16
1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

Embed Size (px)

Citation preview

Page 1: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

1

Exa

mpl

esAnalytical & Theoretical Modeling

Field-weakening zone optimization

[EV propulsion motor]

Page 2: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

2

Exa

mpl

esAnalytical & Theoretical Modeling

Flux weakening zone– Sharing the “torque - speed” plane

Flux weakening zone– Sharing the “torque - speed” plane

mm2

c

maxinmm

LwLp

Uk

Po

wer

, P

Speed,

Forbiddenzone

FIELD WEAKININGZONE

Line o maximum permittedtransistor current

wk

U

mm

maxin

No need in fieldweakining

wkmmP

Uin(max) - max voltage

kmm - specific motor

constant

Lmm - specific motor

inductance

Lc - choke inductance

w - winding turns number

Page 3: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

3

Exa

mpl

esAnalytical & Theoretical Modeling

Flux weakening zone – Turns number influence

Flux weakening zone – Turns number influence

Pow

er, P

Speed,

FIELD WEAKINING ZONE

Forbiddenzone

No need in fieldweakining

Small turns number Big turns number

Pow

er, P

Speed,

Forbiddenzone FIELD WEAKINING

ZONE

No need in fieldweakining

Page 4: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

4

Exa

mpl

esAnalytical & Theoretical Modeling

Flux weakening zone– Inductivity influence

Flux weakening zone– Inductivity influence

Pow

er, P

Speed,

FIELD WEAKINING ZONE

Forbiddenzone

No need in fieldweakining

High inductivity

Pow

er, P

Speed,

FIELD WEAKINING ZONE

Forbiddenzone

No need in fieldweakining

Low inductivity

Page 5: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

5

Exa

mpl

esAnalytical & Theoretical Modeling

Flux weakening zone– Design objectives

Flux weakening zone– Design objectives

Po

wer

, P

Speed,

Forbiddenzone

Line o maximum permitted transistor current

Given "constant torque" line

Given "constant power" line

No need in fieldweakining

safety angle

FIELD WEAKINING ZONE

corner powerpoint

border weakiningpoint

given maxspeed

Page 6: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

6

Exa

mpl

esAnalytical & Theoretical Modeling

Flux Weakening Zone MathCAD calculations– Power Vs Axle Speed Grafs

» 180 ARMS Transistor

Flux Weakening Zone MathCAD calculations– Power Vs Axle Speed Grafs

» 180 ARMS Transistor

P

1000

nlim1 1414 Udc 180 P 1 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

8

16

24

32

40

48

56

64

72

80FIG.1.2 POWER-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Out

put p

ower

(kW

)

P

1000

nlim1 1414 Udc 180 P ku 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

8

16

24

32

40

48

56

64

72

80FIG.1.2 POWER-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Ou

tpu

t p

ow

er (

kW

)

Push-pull topology approach Classic topology approach

Page 7: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

7

Exa

mpl

esAnalytical & Theoretical Modeling

Flux Weakening Zone MathCAD calculations– Power Vs Axle Speed Grafs (cont.)

» 220 ARMS Transistor

Flux Weakening Zone MathCAD calculations– Power Vs Axle Speed Grafs (cont.)

» 220 ARMS Transistor

Push-pull topology approach Classic topology approach

P

1000

nlim1 1414 Udc 220 P 1 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

3

6

9

12

15

18

21

24

27

30FIG.1.2 POWER-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Out

put p

ower

(kW

)

P

1000

nlim1 1414 Udc 220 P ku 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

3

6

9

12

15

18

21

24

27

30FIG.1.2 POWER-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Ou

tpu

t p

ow

er (

kW

)

Page 8: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

8

Exa

mpl

esAnalytical & Theoretical Modeling

Flux Weakening Zone MathCAD calculations– Torque Vs Axle Speed Grafs

» 180 ARMS Transistor

Flux Weakening Zone MathCAD calculations– Torque Vs Axle Speed Grafs

» 180 ARMS Transistor

Push-pull topology approach Classic topology approach

Mlim 1414 Udc 180 P 1 1 ig Lc0( )

nlim 1414 Udc 180 P 1 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

150

300

450

600

750

900

1050

1200

1350

1500FIG.1.1 TORQUE-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Out

put t

orqu

e (N

m)

Mlim 1414 Udc 180 P ku 1 ig Lc0( )

nlim 1414 Udc 180 P ku 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

150

300

450

600

750

900

1050

1200

1350

1500FIG.1.1 TORQUE-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Out

put t

orqu

e (N

m)

Page 9: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

9

Exa

mpl

esAnalytical & Theoretical Modeling

Flux Weakening Zone MathCAD calculations– Torque Vs Axle Speed Grafs (cont.)

» 220 ARMS Transistor

Flux Weakening Zone MathCAD calculations– Torque Vs Axle Speed Grafs (cont.)

» 220 ARMS Transistor

Push-pull topology approach Classic topology approach

Mlim 1414 Udc 220 P 1 1 ig Lc0( )

nlim 1414 Udc 220 P 1 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

150

300

450

600

750

900

1050

1200

1350

1500FIG.1.1 TORQUE-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Out

put t

orqu

e (N

m)

Mlim 1414 Udc 220 P ku 1 ig Lc0( )

nlim 1414 Udc 220 P ku 1 ig Lc( )

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

150

300

450

600

750

900

1050

1200

1350

1500FIG.1.1 TORQUE-SPEED PHASE-ADVANCE ZONE

Output speed (rpm)

Out

put t

orqu

e (N

m)

Page 10: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

10

Exa

mpl

esAnalytical & Theoretical Modeling

Phase Currents Calculations– 180 ARMS Transistor

Phase Currents Calculations– 180 ARMS Transistor

Push-pull topology approach Classic topology approach

I1 1414 Udc 180 P1 ku 1 ig L( )

I1 1411 Udc 180 P2 ku 1 ig L( )

I1 1411 Udc 180 P3 ku 1 ig L( )

I1 1411 Udc 180 P4 ku 1 ig L( )

I1 1411 Udc 180 P5 ku 1 ig L( )

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

20

40

60

80

100

120

140

160

180

200

FIG.1.1 Phase currents for power levels

Output speed (rpm)

Phas

e RM

S cu

rrent

(A)

I1 1414 Udc 180 P1 1 1 ig L( )

I1 1411 Udc 180 P2 1 1 ig L( )

I1 1411 Udc 180 P3 1 1 ig L( )

I1 1411 Udc 180 P4 1 1 ig L( )

I1 1411 Udc 180 P5 1 1 ig L( )

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

20

40

60

80

100

120

140

160

180

200

FIG.1.1 Phase currents for power levels

Output speed (rpm)

Phas

e RM

S cu

rrent

(A)

Page 11: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

11

Exa

mpl

esAnalytical & Theoretical Modeling

Phase Currents Calculations– 220 ARMS Transistor

Phase Currents Calculations– 220 ARMS Transistor

Push-pull topology approach Classic topology approach

I1 1414 Udc 220 P1 1 1 ig L( )

I1 1411 Udc 220 P2 1 1 ig L( )

I1 1411 Udc 220 P3 1 1 ig L( )

I1 1411 Udc 220 P4 1 1 ig L( )

I1 1411 Udc 220 P5 1 1 ig L( )

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

20

40

60

80

100

120

140

160

180

200

FIG.1.1 Phase currents for power levels

Output speed (rpm)

Phas

e RM

S cu

rrent

(A)

I1 1414 Udc 220 P1 ku 1 ig L( )

I1 1411 Udc 220 P2 ku 1 ig L( )

I1 1411 Udc 220 P3 ku 1 ig L( )

I1 1411 Udc 220 P4 ku 1 ig L( )

I1 1411 Udc 220 P5 ku 1 ig L( )

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 14000

20

40

60

80

100

120

140

160

180

200

FIG.1.1 Phase currents for power levels

Output speed (rpm)

Phas

e RM

S cu

rrent

(A)

Page 12: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

12

Exa

mpl

esAnalytical & Theoretical Modeling

Efficiencies Calculations– Versus axle speed @ constant power

» 180 ARMS Transistor

Efficiencies Calculations– Versus axle speed @ constant power

» 180 ARMS Transistor

Push-pull topology approach Classic topology approach

60.8 Udc 180 P1 1 1 2 L( ) 100

60.8 Udc 180 P2 1 1 2 L( ) 100

60.8 Udc 180 P3 1 1 2 L( ) 100

60.8 Udc 180 P4 1 1 2 L( ) 100

60.8 Udc 180 P5 1 1 2 L( ) 100

1350

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 140080

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Fig.1.2 Efficiencies @ power levels

Output speed (rpm)

Eff

icie

ncy

(%

)

60.8 Udc 180 P1 ku 1 1 L( ) 100

60.8 Udc 180 P2 ku 1 1 L( ) 100

60.8 Udc 180 P3 ku 1 1 L( ) 100

60.8 Udc 180 P4 ku 1 1 L( ) 100

60.8 Udc 180 P5 ku 1 1 L( ) 100

1350

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 140080

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Fig.1.2 Efficiencies @ power levels

Output speed (rpm)

Eff

icie

ncy

(%

)

Page 13: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

13

Exa

mpl

esAnalytical & Theoretical Modeling

Efficiencies Calculations– Versus axle speed @ constant power

» 220 ARMS Transistor

Efficiencies Calculations– Versus axle speed @ constant power

» 220 ARMS Transistor

Push-pull topology approach Classic topology approach

60.8 Udc 220 P1 ku 1 1 L( ) 100

60.8 Udc 220 P2 ku 1 1 L( ) 100

60.8 Udc 220 P3 ku 1 1 L( ) 100

60.8 Udc 220 P4 ku 1 1 L( ) 100

60.8 Udc 220 P5 ku 1 1 L( ) 100

1350

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 140080

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Fig.1.2 Efficiencies @ power levels

Output speed (rpm)

Eff

icie

ncy

(%

)

60.8 Udc 220 P1 1 1 2 L( ) 100

60.8 Udc 220 P2 1 1 2 L( ) 100

60.8 Udc 220 P3 1 1 2 L( ) 100

60.8 Udc 220 P4 1 1 2 L( ) 100

60.8 Udc 220 P5 1 1 2 L( ) 100

1350

30

ig

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 140080

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Fig.1.2 Efficiencies @ power levels

Output speed (rpm)

Eff

icie

ncy

(%

)

Page 14: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

14

Exa

mpl

esAnalytical & Theoretical Modeling

Efficiency Map Calculations– Vs axle speed & power @ 180 ARMS Transistor

Efficiency Map Calculations– Vs axle speed & power @ 180 ARMS Transistor

Push-pull topology approach

Classic topology approach

Page 15: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

15

Exa

mpl

esAnalytical & Theoretical Modeling

Efficiency Map– Vs axle speed & power @ 200 ARMS Transistor

Efficiency Map– Vs axle speed & power @ 200 ARMS Transistor

Classic topology approach

Page 16: 1 Examples Analytical & Theoretical Modeling Field-weakening zone optimization [EV propulsion motor]

16

Exa

mpl

esAnalytical & Theoretical Modeling

Efficiency Map– Vs axle speed & power @ 220 ARMS Transistor

Efficiency Map– Vs axle speed & power @ 220 ARMS Transistor

Classic topology approach