36
• 1- Introduction, overview • 2- Hamiltonian of a diatomic molecule • 3- Hund’s cases; Molecular symmetries • 4- Molecular spectroscopy • 5- Photoassociation of cold atoms • 6- Ultracold (elastic) collisions Olivier Dulieu Predoc’ school, Les Houches,september 2004

1- Introduction, overview 2- Hamiltonian of a diatomic molecule

  • Upload
    brede

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

1- Introduction, overview 2- Hamiltonian of a diatomic molecule 3- Hund’s cases; Molecular symmetries 4- Molecular spectroscopy 5- Photoassociation of cold atoms 6- Ultracold (elastic) collisions. Olivier Dulieu Predoc’ school, Les Houches,september 2004. Main steps:. - PowerPoint PPT Presentation

Citation preview

Page 1: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

• 1- Introduction, overview• 2- Hamiltonian of a diatomic

molecule• 3- Hund’s cases; Molecular

symmetries• 4- Molecular spectroscopy• 5- Photoassociation of cold atoms• 6- Ultracold (elastic) collisionsOlivier Dulieu

Predoc’ school, Les Houches,september 2004

Page 2: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Main steps:

• Definition of the exact Hamiltonian• Definition of a complete set of basis

functions• Matrix representation of finite

dimension+perturbations• Comparison to observations to

determine molecular parameters

Page 3: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Non-relativistic Hamiltonian for 2 nuclei and n electrons in the lab-fixed frame

Vmmm

H bb

aa

n

ii

2'2

2'2

1

2'2

222

2'

2

2'

2

2'

22'

iiii ZYX

ji ab

ba

ij

n

i ib

bn

i ia

a

r

eZZ

r

e

r

eZ

r

eZV

22

1

2

1

2

04

with

and

electrons nuclei

e-n e-e n-n

Relative distances

Page 4: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Separation of center-of-mass motion• Origin=midpoint of the axis ≠center of mass• Change of variables

'''

''

1

'''

2

1baii

ba

n

iib

ba

ac

RRRR

RRR

RM

mR

M

mR

M

mR

cii

n

iiRc

bb

n

iiRc

aa

M

m

M

m

M

m

'

1

'

1

'

2

1

2

1

mimmM ba Total mass:

Page 5: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Second Derivative Operator

n

iiR

n

jiji

n

ii

RRccbb

aa

n

ii

m

Mmmm

11,1

2

2'2'

1

2'

1

4

11

11111

ba

ba

mm

mm

ba

ba

mm

mm

for homonuclear molecules01 reduced mass

Page 6: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Hamiltonian in new coordinates

22

1

2

1,

2

1

22

22

2

28

22

c

n

iiR

n

jiji

n

iiR

M

Vm

H

Center-of-mass motion

Radial relative motion

Electronic Hamiltonian

Kinetic couplings m/

-Isotopic effect-Origincenter of mass

Study of the internal Hamiltonian…

2

22

2

22

2

222 R

O

RR

RRR

Page 7: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

T in spherical coordinates: rotation of the nuclei

Kinetic momentum of the nuclei

2

22

2

22

2

222 R

O

RR

RRR

X

Y

Z

R Ri e-

22

22

sin

1sin

sin

1

O

RiRO

cos

sinsin

cossin

RZ

RY

RX

R

R

R

iXY

YX

iO

iZX

XZ

iO

iYZ

ZY

iO

RR

RRZ

RR

RRY

RR

RRX

sincotcos

coscotsin

Page 8: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Rotating or molecular frame

• Specific role of the interatomic axis• Potential energy greatly simplified, independent of the

molecule orientation• Euler transformation with a specific convention: { , /2}

cossin

sinsinsincoscos

cossincoscossin

iii

iiii

iiii

zyZ

zyxY

zyxX

cossinsincossin

sinsincoscoscos

cossin

iiii

iiii

iii

ZYXz

ZYXy

YXx

Molecular lab-fixed

Lab-fixed molecular

Page 9: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

X

Y

Z

R

X ‘’

Y’’

Z

Y

X

Z

Y

X

100

0cossin

0sincos

Z’’=

X’’’

Z’’’

=Y’’’

Z

Y

X

Z

Y

X

cos0sin

010

sin0cos

=0 around Z’’’:x=X’’’,y=Y’’’, z=Z’’’

Oy perp to OZz

=/2 around Z’’’:Ox perp to OZzOR

0

sin

1

z

y

x

O

iO

iO

R 1

R 2

R 3

R 3

R 3 R 2 R 1 O

Page 10: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

X

Y

Z

R

X ‘’

Y’’

Z

Y

X

Z

Y

X

100

0cossin

0sincos

Z’’=

X’’’

Z’’’

=Y’’’

Z

Y

X

Z

Y

X

cos0sin

010

sin0cos

General case: 2/0 and

Z

Y

X

z

y

x

100

0cossin

0sincos

x

y

R 1

R 2

R 3

0

sin

sincos

sin

cossin

z

y

x

O

iO

iO

R 3 R 2 R 1 O

Page 11: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

yz

ZYXzyx

Li

Li

sincos

,,,,

T in the molecular frame (1)

xZYX

n

i ii

ii

ZYX

n

i i

i

i

i

i

i

ZYXzyx

Li

zy

yz

z

z

y

y

x

x

,,

1,,

1,,,,

222

22

2

22

2

sin

1sin

sin

1

222

RRR

RRR

With xi, yi, zi now depending on and .

Total electronic angularmomentum in the molecular frame

Page 12: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

T in the molecular frame (2)

cotsin

122

2

1cot

sin

1cot

2

22

2

2

222

2

2

2

2

2

22

22

2

zyx

yxz

R

Li

Li

Li

R

LLLi

R

RR

RR

vibration

rotation

Electronic spin can be introduced by replacing Lx,y,z with

jx,y,z=Lx,y,z+Sx,y,z

See further on…

Page 13: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Hamiltonian in the molecular frame

cotsin

122

2

1cot

sin

1cot

2

2

282

2

2

222

2

2

2

2

2

22

2

1

2

1,

2

1

22

zyx

yxz

n

iiR

n

jiji

n

ii

Li

Li

Li

R

LLLi

R

RR

RR

Vm

H

He+H’e

Hv

Hr+H’r

O2 : quite complicated!

Kinetic energy of the nuclei in the molecular frame

Page 14: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Total angular momentum in the molecular frame

Total angular momentum

Commute with H(no external field)

LOJ

ZYX JJJJ ,,,2

zz

zyyy

xxx

LJ

Li

LOJ

iLOJ

cotsin

1

In the molecular frame0

sin

1

z

y

x

O

iO

iO

xZYX

n

i ii

ii

ZYX

n

i i

i

i

i

i

i

ZYXzyx

Li

zy

yz

z

z

y

y

x

x

,,

1,,

1,,,,

yz

ZYXzyx

Li

Li

sincos

,,,,

Page 15: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Total angular momentum in the lab frame

In the lab frame

iJ

Li

J

Li

J

Z

zY

zX

sin

sinsincotcos

sin

coscoscotsin

cossin0

sinsinsincoscos

cossincoscossin

molecularlab

222

2

22

2222

sin

1

sin

cot2

sin

1sin

sin

1zz

ZYX

LLi

JJJJ

cot22222 zyx JJJJIn the

molecular frame!!

Depends only on Lz

Page 16: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Playing further on with angular momenta…

cotsin

122

1cot

sin

1cot

2

222

2

2

222

zyx

yxz

Li

Li

Li

LLLi

O

Page 17: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Playing further on with angular momenta…

222

2

222

sin

1

sin

cot2

sin

1sin

sin

1zz LLiJ

yzyzxx LLLLiLLii

O

sincossincos2sin

12cot

sin

1sin

sin

1

2

2

2

222

Compare with:

zyx Li

Li

LiLJO

cossin

22222

zyxz Li

Li

LiLJL

cossin

2

zyxyx Li

Li

LiLLOL

cossin

22

Also via a direct calculation:

Page 18: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Yet another expression for H in the molecular frame….

LJJLLJLJO

LOLJJLLJO

2222

2222 )2(2OLLOalso

:

2

2

2

22

2

2

1

2

1,

2

1

22

2

2

22

282

R

JLL

R

J

RR

RR

Vm

Hn

iiR

n

jiji

n

ii

He H’e

Hv Hr Hc

Coriolis interaction

22

)2(:

R

LOLalso

Page 19: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

What about spin?

Electronic spin Notations:

Nuclear spin

S

I

IJF

LON

SLOJ

If S quantized in the molecular frame (i.e. strong coupling with L), L

should be replaced by j=L+S (with projection ) in all previous equations

But why…?

cossinsincossin

sinsincoscoscos

0cossin

labmolecular

No spatial

representation for S

Rotation matrices:

lablabzz

yyzzmolmol

labzyzmol

labmol

labzyzlabmol

SSLi

SLiSLiS

SiSiSiSS

DHDH

iLiLiLD

)/)(exp(

)/)(exp()2/)(exp(

)/exp()/exp()2/exp(

)/exp()/exp()2/exp(1

1

Page 20: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Born-Oppenheimer approximation (1)

H=He+H’e+Hv+Hr+Hc.

m/>1800: approximate separation of electron/nuclei motion

BO or adiabatic approximation:factorization

of the total wave function

);()();( RrRURrH iie

);()()(

iBO rRR

Potential curves:R: separated atomsR0: united atom

Page 21: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Born-Oppenheimer approximation (2)

H=He+H’e+Hv+Hr+Hc.

BO or adiabatic approximation: factorization of the total wave function

);()()()(irRR

BO

)()()(2

1

2)()(2

22

2

2

RERHRUJRR

RRR c

Mean potential

All act on the electronic wave function

Page 22: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Validity of the BO approximation

RrRCR

rR ii

;

1;

Total wave function with energy EExpressed in the adiabatic basis

022 2

2

2

22

EHH

R

J

R ce

Set of differential coupled equations for C

)(2

)()(22

''

''

2

2'

22

2

2

2

22

RCHRRR

RCEHRUR

J

R

c

c

< | > Integration on

electronic coordinates

J2 diagonalBO approximation

Infinite sum on

non-adiabatic couplings

Page 23: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Non-adiabatic couplings (1)

• Ex: highly excited potential curves in Na2

)1('

'

R

)()(

0

'

')1('

)1(

RURU

RV

proof

Page 24: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Non-adiabatic couplings (2)

Diagonal elements:

)()()()()()()1(

)2(2

2

RURURURU

RVRV

RURU

RV

R

R

)1('

2

2

2

)()( RURU

RV

proof

Page 25: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Non-adiabatic couplings (3)

Diagonal elements

zy

yx

z

c

LL

Li

Li

LL

JLLRHR

cot2

sin

22

2

22222

222

zyxz Li

Li

LiLJL

cossin

2

2222

22

1

L

RH c

z

ez

L

HL 0,

0,2 eHL

proof

Page 26: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

« Improved » BO approximation(also « adiabatic » approximation)

Neglect all non-diagonal elements in the adiabatic basis |>

0)(2

)(2

2

2 2

22

2

2222

2

22

RCER

RUR

LJ

R

Unique by definition: Diagonalizes He

Page 27: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Alternative: Diabatic basis

Neglect all (non-diagonal) couplings due to Hc

)(22

)()(2

2

2

''

)1()2(2

2

2222

2

22

RCR

RCERUR

LJ

R

Define a new basis which cancels these

couplings

)()(~

)(

~)(

~

)(~

RMRCRC

RC

RM

)1(: MR

Mif

)(RW

CWCEW

R

~~~~

2 2

22

1~

MWMW

Couplings in the potential matrixproof

Page 28: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Diabatic basis: facts

• Not unique• R-independent

• Definition at R=R0 (ex: R=)

proof

Page 29: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

« Nuclear » wave functions (1)

Adiabatic approximation:

0)(2

)(2

2

22 2

22

2

222

2

2

2

22

RCER

RUR

L

R

J

R

zL

V(R)

CR

1Eigenfunctions of J2, JZ, Lz (ou jz) ( Jz)

0,

0,

0,,2

BOz

cz

Z

HJ

HJ

HJHJ

C.E.C.O

proofWave functions: |JM> ou |JM>

Page 30: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

« Nuclear » wave functions (2)

)()(),()(),,( JM

iMJM eRRRC R

0)()()1(22

22

2

2

22

RERVJJRR

)()1()(sin

cos2sin

sin

12

22

JM

JM JJ

MM

),(),(

),(),(

),()1(),( 22

JM

JMz

JM

JMZ

JM

JM

J

MJ

JJJ

RR

RR

RR

Page 31: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Rotational wave functionsPhase convention…

),()1(),();,(),(

),()1()1(),(

)0()0(

)1(2/1

JJMJM

JM

JM

JMYX

YY

MMJJiJJ

RR

RR

(Condon&Shortley 1935, Messiah 1960)

…and normalization convention….!

)(12

4)(

)(),,(

)0,,(4

12),(

),(),(sin2

0 0

JM

JM

iJM

iMJM

JM

JM

MMJJJM

JM

π

Jd

edeD

DJ

dd

R

RR

Up to now: ….

JM

Page 32: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Vibrational wave functions and energies (1)

0)()(2

)1(

2 2

2

2

22

RERVR

JJ

R

No analytical

solution

2

2

2

)1(

eR

JJ

2)(2

1)( ee RRkRV D

Rigid rotator Harmonic oscillator

)2/1()1( vJJBE eeevJ D

k

RB e

ee ;

2 2

2

eevRRv

v RRHevR e

;)(!2)( 2/)(2/14/12

22

Usefulapproximations

Equilibrium distance

Page 33: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Vibrational wavefunctions and energies (2)

Deviation from the harmonic oscillator approximation: Morse potential

)()(2 2)( ee RRRRe eeDRV

2)21()21()1( vxvJJBDE eeeeevJ

e

ee D

x4

2/12

e

e

D

Deviation from the rigid rotator approximation:

0;)~

(!

1)

~(

2

)1()()(

~2 ~2

2

ee

RR

eff

n

ne

RR

n

effn

eeffeff R

VRR

R

V

nRV

R

JJRVRV

222 )21()21()1()1( vxvJJDJJBE eeeevevJ D

)21( vBB eev 22

34

e

ee

BD

proof

Page 34: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Continuum statesDissociation, fragmentation, collision…

0)(2

:2

2

2

2

RERR

R E

2

2;)sin()(

E

kRkCR EEEEE

Regular solution:

NormalizationInfluence of the potential

)()()(;)sin(2

)(0 EEEEEEE kkdRRRRkR

)()()(;)sin(2

)(02

EEdRRRRkk

R EEEEE

E

In wave numbers

In energyproof

Page 35: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Matrix elements of the rotational hamiltonian

Easy to evaluate in the BO basis:

But in general, L and S are not good quantum numbers…

…quantum chemistry is needed

cotsin

122

2

1cot

sin

1cot

2

2

2

222

2

2

2

2

2

zyx

yxzrr

Li

Li

Li

R

LLLi

RHH

JLJLJLJL yyxx 22

12

222

1zLL

JMSLJML ou

)1ou (1

Selection rule

Page 36: 1- Introduction, overview 2-  Hamiltonian of a diatomic molecule

Matrix elements of the vibrational hamiltonian

BO basis:

RR

RRH vib

22

2

2

)(1

),( )( RR

Rr v

)()(2

22)()(

2

, 22

vvv

vvvvvvvib RRREH

Quantum chemistry is needed…

Vibrational energy levels Interaction between

vibrational levels