

    http://www.itrs.net/http://www.itrs.net/
  • 8/2/2019 1 Ortc Allan

    22/24

    ORTC Table 4: Design TWG Model for On-Chip Frequency

    Lower model starting point 2010/3.6Ghz

    4% growth rate through 2026

    *Unchanged 2011 ITRS 13% PIDS targetmodel Intrinsic Transistor Frequency Growth;

    *However, proposal for 2012 ITRS 8% PIDStarget model Intrinsic Transistor Growth(work preparation in 2011)

    22

    Table ORTC-4 Performance and Packaged Chips

    Trends

    Year of Production 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

    Chip Frequency (MHz)

    WAS On-chip local clock [2] 5.454 5.875 6.329 6.817 7.344 7.911 8.522 9.180 9.889 10.652 11.475 12.361 13.315 14.343 15.451 16.640Design

    /ISOn-chip local clock [2] 3.462 3.600 3.744 3.894 4.050 4.211 4.380 4.555 4.737 4.927 5.124 5.329 5.542 5.764 5.994 6.234 6.483 6.743

    Ghz

    Table FreqTopic tbd -2011 Chip Frequency Model Trend vs.2009/2010 ITRS Frequency

    Source: 2011 ITRS - Executive Summary Table tbd

    Fig 8a - PIDS 2009/11 ITRS CV/I Trends vs. 2012 ITRS MUG-FET 4-year Pull-In and Lower Intrinsic Freq. Trend Proposals

  • 8/2/2019 1 Ortc Allan

    23/24

    23

    Fig 8a PIDS 2009/11 ITRS CV/I Trends vs. 2012 ITRS MUG FET 4 year Pull In and Lower Intrinsic Freq. Trend Proposals

    0.10

    1.00

    2000

    2005

    2010

    2015

    2020

    2025

    2030

    Extended Planar Bulk

    UTB FDSOI

    Multiple Gate 2010 ITRS;

    2011 ITRS Unchanged

    Multiple Gate Pull-in

    Scenario - 2012 ITRSCV/I(ps)

    Year of Production Ramp

    PIDS Table 2: CV/I 2009-2011 ITRS Unchanged

    100

    1000

    2000

    2005

    2010

    2015

    2020

    2025

    2030

    Extended Planar Bulk

    UTB FDSOI

    Multiple Gate 2010 ITRS;

    2011 ITRS Unchanged

    Multiple Gate Pull-in

    Scenario - 2012 ITRS

    1/(CV/I)(Ghz)

    Year of Production Ramp

    Note: 1/(CV/I) frequency is reduced by a factor of 1/22.4in a PIDS model of a Ring Oscillator (inverter chain) 101stages; 1001 stages, etc.;FO 1 (capacitance example .1pf);FO 4 (capacitance example .4pf)

    Note: 1/(CV/I) frequency is reduced by a factor of 1/22.4in a PIDS model of a Ring Oscillator (inverter chain) 101stages; 1001 stages, etc.;FO 1 (capacitance example .1pf);FO 4 (capacitance example .4pf)

    1/(CV/I) (Ghz) ~~ 13%CAGR

    PIDS 2012FDSOI Scenario:15/294 26/[email protected]% CAGR

    2011 ITRS2011 - 2026

    PIDS 2011 ITRS Table:1/(CV/I) (Ghz) =11/156 26/1000@ ~ 13% CAGR

    11/ 313 26/686 @ 5.4%CAGR MugFET Trend

    [2012 Proposal: MugFET4-year Leading Co.pull-in]

    PIDS 2011 ITRS Table:CV/I) (ps) =11/0.64 26/0.10@ ~ -12% CAGR

    11/ 0.319 26/0.146 @- 4.8% CAGR MugFETTrend

    [2012 Proposal: MugFET4-year Leading Co.pull-in]

    CV/I (ps) ~~ -12%CAGR

    PIDS 2012 FDSOIScenario:15/0.340 - 26/0.146-7.4% CAGR

    Figure 8a 2012 Update Model Trend versus 2009/2011 ITRS PIDS TWG Transistor Intrinsic Frequency (1/(CV/I)) Performance Trends

    Source: 2011 ITRS - Executive Summary Fig. 8a

    Fig. 8b - ORTC Table 4:On Chip Local Clock Frequency Trend Comparisons to PIDS

  • 8/2/2019 1 Ortc Allan

    24/24

    24

    Fig. 8b ORTC Table 4:On Chip Local Clock Frequency Trend Comparisons to PIDS

    vs. 2012 ITRS MUG-FET 4-year Pull-In and Lower Intrinsic Freq. Trend Proposals

    Figure 8b Design On-Chip Frequency vs. PIDS Intrinsic Transistor and Ring Oscillator Model Frequency

    2011 ITRS2011 - 2026

    0.1

    1

    10

    100

    1995 2000 2005 2010 2015 2020 2025

    Intel ActualAMD Actual

    IBM Actual

    2005 ITRS (18%)

    2007 ITRS (8%)

    2011 ITRS (4%)

    Source: ITRS Test TWG compilation, ca 4Q 2010; 2011 ITRS PIDS, Design TWGs

    2012 Update Scenario:FDSOI

    at 8% CAGR

    ORTC Table 4:On-Chip Local Clock Frequency:

    2011 Design TWG trend:at 4% CAGR

    2009/11 PIDS/FEPRing Oscillator Model

    101 invertor stagesWith equivalent Fan-out 4

    Capacitance load;Results in Frequency of

    ~ 1/22 x 1/(CV/I)

    at ~13% CAGR

    DesignHroom

    ~ 1/22

    2009/11 ITRS PIDS/FEPIntrinsic Transistor Frequency

    1/(CV/I) at 13% CAGR

    2007 Des TWGActual History of

    Average On-Chip1999 - 2007

    1Ghz 4.9Ghz~22% CAGR

    On-Chip Clock Frequency:Performance Improvement tradeoffsbetween dimensional EOT and Gate Lengthwith Equivalent Scaling, both process-related(ie Strain, FDSOI, MugFET, III/V Ge, etc);and also Including design-related tradeoffs:

    -Multi-Core Architecture

    -Memory Architecture-Software Power Management-etc.]

    1Thz

    2012 Update Scenario: MugFET :4yr Pull-in 1/(CV/I) to 2011; then 5% CAGR

    2012 Update Scenario:MugFET

    at 5% CAGR

    2012 Update Scenario FDSOI:Beginning 2015 at 8% CAGR

    Co.A Actual

    Co.B Actual

    Co.C Actual

    Source: 2011 ITRS - Executive Summary Fig 8b