44
1 Fine mapping of ui6.1, a gametophytic factor controlling pollen‐side unilateral 1 incompatibility in interspecific Solanum hybrids 2 3 Wentao Li * , Suzanne Royer § , Roger T. Chetelat * 4 5 * C.M. Rick Tomato Genetics Resource Center 6 Dept. of Plant Sciences 7 One Shields Ave. 8 Davis, CA 95616 9 10 § Department of Biology 11 Colorado State University 12 Fort Collins, CO 80523 13 14 15 Genetics: Published Articles Ahead of Print, published on May 3, 2010 as 10.1534/genetics.110.116343

1 1 Fine mapping of ui6.1, a gametophytic factor ... file17 interspecific pollen rejection and its relationship to self‐incompatibility. 18 19 INTRODUCTION 20 Flowering plants have

Embed Size (px)

Citation preview

1

Finemappingofui6.1,agametophyticfactorcontrollingpollen‐sideunilateral1

incompatibilityininterspecificSolanumhybrids2

3

WentaoLi*,SuzanneRoyer§,RogerT.Chetelat*4

5

*C.M.RickTomatoGeneticsResourceCenter6

Dept.ofPlantSciences7

OneShieldsAve.8

Davis,CA956169

10

§DepartmentofBiology11

ColoradoStateUniversity12

FortCollins,CO8052313

14

15

Genetics: Published Articles Ahead of Print, published on May 3, 2010 as 10.1534/genetics.110.116343

2

Runningtitle:unilateralincompatibilityinSolanum1

2

Correspondingauthor:3

RogerChetelat4

Dept.ofPlantSciences(stop3)5

OneShieldsAve.6

Davis,CA956167

tel.530‐752‐67268

fax.530‐752‐96599

[email protected]

11

Keywords:Solanumlycopersicum,Solanumlycopersicoides,Solanumpennellii,unilateral12

incongruity,self‐incompatibility13

14

15

3

Abstract1

Unilateralincompatibility(UI)isaprezygoticreproductivebarrierinplantsthat2

preventsfertilizationbyforeign(interspecific)pollenthroughtheinhibitionofpollen3

tubegrowth.Incompatibilityoccursinonedirectiononly,mostoftenwhenthefemale4

isaself‐incompatiblespeciesandthemaleisself‐compatible(the‘SIxSCrule’).Pistils5

ofthewildtomatorelativeSolanumlycopersicoides(SI)rejectpollenofcultivated6

tomato(S.lycopersicum,SC),butacceptpollenofSolanumpennellii(SCaccession).7

Expressionofpistil‐sideUIisweakenedinS.lycopersicumxS.lycopersicoideshybrids,8

aspollentuberejectionoccurslowerinthestyle.Twogametophyticfactorsare9

sufficientforpollencompatibilityonallotriploidhybrids:ui1.1onchromosome1(near10

theS­locus),andui6.1onchromosome6.Wereporthereinafine‐scalemapoftheui6.111

region.Recombinationaroundui6.1wassuppressedinlinescontainingashortS.12

pennelliiintrogression,butlesssoinlinescontainingalongerintrogression.More13

recombinantswereobtainedfromfemalethanmalemeioses.Ahigh‐resolutiongenetic14

mapofthisregiondelineatedthelocationofui6.1toapproximately0.128mapunits,or15

160kb.Identificationoftheunderlyinggeneshouldelucidatethemechanismof16

interspecificpollenrejectionanditsrelationshiptoself‐incompatibility.17

18

INTRODUCTION19

Floweringplantshaveevolvedseveralreproductivebarriersforpreventing20

illegitimatehybridizationwithrelatedspecies.Thesebarriersmaybeexpressedpre‐21

fertilizationand/orpost‐fertilization.Unilateralincompatibilityorincongruity(UI)isa22

pre‐fertilizationbarrierthatoccurswhenpollenofonespeciesisrejectedonpistilsofa23

4

relatedspecies,whilenorejectionoccursinthereciprocalcross(deNettancourt1977).1

Intheory,unilateralincompatibilityshouldreinforcespeciesidentityinnatural,2

sympatricpopulationsofrelatedtaxa.Thisbarrieralsoimpedestheeffortsofplant3

breederstotransfertraitsfromwildspeciesintorelatedcropplants.Forexample,the4

transferofcytoplasmictraitsfromspecieswithmaternally‐inheritedchloroplastsand5

mitochondriamaybepreventedbyunilateralcrossingbarriers.Nuclear‐encodedtraits6

mayalsobeinaccessibleifF1interspecifichybridsarebothmalesterileand7

incompatibleasfemaleparents(Chetelatetal.1989).8

IntheSolanaceae,unilateralincompatibilityisobservedincrossesbetween9

cultivatedtomato(Solanumlycopersicum,formerlyLycopersiconesculentum)andsome10

relatedwildspecies.Ingeneral,pistilsofthecultivatedtomatoactasa‘universal11

acceptor’,inthattheyfailtorecognizeandrejectpollenofothertomatospecies.Inthe12

reciprocalcrosses,pollenofS.lycopersicumisrejectedonstylesofvirtuallyallofthe13

green‐fruitedspecies,butnotonstylesofotherredororange‐fruitedspecies(reviewed14

byMutsclerandLiedl1994).Thispatternismostlyconsistentwiththe‘SIxSC’rule,15

whereinpollenofself‐compatiblespecies(includingcultivatedtomato)arerejectedon16

pistilsofself‐incompatible(SI)species,butnotinthereversedirection(Lewisand17

Crowe1958).ExceptionstotheSIxSCruleinthetomatocladeincludespeciesor18

populationsthathavelostself‐incompatibilitybutretaintheabilitytorejectpollenof19

tomato.ThisisthecaseforthefacultativeoutcrossingspeciesS.chmielewskii,the20

autogamousS.neorickii(formerlyL.parviflorum),aswellasmarginalSCpopulationsof21

normallySIspeciessuchasS.pennelliiandS.habrochaites(formerlyL.hirsutum).AnSC22

accessionofS.pennellii,LA0716,isexceptionalinhavinglosttheabilitytorejectself23

5

pollen,whileretainingtheabilitytoserveaspollenparentonstylesofSIaccessionsof1

thisspecies(andotherSIspecies,includingS.peruvianumandS.lycopersicoides)2

(Hardon1967;Quirosetal.1986;Rick1979).Inthisregard,S.pennelliiLA07163

conformstotheLewisandCrowemodelinthatitbehaveslikeatransitionalform4

lackingSIfunctioninthepistilbutnotinthepollen.5

Unilateralincompatibilitymayalsooccurincrossesbetweenpopulationsor6

racesofasinglespecies.InS.habrochaitesforexample,pollenfromSCbiotypeslocated7

atthenorthernorsouthernmarginsofitsgeographicrangeisrejectedonpistilsofthe8

central,SIpopulations(Martin1961,1963).Furthermore,pollenfromthenorthernSC9

groupisrejectedbystylesofthesouthernSCpopulations.YetpistilsofbothSCbiotypes10

areabletorejectpollenofcultivatedtomato.Thusthereappeartobeareatleast311

distinctunilateralcrossingbarriers,justwithinS.habrochaites,possiblyindicating12

differentpollentuberecognitionandrejectionsystems.TheF1NxShybridisSC,as13

expected,butSIplantsarerecoveredintheF2generation,suggestingthatthelossofSI14

occurredviaindependentmutationsinthenorthandthesouth(RickandChetelat15

1991).16

InterspecificF1hybridsbetweenSIwildspeciesandSCcultivatedtomatoare17

self‐incompatibleandrejectpollenofcultivatedtomato,indicatingbothtraitsareat18

leastpartiallydominant(Hardon1967;Martin1963;McGuireandRick1954).19

Interestingly,pollenoftheF1hybridsisincompatibleonpistilsofthewildspecies20

parent(i.e.includingotherindividualsofthesameaccessions,butwithnon‐matchingS‐21

alleles).Thisobservationsuggeststhattherearedominantfactorsfromcultivated22

tomatothatleadtopollenrejectiononstylesofthewildspecies,regardlessofthe23

6

pollengenotype.Thisapparentsporophyticeffectcontrastswiththepurely1

gametophyticnatureofpollenS‐specificityintheSolanaceae(deNettancourt1977).2

Earlystudiesoftheinheritanceofunilateralincompatibilityintomatosuggest3

theinvolvementofseveralgenescontrollingthepistilresponse,howeverthegenetics4

ofpollenresponseshavereceivedlittleattention.InF2S.habrochaites(NorthernSC5

accession)xS.habrochaites(CentralSIaccession),therejectionofpollenfromtheSC6

parentsegregatedasifcontrolledbyonetotwodominantgenesfromtheSIaccession7

(Martin1964).IncrossesofS.lycopersicumtobothSIandSCaccessionsofS.pennellii,8

theintra‐andinterspecificcrossingrelationswerelargelyconsistentwiththeLewis9

andCrowe(1958)modelofstepwisemutationattheS­locus(Hardon1967);therewas10

alsoevidenceofasecondbarrierintheSCS.pennelliiaccession.InF1andBC1hybrids11

ofS.lycopersicumxS.habrochaites,thesegregationofunilateralandself‐12

incompatibilitieswasconsistentwiththeactionoftwomajorgenes,withminor13

polygenesindicatedaswell(Martin1967).Morerecently,severalQTLunderlying14

pistil‐sideunilateralandself‐incompatibilitiesweremappedinBC1S.lycopersicumxS.15

habrochaites(BernacchiandTanksley1997);themajorQTLforbothformsofpollen16

rejectionwaslocatedatorneartheS­locusonchromosome1,whichcontrolsSI17

specificity(TanksleyandLoaiza‐Figueroa1985).18

Thereislittledataonpollen‐sideunilateralincompatibilityfactorsinthetomato19

clade,oranyothersystem.Ourpreviousworkidentifiedtwotothreegeneticlocifrom20

S.pennelliithatarerequiredforpollentoovercomeincompatibilityonpistilsofS.21

lycopersicumxS.lycopersicoidesorS.lycopersicumxS.sitienshybrids(Chetelatand22

DeVerna1991;Pertuzeetal.2003).OneofthesefactorsmappedtotheS‐locus,the23

7

othertwowereonchromosomes6and10.Inthissystemthefemaletesterstockswere1

eitherdiploidorallotriploidhybrids,thelattercontainingonegenomeofthewild,SI2

parent,plustwogenomesofcultivatedtomato;bothtypesofhybridsrejectpollenof3

cultivatedtomato.ThepollenparentswereeitherF1S.lycopersicumxS.pennelliior4

bridginglinesdevelopedbybackcrossingtheF1tocultivatedtomatoandselectingfor5

theabilitytoovercomestylarincompatibility.Intheprogeny,distortedsegregation6

ratioswereobservedinwhichtheS.pennelliialleleswerepreferentiallytransmitted,7

thusindicatinglinkagetogametophyticfactorsrequiredforacompatiblereaction.8

Thisexperimentalsystemhasseveraladvantagesfordetectingpollen9

(gametophytic)unilateralincompatibilitygenes.First,pollen‐expressedfactorsare10

readilydistinguishedfrompistilfactorsbecauseonlytheformershowlinkagetoS.11

pennelliispecificmarkers.Second,pollenrejectionisbyunilateral,notself‐12

incompatibility,sincebothspeciescontributingtothepollengenotype,S.lycopersicum13

andS.pennellii,areSC.Finally,aswedescribeherein,therejectionoftomatopollenby14

pistilsoftheinterspecifichybridsisweakenedbythedecreasingdosageoftheS.15

lycopersicoidesgenome,whichreducesthenumberofpollenfactorsrequiredfor16

compatibility.Thus,thegametophyticfactorsonchromosomes1and6(denoted17

hereinafterui1.1andui6.1),whenpresentinthesamepollen,aresufficientforfull18

compatibilityonpistilsofallotriploidinterspecifichybrids,whereastheyconferonly19

partialcompatibilityondiploidhybrids.20

Ouroverallobjectivesaretoidentifythegenesunderlyingboththechromosome21

1andchromosome6pollen‐specificunilateralincompatibilityfactorsfromS.pennellii22

8

andtodeterminethenatureoftheirinteraction.Towardsthisgoal,wereportherein1

thehigh‐resolutiongeneticandphysicalmappingoftheui6.1region.2

3

MATERIALSANDMETHODS4

Plantmaterials:TheparentalspeciesandaccessionsusedwereS.lycopersicum5

cultivars‘VendorTm‐2a‘(accessionLA2968),‘UC‐82B’(LA2801),and‘VF‐36’(LA0490),6

S. pennellii (LA0716), and S. lycopersicoides (LA1964, LA1991 and LA2951). Seed of7

these lines was obtained from the C.M. Rick Tomato Genetics Resource Center8

(http://tgrc.ucdavis.edu).Anallotriploidinterspecifichybrid(GH266,Ricketal.1986),9

containing two genomes of S. lycopersicum (cv. UC82B) and one genome of S.10

lycopersicoides (LA1964),was used as a female tester line to detect pollen unilateral11

incompatibility factors(Fig.1, ‘LLS’).Forcomparisonpurposes,pollinationtestswere12

alsocarriedoutwithpistilsofthe2xF1interspecifichybrid(90L4178=S.lycopersicum13

VF36xS. lycopersicoidesLA2951),andpureS. lycopersicoides(LA1991).Ourprevious14

studies(ChetelatandDeVerna1991)indicatedthattwopollenfactorsfromS.pennellii,15

located on chromosomes 1 and 6, were required and sufficient for overcoming16

incompatibility on styles of the allotriploid hybrid. The chromosome 1 factor, ui1.1,17

mappedclosetotheS­locuscontrollingself‐incompatibility.Thechromosome6factor,18

ui6.1,waslocatedontheshortarmofchromosome6.Thephenotypesofrecombinants19

aroundui6.1weredeterminedbytestpollinationsontotheallotriploidhybrid(Fig.1).20

Tofinemapui6.1, twoF2populationsweredevelopedfromS.pennellii‐derived21

bridging lines, obtained after several backcrosses from the wild species to S.22

lycopersicum (cv.s Vendor or UC‐82B) (Chetelat and DeVerna 1991, Fig. 1). Initial23

9

mappingofui6.1wasbasedonamappingpopulation (denoted ‘F2‐a’)of1,167plants1

derived from BC7F2 bridging lines heterozygous at both the ui1.1 and ui6.1 loci. To2

simplifyphenotypingatui6.1,asecondpopulation(‘F2‐b’)of1,920plantswasobtained3

from F2‐a individuals that were homozygous for the S. pennellii allele at ui1.1 and4

heterozygousatui6.1.5

Severe recombination suppression was observed in these two mapping6

populations.Toincreaserecombinationrates,wecreatedaheterozygoussubstitution7

line (SL‐6), carrying a nearly intact (~80 cM,VanWordragen et al. 1996)S. pennellii8

chromosome6 in thebackgroundof S. lycopersicum (Fig.6). TheheterozygousSL‐69

was then crossed as female (BC‐♀) or male (BC‐♂) to a bridging line which was10

homozygousfortheS.pennelliialleleatui1.1,andhomozygousfortheS. lycopersicum11

allele at ui6.1. This provided independent estimates of recombination frequency in12

femaleandmalegametes.13

Pollinationsandpollen tubegrowthstudies:All crosseswereperformed in14

the greenhouse using standard pollination techniques. The compatibility or15

incompatibilityofcrosseswasdeterminedbyvisualizingpollentubeswithinpistilsof16

the allotriploid hybrid 24 hr after pollination. The stainingmethodwas according to17

Martin(1959),exceptthatpistilswerefixedinethanol:glacialaceticacid(3:1)solution18

(insteadofFAA).Afterrinsingthreetimesinwater,pistilsweretransferredto8NNaOH19

for8hrtoclearandsoftenthetissue.Aftertriplerinsinginwater,thesoftenedpistils20

weresoaked inanilinebluesolution(0.1%anilineblue in0.1NK3PO4) for8to24hr.21

Observation and measurements of pollen tubes were carried out under UV light22

fluorescencemicroscopyusingaZeissAxioskop.Pollinationswerejudgedincompatible23

10

when the growth of all pollen tubes was arrested in the upper half of the style. In1

contrast, compatible pollinations resulted in at least some pollen tubes reaching the2

ovaries. For each cross, the length of the longest pollen tubes was measured and3

expressedasapercentageofthestylelength(fromstigmasurfacetobaseofstyle).At4

least threepistilswereexaminedpercross, fromwhich theaveragemaximumpollen5

tubelengthwascalculated.6

For imaging, pistilswere fixed in 3:1 ethanol : glacial acetic acid for 24 hr or7

more.Followingarinsewithdeionizedwater,thepistilsweresoakedovernightin10N8

NaOH,rinsedthreetimeswithdeionizedwater,andimmersedina0.005g/mlsolution9

ofAnilineBlueFluorochrome(BiosuppliesAustralia) in0.1MK2HPO4buffer,pH8.5.10

Pistils were stained overnight in the dark at room temperature. Stained pistils were11

mountedonglassslidesin50%glycerol,coveredwithaglasscoverslip,andflattened12

with gentle pressure on the cover slip. Observation and photography of pollen tubes13

werecarriedoutusingaLeicaDM5500B fluorescencemicroscopewithaDAPI filter.14

Images were captured with a Hamamatsu digital camera and IPLab software (BD15

Biosciences).Individualmicrographswereassembledintowholepistilmontagesusing16

AdobePhotoshopCS2.17

DNA isolations: A small scaleDNAextractionmethodwasadopted to isolate18

DNAfromthemappingpopulationsusing96‐wellmicrotiterplates.Seedsweretreated19

with50%householdbleachfor15min,rinsedthoroughlyunderrunningtapwater,and20

germinated on blotter paper (Anchor Paper, St. Paul,Minnesota) in acrylic sandwich21

boxes (10.8x10.8x3.4cm,HoffmanManufacturing, Jefferson,Oregon) for7‐10days.22

Seedlingswith fullyexpandedcotyledonsweretransplantedtosoil inplasticseedling23

11

traysandgrowninthegreenhouse.Twoorthreeweekslater,singleexpandingleaflets1

of about 1 cm2 in areawere collected fromeachplant into 96‐wellmicrotiter plates.2

Afteradding400µlofextractionbuffer(200mMTris‐HClpH7.5,250mMNaCl,25mM3

EDTA,0.5%SDSand~5%sodiummetabisulfite)and2 levitationstirballs (3.97mm,4

cat. no. VP725E, V&P Scientific Inc.), leaf tissues were ground on a paint shaker5

(SkandexSO‐10m,FluidManagementEurope)for8minandthenincubatedat65°Cfor6

onehour.Aftercooling,150µlofchilled5MKAcbufferwereadded,andcentrifugedat7

4,000RPM(3,000xg) for15min.Thesupernatant(200µl)was transferredtoanew8

96‐well microtiter plate. DNAwas precipitated by adding 100 µl 100% isopropanol,9

followedbycentrifugationat4,000RPMfor10min.Thesupernatantwaspouredout10

andpelletswerewashedonceusing200µlof70%ethanolandallowedtodryatroom11

temperature.Thepelletswereresuspendedin200µldistilledH2O.EachPCRreaction12

used2µl(100‐200ng)ofresuspendedDNAinatotalvolumeof20µl.13

CAPS markers: Initial mapping of ui6.1 relied on previously mapped CAPS14

markers obtained from the Solanaceae Genomics Network (SGN,15

http://solgenomics.net).Finescalemappingwasbasedonmarkersdevelopedfromthe16

sequences of BACs located in the candidate region, also downloaded from SGN. PCR17

primers of predicted amplification size ranging from 700 to 1000 base pairs were18

pickedoutusingthesoftwarePrimer3.PCRconditionswere94°Cfor2min,followed19

by 35 cycles of 94 °C for 30 sec, 55°C for 30 sec, and 72 °C for 2 min, with a final20

extensionof5minat72°C.Amplificationproductswereseparatelydigestedwitheight21

4‐bprecognizingrestrictionenzymes(AluI,HaeIII,HinfI,MboI,MseI,MspI,RsaI,and22

Taq I) to identify polymorphisms. A total of 142 markers were designed for the23

12

candidate region, of which 18 polymorphic markers were used in the final linkage1

analysis(TableS1).AllCAPSmarkerswereresolvedon2%agarosegels.2

Isolationandanalysisofrecombinants:Markeranalysisofthebridginglines3

indicated the size of the ui6.1 introgression from S. pennelliiwas ca. 32 cM on the4

EXPEN2000 referencemapof tomato (datanot shown).To identify theapproximate5

locationofui6.1, twomarkers,SSR47andT834locatedatpositions6.5and32cMon6

chromosome 6, were selected to genotype the first mapping population, F2‐a.7

Recombinantsidentifiedwiththesetwomarkerswerethensubjectedtocompatibility8

evaluation bymeasuring pollen tube growth on pistils of the allotriploid hybrid. The9

first round of screening indicatred that ui6.1 is closely linked but distal to marker10

SSR47.Therefore,aCAPSmarkernearertheendofchromosome6,T1928,wasusedin11

combinationwithT834toscreenallsubsequentmappingpopulations.Relativelyhigh12

recombinationfrequencieswereobservednearui6.1intwopopulations(BC‐♀andBC‐13

♂) derived from a S. pennellii substitution line. We focused on the recombinants14

identifiedamong1,824individualsofBC‐♀.Hundredsofpublicallyavailablemarkers,15

as well as markers developed from sequenced BACs and BAC ends, were used to16

conduct the linkage analysis. Based on themapping results from this phase, flanking17

markers73H07‐3andMiwerechosentoanalyzetherecombinantsbetweenT1928and18

T834fromtheotherpopulations,i.e.theF2‐a,F2‐b,BC‐♂andtheremainderoftheBC‐19

♀.Theadditionalrecombinantswerethentestedforcompatibilityontheallotriploid.20

Linkage analysis was based on the recombinants isolated from all mapping21

populations. Map distanceswere expressed in units of recombination frequency, i.e.22

13

(RF = # recombinants / total # gametes) x 100%, where the # gametes = (# BC1

progeny),or(2x#F2progeny).2

3

RESULTS4

Pollen tube growth in pistils of S. lycopersicoides and F1 hybrids with5

tomato:LikeotherSIwildtomatorelatives,pistilsofS.lycopersicoidesrejectpollenof6

cultivated tomato (S. lycopersicum, SC) (Table 1). No pollen rejection occurs in the7

otherdirection,consistentwiththeSIxSCrule.Rejectionoftomatopollenoccursearly8

duringgrowthontheS.lycopersicoidespistil,withpollentubesreachingnofurtherthan9

the stigma or uppermost portion of the style (<5%of style length). In contrast, self10

pollen tubes are arrested midway down the S. lycopersicoides style (~50% of style11

length).DiploidandallotriploidS. lycopersicumxS. lycopersicoideshybridsalsoreject12

pollenofcultivatedtomato,but therejectionoccurs lower in thestyle:~15%ofstyle13

length for the2xhybrid,and~50%forthe3xhybrid. Thus, the interspecifichybrids14

have weakened or delayed incompatibility responses compared to S. lycopersicoides;15

rejectionoftomatopollentubesontheallotriploidoccursinaboutthesamepositionas16

self pollen tubes on S. lycopersicoides. Pollen of S. pennellii (SC accession LA0716) is17

compatibleonstylesofS.lycopersicoidesandthediploidorallotriploidhybrids.18

Twopollenfactors,ui1.1andui6.1,arerequiredtoovercomestylarUI:We19

previously showed that two S. pennellii gametophytic factors, ui1.1 and ui6.1, are20

required for pollen to overcome the stylar incompatibility barrier of diploid and21

allotriploid S. lycopersicum x S. lycopersicoideshybrids (Chetelat and DeVerna 1991).22

Thesetwofactors,whenbredintoS.lycopersicum,conferfullcompatibilityonpistilsof23

14

theallotriploid(Table1).OnthepistilsofthediploidhybridorS.lycopersicoides,pollen1

containing both ui1.1 and ui6.1 penetrate further into the style than pollen lacking2

eitherfactor,yetdonotreachtheovaries.3

Toelucidatetheinheritanceofpollencompatibilityinthissystem,wegenotyped4

BC7F2progenyofbridginglinesheterozygousfortheS.pennelliiallelesatbothloci(the5

F2‐a population), usingmarkers SSR47 andT834on the short armof chromosome66

and two S‐locus flanking markers, TG184 and SSR98 on chromosome 1. Plants7

heterozygousorhomozygous for theS. pennelliialleles atonlyui1.1, oronlyui6.1,or8

both loci, in the genetic background of S. lycopersicum, were selected from this9

population.Compatibilityofpollenfromthevariousgenotypeswastestedonpistilsof10

theallotriploidhybrid.Thedistributionofmaximumpollentubelengthswasbimodal,11

withno intermediateplants, thuspollen compatibility canbe treated as a qualitative12

traitinthissystem(Fig.2).13

PollenofS. lycopersicumcv.VF‐36andbridging containinga singleS.pennellii14

factor (ui1.1 or ui6.1) were incompatible on pistils of the allotriploid, as the longest15

pollentubesgrewtoonlyhalfthelengthofthestyleafter24hours(Fig.3).Incontrast,16

bothS.pennelliiandtheui1.1+ui6.1bridginglineshowedacompatiblephenotype,with17

pollentubesreachingtheovaries.TheseresultsconfirmedthateitherS.pennelliifactor18

aloneisinsufficienttoovercomeincompatibility,andthatbotharerequiredtoelicita19

compatiblereaction.20

Thepollen­sidefactorsui1.1andui6.1donotconferUIorSI inthepistil:21

Importantly,thetwogametophyticfactorsfromS.pennelliidonotconferastylarUIor22

SI response. Bridging lines homozygous or heterozygous for the S. pennellii23

15

introgressions containingui1.1andui6.1 set fruit and seeds following selfpollination1

(datanotshown), indicatingtheyareSC.Furthermore,thebridginglinesset fruitand2

seed following pollinations with cultivated tomato, providing strong evidence that3

pistil‐sideandpollen‐sideUIresponsesarecontrolledbydifferentsetsofgenes.4

Maplocationofui6.1:Todeterminetheapproximategeneticlocationofui6.1,5

1,167F2‐aplantsweregenotypedwithmarkersSSR47andT834on theshortarmof6

chromosome 6. Recombinant plantswere genotypedwith two additionalmarkers in7

this interval, T892 and T507, and two S­locus markers, TG184 and SSR98 on8

chromosome1.Compatibility testsof the recombinantswerecarriedoutonpistilsof9

theallotriploid.Atotalof55recombinantswereidentifiedbetweenSSR47andT834,of10

which 47were tested for compatibility (Fig. 4). Thirteen recombinants lacking theS.11

pennelliialleleatui1.1showedanincompatiblephenotype,regardlessoftheirgenotype12

atui6.1.Theaverage‘maximum’pollentubelengthintheseplantswas48.2%ofstyle13

length.TherecombinantsheterozygousorhomozygousfortheS.pennelliialleleatui1.114

segregated for compatibility, depending on their genotype for ui6.1. The ten15

recombinantslackingtheS.pennelliialleleofSSR47wereincompatible,withanaverage16

pollen tube length of 47.4%,whereas the remaining 24 recombinants (i.e. those that17

wereatleastheterozygous)wereallcompatibleonthepistilsoftheallotriploid.18

Some F2‐a recombinants did not provide information on the map location of19

ui6.1. All 13 plants lacking the S. pennellii allele at ui1.1 locuswere incompatible, as20

expected, so they were uninformative regarding ui6.1. Recombinants that carried a21

parental(nonrecombinant)S.pennelliisegmentwerealsouninformative. Thesewere22

16

self‐pollinated andplants that carried only the recombinant segmentwere tested for1

compatibility.Theresultsshowedthatui6.1iscloselylinkedtomarkerSSR47(Fig.5).2

To avoid the problem of segregation for ui1.1, a second population (F2‐b),3

homozygous for theS. pennellii allele atui1.1 and segregating atui6.1,was analyzed.4

Thispopulationof1,920plantswasscreenedwithadistalmarker,T1928,andT834;5

recombinants were then genotyped with SSR47 and T892 (Fig. 5). A total of 866

recombinantswere identified, ofwhich31had crossoversbetweenT1928andT892.7

Onlythelatterweretestedforcompatibilityphenotypeontheallotriploid,sincetheF2‐8

a population indicated a location for ui6.1 closer to SSR47. Of the 31 tested9

recombinants, only 13were informative regarding the position ofui6.1, the other 1810

recombinants also carried a parental S. pennellii segment, and thus required an11

additionalgenerationtoobtainan informativephenotype. Theresults indicatedui6.112

liesbetweenT1928andT892(Fig.5).13

Recombinationnearui6.1 issuppressed: Recombination in theui6.1region14

wasstronglysuppressedinthetwoF2populationsderivedfromthebridginglines(Fig.15

6).Thetotalgeneticdistancesobservedinthetwopopulationswere2.35and2.32map16

units, betweenT834 and either SSR47 or T1928, respectively. These values are less17

thanonetenthoftherecombinationfrequenciesreportedforthesamemarkersonthe18

referencemap,EXPEN2000,basedonan interspecificF2S. lycopersicumxS.pennellii19

cross (http://solgenomics.net; Fulton et al. 2002). This degree of recombination20

suppressioncouldimpedethefinescalemappingandcloningofui6.1,sowedesigneda21

mapping strategy to elevate crossover frequency in this region. Our previous studies22

showed that recombination frequency is higher in lines with long introgressed23

17

segmentsorwholechromosomesubstitutions,relativetoshortintrogressions(Canady1

etal.2006).2

Wethereforetookadvantageofapartialsubstitutionline,SL‐6,whichcontainsa3

long S. pennellii introgression spanning most of chromosome 6 (Fig. 6). A line4

heterozygous for SL‐6 was crossed as female (BC‐♀) or male (BC‐♂) to a line5

homozygousfortheui1.1regionfromS.pennellii. Allplants inthesetwopopulations6

were screenedwith the flankingmarkers T1928 and T834 to identify recombinants,7

whichweregenotypedwithT892andSSR47.In2,946BC‐♀and672BC‐♂plants,2948

and29recombinants,respectively,werefound.TheBC‐♀datawerederivedfromtwo9

independent reciprocal crosses inwhich a homozygous SL‐6was crossed asmale or10

female to cultivar M‐82 to create the heterozygous stock; since no differences were11

seenbetweenthereciprocalcrosses(datanotshown),themappingdatawerepooled.12

ThegeneticdistancebetweenT1928andT834 in theBC‐♀populationwas9.98map13

units,orover four foldhigher thanobserved inF2‐aandF2‐b (Fig.5).Recombination14

frequencywassignificantlylowerinBC‐♂,butthetotaldistanceof4.32mapunitswas15

stillnearlytwicethatoftheF2populations. Theseresultsconfirmedthat longeralien16

introgressionsrecombinemorereadilythanshortones.Furthermore,recombinationin17

female gametes of SL‐6 heterozygotes (BC‐♀) was over twice that observed inmale18

gametes(BC‐♂).19

Heterogeneity for recombination rates along the chromosome: We also20

observed that recombination rates were not uniform along the chromosome. For21

example, the genetic distance between T1928 and T892 in the BC‐♀ populationwas22

4.60 map units, more than six times the distance in BC‐♂ (Fig. 5). In contrast, the23

18

relative increase in recombination between T892 and T834was only about 1.5 fold.1

Fortuitously,ui6.1was located inaregionof relativelyhighcrossover frequency(Fig.2

7).When additionalmarkerswere placed onto a geneticmap derived from selective3

genotypingof theBC‐♀ population, a regionof elevated recombinationwasobserved4

betweenmarkersU218000 andMi. The distance between these twomarkers on our5

mapwas2.13mapunits,morethanseventimesthevalueonthereferencemap(Fig.7).6

Finescalemappingofui6.1:Severalhundredplantswithcrossoversbetween7

T834 and T1928 or SSR47 were isolated from the four mapping populations. We8

initially focusedon the recombinants isolated from thepartialBC‐♀,whichproduced9

thehighestrecombination frequency.Theui6.1phenotypesof theseweredetermined10

by test pollinations on the allotriploid. Based on the mapping results, we used two11

closely flanking markers to further characterize the recombinants isolated from the12

otherpopulations.Theserecombinantswereselectivelyphenotyped,focusingonthose13

plantsmostlikelytofurtherresolvethepositionofui6.1.14

Our initial results showed ui6.1 is located betweenmarkers U218000 andMi15

(Fig.7),basedon39recombinantsinthisintervalfromthepartialBC‐♀population.To16

further resolve the location ofui6.1, hundreds ofmarkers based on the sequences of17

overlappingBACsweredeveloped.Ofthese,18polymorphicCAPSmarkers,developed18

from the sequences of twooverlappingBACs, C06HBa0250I21 andC06HBa0073H07,19

andtheendsequencesofLE_HBa00181H03(Fig.8,TableS1),wereused.Afinescale20

map of the ui6.1 region was constructed from these recombinants, and included six21

flankingmarkers(73H07‐3,73H07‐11,73H07‐13,73H07‐15,Miand181H03‐2),with22

onecrossoveroneachside(recombinant44‐32and50‐58)ofui6.1(Fig.8).23

19

The closely linked markers 73H07‐3 andMi were then used to genotype the1

recombinants from the other populations. Twomore recombinants, 19‐89 from F2‐b2

and 71‐61 from BC‐♀, were found in this region (Fig. 8). The compatibility of these3

recombinantswasevaluatedontheallotriploid(recombinant19‐89wastestedusinga4

homozygous F3 progeny). Linkage analysis using all the recombinants indicated that5

theintervalspanningui6.1comprisedapproximately0.128mapunits.Anestimatefor6

the corresponding physical distance was obtained from the prepublication draft7

genome sequence of tomato, made available by the International Tomato Genome8

Sequencing Consortium at http://solgenomics.net. This showed that the flanking9

markers73H07‐11andMiareseparatedby~160kb.10

11

DISCUSSION12

Relationshipbetweenunilateralandself­incompatibility:Abasicquestion13

aboutthenatureofprezygoticinterspecificreproductivebarriersinplantsistheir14

relationshiptoself‐incompatibility.AsdescribedbyLewisandCrowe(1958),15

unilateralcrossingbarriersoftenfollowthe‘SIxSCrule’,whereinpollenofaself‐16

compatiblespeciesisrejectedonstylesofarelatedself‐incompatiblespecies,butno17

rejectionoccursinthereciprocalcross.Thegeneralvalidityofthisruleinmanyplant18

families,includingtheSolanaceae,suggeststhatmutationattheS‐locusisanimportant19

elementofinterspecificbarriers.Thishypothesisissupportedbyexperimentsin20

NicotianainwhichectopicexpressionofS‐RNAse’sfromanSIspecies(N.alata)inthe21

backgroundofanSCspecies(N.tabacum)issufficienttoconferonthepistiltheability22

torejectpollenfromseveralSCspecies(Murfettetal.1995).Howeverthesame23

20

experimentsalsodemonstratedpollenrejectionpathwaysthatdidnotdependonS­1

RNAseexpression.Thus,onthepistilside,theS­locusisstronglyimplicatedin2

interspecificpollenrejection,butothergeneticfactorsarealsoinvolved.Incrosses3

betweenS.lycopersicum(SC)andS.habrochaites(SI),severalindependentQTLwere4

detected,ofwhichtheS­locusregionhadthelargestphenotypiceffect(Bernacchiand5

Tanksley1997).6

Ontheotherhand,interspecificpollentuberejectiondiffersfromSIintiming7

andlocation.Pollentubesofcultivatedtomatoarerejectedintheupperportionofthe8

S.pennelliistyle(Hardon1967;Liedletal.1996),similartoourresultswithS.9

lycopersicoidespistils(the‘early’rejection).Incontrast,‘self’pollentubespenetrate10

furtherintothestyle.Thisearlyrejectionofinterspecificpollentubessuperficially11

resemblessporophyticSI,whereinselfpollenisrecognizedandrejectedonthestigma.12

Furtherevidenceforasporophyticcomponentofinterspecificincompatibilitycomes13

fromthecrossingrelationshipsofF1hybridsbetweencultivatedtomatoandSIwild14

relatives:backcrossestotheSIspeciesareonlypossiblewhentheF1’sareusedas15

femaleparent(Hardon1967;McGuireandRick1954).Inotherwords,ifthe16

compatibilityofpollenwerepurelydeterminedbygametophyticfactors,asignificant17

fractionofpollenfromtheF1hybridshouldbecompatibleonpistilsoftheSIspecies.18

Thus,expressionofinterspecificincompatibilityisgeneticallycomplexandmayinvolve19

morethanonemechanismforrecognizingandrejectingforeignpollen.20

Inthepresentstudy,wereportthefinemappingofui6.1,apollencompatibility21

factoronchromosome6thatinteractswithui1.1,locatedatorneartheS­locuson22

chromosome1oftomato.WeshowthatonlypollenbearingtheS.pennelliiallelesof23

21

bothui1.1andui6.1arecompatibleonstylesofS.lycopersicumxS.lycopersicoides1

hybrids.TheseresultsstronglyimplicatetheS­locusinpollen‐sideunilateral2

incompatibility.Theyalsoprovidethefirstgeneticevidence(toourknowledge)that3

factorsotherthantheproductoftheS‐locusarerequiredforpollenfunctioninself‐or4

interspecificincompatibility.5

Patternsofsegregationdistortioninvariousinterspecificcrossesoftomato6

supporttheseconclusions.Theyprovidefurtherevidencethatpollenbearingthe7

cultivatedtomatoallelesatui1.1andui6.1areselectivelyeliminatedonstylesof8

interspecifichybrids,butonlywhenthewildparentisSI.Forexample,apseudo‐F2S.9

lycopersicumxS.chilense(SI)population,obtainedbycrossingtwoindependentF1’s(to10

avoidself‐incompatibility)exhibitedadeficiencyofplantshomozygousfortheS.11

lycopersicumallelesofmarkersnearui1.1andui6.1(Graham2005).Thelikely12

explanationisthatpollenlackingeitherfactorfromS.chilenseareeliminatedonstyles13

oftheF1hybrid.Incontrast,interspecificF2’sbetweentomatoandS.chmielewskiiorS.14

pennelliiLA0716,bothofwhichareself‐compatibleyetrejecttomatopollen,showed15

normalMendeliansegregationformarkersnearui1.1andui6.1(Patersonetal.1991;16

http://solgenomics.net).MendeliansegregationisalsoobservedinterspecificF217

populationswhenbothparentsareSI,consistentwiththehypothesisthattheSIspecies18

eachcontainfunctionalallelesatui1.1andui6.1(AlbrechtandChetelat2009;Pertuzeet19

al.2002).TheseresultssuggesttheexistenceofanS‐RNAsedependentpathwayfor20

interspecificpollenrejectioninpistilsoftheSIspecies,aswellasanS‐RNAse21

independentmechanismintheSIandsomeSCspecies.22

22

Thus,boththegeneticevidenceandthedevelopmentaltimingofinterspecific1

pollenrejectionsupporttheexistenceofatleasttwopathways.Thefirst(‘early’)2

mechanismrejectstomatopollentubesinthestigmaandupperstylesonpistilsofSI3

andsomeSCspecies;pollencontainingtheui1.1andui6.1factorsdoesnotovercome4

thisbarrier.Thesecondmechanismcausespollentuberejectioninthemidpositionof5

stylesfrominterspecificSCxSIhybrids,andisovercomebypollencontainingui1.1and6

ui6.1.Wefoundevidenceofoverlapbetweenthesetwopathways:pollenofbridging7

linescontainingbothui1.1andui6.1growfurtherintopistilsofS.lycopersicoidesthan8

doespollenoftomatolineslackingeitherorbothfactors(10%vs.5%ofstylelength).9

Furtherresearchisclearlyneededtounderstandthegeneticandphysiologicalbasisof10

theseinterspecificpollenrejectionpathways.11

RelevancetootherSolanaceae:Webelieveourexperimentalsystemprovides12

ausefulmodelforstudyingunilateralincompatibilityinotherSolanaceae.Onthepistil13

side,thediploidandallotriploidS.lycopersicumxS.lycopersicoideshybridsareSIand14

rejectpollenofcultivatedtomato,indicatingthesetraitsareeffectivelydominant,as15

theyareinotherSolanaceaehybrids.Forexample,diploidF1hybridsbetween16

cultivatedtomatoandSIaccessionsofS.habrochaites,S.pennellii,S.peruvianum,orS.17

chilenseareallSIandrejectpollenofcultivatedtomato(Hardon1962;Martin1961,18

1963;McGuireandRick1954).Allotriploidscomposedoftwogenomesfromtomato19

andonefrompotato(S.tuberosum,SI)alsorejectpollenofS.lycopersicumandaccept20

pollenofS.pennelliiLA0716(Schoenmakersetal.1993),i.e.thesamecrossing21

relationshipswereportherein.Inothersolanaceousgenera,includingNicotiana22

23

(Murfettetal.1996)andCapsicum(Pickersgill1997),self‐andunilateral1

incompatibilityarealsodominantininterspecificSCxSIhybrids.2

Furthermore,iftheunderlyingpathwaysforpollentuberejectionbyunilateral3

incompatibilityareconserved,thentheresultswepresenthereinshouldberelevantto4

othersystems.Forexample,allotriploidS.lycopersicumxS.sitienshybridsalsoreject5

pollenofcultivatedtomato,andbridginglinescontainingui1.1andui6.1fromS.6

pennelliiarecompatible(Pertuzeetal.2003).Ininstanceswhereunilateral7

incompatibilityresultsfromthebreakdownofself‐incompatibility,therearelikelytobe8

commonmechanisms.Self‐incompatibilitysystemsarestronglyconservedwithinplant9

families,andrelatedfamiliesoftenhavethesamesystem.Forexample,allSImembers10

oftheSolanaceaeemploytheS­RNAsebasedgametophyticsystem,underthecontrolof11

asingleS­locusdeterminingspecificity(deNettancourt1977,1997).WhiletheS­12

RNAsesarehighlydivergent,eachallele(S1,S2,etc)isstronglyconserved,evenacross13

plantfamilies(IgicandKohn2001).14

AweakenedUIresponseintheallotriploidhybridsimplifiesthegenetics:15

TheabilitytorejectpollenofcultivatedtomatoiseffectivelydominantinpistilsofS.16

lycopersicumxS.lycopersicoideshybrids.However,expressionofthepistilresponsein17

thehybridsisweakerthaninthewildparent,intwoways.First,pistilsofthe3xhybrid18

arrestpollentubesofcultivatedtomatonearthemiddleofthestyle,andlackthe‘early’19

(i.e.stigmatic)pollentuberejectionphenotypeofS.lycopersicoidespistils,suggesting20

thelatterbarrierisadditiveorrecessive.Second,bridginglinescontainingboththe21

ui1.1andui6.1genesfromS.pennelliiwerefullycompatible(i.e.manypollentubesin22

theovaries)withpistilsoftheallotriploidhybrid,butincompatiblewiththediploid23

24

hybridorS.lycopersicoides.WehypothesizethatadditionalgeneticfactorsfromS.1

pennelliicontributetocompatibilitywiththesetwogenotypes;alocusonchromosome2

10wasidentifiedinanearlierstudy(ChetelatandDeVerna1991).Thus,theuseof3

allotriploidhybridsastesterstocksprovidesasimplergeneticsysteminwhichto4

isolatepollen‐sideunilateralincompatibilityfactors.Thismethodmayprovideauseful5

routeforgeneticanalysisofotherinterspecificincompatibilitysystems.6

Thecausesoftheweakenedexpressionintheallotriploidareunknown,but7

presumablyresultfromthereducedgenedosageoftheSIparent(i.e.onegenomeofS.8

lycopersicoides,vs.twogenomesoftheSCparent,S.lycopersicum).Wehypothesizethat9

thedifferentpathwaysforpollentuberejectionaredifferentiallyaffectedbygene10

dosageinthepistil.TheactionofafactoratorneartheS‐locusinpollenimpliesthat11

theS‐RNAsedependentpathwayisfullydominantinpistilsoftheallotriploidhybrid.12

However,the‘early’rejectionpathwaymaybeadditiveorrecessiveinhybrids.There13

aremanyexamplesofgene‐specificdosageeffectsinaneuploidsandtriploids.Genes14

thataredominantoverwildtypeinnormal(2x)heterozygotesmayshowreduced15

expressionintrisomicscontainingtwodosesofthewildtypeallele(KhushandRick16

1968).Someproteincodinglociareexpressedatlevelsproportionaltotheirgene17

dosage,whileotherlocimaintainexpressionatthediploidlevelviadosage18

compensation(Birchler1979;SmithandConklin1975;Tanksley1979).Inallotriploid19

hybridfish,geneexpressionisreducedtothediploidlevelthroughallele‐specificgene20

silencing(Palaetal.2008).Finally,trisomicdosagemayaltergeneexpressionthrough21

genicinteractions,forexampleifmodifierlociaremoresensitivetodosage(Gill1974).22

25

Towardsmap­basedcloningofui6.1:Todecipherthemolecularpathwaysof1

interspecificpollentuberejection,itisnecessarytoclonetheunderlyinggenes.2

Towardsthisgoal,wemappedtheui6.1genetoanintervalofca.0.128cMor160kbon3

theshortarmofchromosome6oftomato.Theefficiencyoflinkagemappingwas4

limitedinitiallybylowrecombinationcomparedtothereferencemapoftomato.5

However,thedegreeofrecombinationsuppressionvariedalongthechromosome,and6

crossoverfrequenciesclosetoui6.1werehigherthannormal.Thecausesof7

recombinationsuppression(orenhancement)inthisregionofthegenomeare8

unknown,butmayreflectthedegreeofdivergence(structuralorsequence)between9

theS.lycopersicumandS.pennelliichromosomes.Thetwospeciesshowcolinearityof10

chromosome6S,withnorearrangements(Petersetal.2009).InS.peruvianum,alarge11

paracentricinversiononchromosome6Swasresponsibleforrecombination12

suppressionaroundtheMigene(fornematoderesistance)incrossestotomato(Seahet13

al.2004).TheMilocusisclosetoui6.1,butwefoundnoevidenceforaninversioninS.14

pennellii.WhileafewBAC‐derivedmarkerswereinvertedinourgeneticmapofthe15

ui6.1regioncomparedtotheirorderonthetomatoBACsequence,theywereinaregion16

ofrelativelyhighrecombination.Thediscrepancysuggestsarearrangementmayhave17

occurredinthisparticularBAC.Furthermore,FISHmappingofmanyotherBACson18

chromosome6showedanarea(position0‐5cM)wherethelinearorderofmarkers19

predictedfromthegeneticmap(EXPEN2000)isinvertedrelativetotheiractual20

physicalarrangementalongthechromosome(Petersetal.2009),pointingtoalikely21

errorinthelinkagemap.22

26

Weobtainedmuchhigherrecombinationfrequenciesstartingwithanearly1

intactS.pennelliichromosome6,comparedtotheshorterintrogressedsegments2

presentinthebridginglines.Thisagreeswithourpreviousobservationsofapositive3

correlationbetweencrossoverfrequencyandthelengthofalienchromosomesegments4

(Canadyetal.2006).Higherrecombinationrateswereseeninfemalegametesthanin5

malegametes,ashasbeenreportedbefore(deVicenteandTanksley1991;Rick1969).6

Thus,despiteanoverallsuppressionofrecombinationinthisregion,the7

efficiencyofmappingcouldbemaximizedbychoiceofstartingmaterialsandthe8

directionofthecross.Inthisway,thechromosomalpositionofui6.1wasrefinedfrom9

arelativelyimpreciseinterval,encompassingtheentireshortarmofchromosome6,to10

only0.128mapunits(160kb).Weanticipatethatisolationoftheui6.1genewillshed11

lightonthemechanismofpollentuberejectioninunilateralincompatibility,andits12

relationshiptoself‐incompatibility.Fromapracticalstandpoint,amorecomplete13

understandingofthegeneticfactorsunderlyinginterspecificcrossingbarriersmay14

eventuallyenablewidercrosses.Forexample,overcomingtherejectionofS.15

lycopersicumpollenonpistilsofrelatedSIspeciesmightfacilitatethedevelopment16

cytoplasmicmalesterilityintomato.17

18

Acknowledgements19

TheauthorsgratefullyacknowledgePeterMarch,KatieSmith,andtheC.M.Rick20

TomatoGeneticsResourceCenterstaffforprovidingseedofkeygenotypes,andfor21

growingandmaintainingplantsinthegreenhouse.WethankShehMayTamforhelpful22

discussions.BACsequenceswereobtainedfromhttp://solgenomics.net.Fundingfor23

27

thisresearchwasprovidedbygrantDBI0605200fromtheNationalScience1

Foundation,PlantGenomeProgram.2

References3

ALBRECHT,E.,andR.T.CHETELAT,2009ComparativegeneticlinkagemapofSolanum4

sect.Juglandifolia:evidenceofchromosomalrearrangementsandoverall5

syntenywiththetomatoesandrelatednightshades.Theor.Appl.Genet.118:6

831‐847.7

BERNACCHI,D.,andS.D.TANKSLEY,1997AninterspecificbackcrossofLycopersicon8

esculentumxL.hirsutum:linkageanalysisandaQTLstudyofsexual9

compatibilityfactorsandfloraltraits.Genetics147:861‐877.10

BIRCHLER,J.A.,1979Astudyofenzymeactivitiesinadosageseriesofthelongarmof11

chromosomeoneinmaize.Genetics92:1211‐1229.12

CANADY,M.A.,Y.JI,andR.T.CHETELAT,2006Homeologousrecombinationin13

Solanumlycopersicoidesintrogressionlinesofcultivatedtomato.Genetics174:14

1775‐1788.15

CHETELAT,R.T.,andJ.W.DEVERNA,1991Expressionofunilateralincompatibilityin16

pollenofLycopersiconpennelliiisdeterminedbymajorlocionchromosomes1,617

and10.Theor.Appl.Genet.82:704‐712.18

CHETELAT,R.T.,C.M.RICK,andJ.W.DEVERNA,1989Isozymeanalysis,chromosome19

pairing,andfertilityofLycopersiconesculentumxSolanumlycopersicoides20

diploidbackcrosshybrids.Genome32:783‐790.21

DENETTANCOURT,D.,1977Incompatibilityinangiosperms.Springer‐Verlag,Berlin.22

DENETTANCOURT,D.,1997Incompatibilityinangiosperms.Sex.Pl.Reprod.10:185‐23

28

199.1

DEVICENTE,M.C.,andS.D.TANKSLEY,1991Genome‐widereductionin2

recombinationofbackcrossprogenyderivedfrommaleversusfemalegametes3

inaninterspecificbackcrossoftomato.Theor.Appl.Genet.83:173‐178.4

FULTON,T.M.,R.VANDERHOEVEN,N.T.EANNETTA,andS.D.TANKSLEY,20025

Identification,analysisandutilizationofconservedorthologset(COS)markers6

forcomparativegenomicsinhigherplants.PlantCell14:1457‐1467.7

GILL,B.S.,1974Dosage‐dependentepistasisinthetomato:itsbearingontrisomy8

abnormalitiesandevolution.J.Hered.65:130‐132.9

GRAHAM,E.B.,2005GeneticdiversityandcrossingrelationshipsofLycopersicon10

chilense.Ph.D.Thesis,UniversityofCalifornia,Davis1‐157.11

HARDON,J.J.,1962Self‐incompatibilityandself‐compatibilityinSolanumpennelliiCor.12

inrelationtoitsunilateralincompatibilitywithLycopersiconesculentumMill.13

Genetics47:957‐.14

HARDON,J.J.,1967UnilateralincompatibilitybetweenSolanumpennelliiand15

Lycopersiconesculentum.Genetics57:795‐808.16

IGIC,B.,andJ.R.KOHN,2001Evolutionaryrelationshipsamongself‐incompatibility17

RNAses.Proc.Natl.Acad.Sci.98:13167‐13171.18

KHUSH,G.S.,andC.M.RICK,1968Tomatotelotrisomics:origin,identification,anduse19

inlinkagemapping.Cytologia33:137‐148.20

LEWIS,D.,andL.K.CROWE,1958Unilateralinterspecificincompatibilityinflowering21

plants.Heredity12:233‐256.22

LIEDL,B.E.,S.MCCORMICK,andM.A.MUTSCHLER,1996Unilateralincongruityin23

29

crossesinvolvingLycopersiconpennelliiandL.esculentumisdistinctfromself‐1

incompatibilityinexpression,timingandlocation.Sex.PlantReprod.9:299‐308.2

MARTIN,F.W.,1959Stainingandobservingpollentubesinthestylebymeansof3

fluorescence.StainTechnol.34:125‐128.4

MARTIN,F.W.,1961Theinheritanceofself‐incompatibilityinhybridsofLycopersicon5

esculentumMill.xL.chilenseDun.Genetics46:1443‐1454.6

MARTIN,F.W.,1963CompetitionofpollencontainingdifferentSallelesinL.7

esculentum‐L.hirsutumcrosses.TomatoGenet.Coop.Report13:14‐15.8

MARTIN,F.W.,1964TheinheritanceofunilateralincompatibilityinLycopersicon9

hirsutum.Genetics50:459‐469.10

MCGUIRE,D.C.,andC.M.RICK,1954Self‐incompatibilityinspeciesofLycopersicon11

Sect.EriopersiconandhybridswithL.esculentum.Hilgardia23:101‐123.12

MURFETT,J.,T.J.STRABALA,D.M.M.B.ZUREK,andB.M.B.A.BEECHER,1996S13

RNaseandinterspecificpollenrejectioninthegenusNicotiana:multiplepollen‐14

rejectionpathwayscontributetounilateralincompatibilitybetweenself‐15

incompatibleandself‐compatiblespecies.PlantCell8:943‐958.16

MUTSCHLER,M.A.,andB.E.LIEDL,19949.Interspecificcrossingbarriersin17

Lycopersiconandtheirrelationshiptoself‐incompatibility.Geneticcontrolof18

self‐incompatibilityandreproductivedevelopmentinfloweringplants164‐.19

PALA,I.,M.M.COELHO,andM.SCHARTL,2008Dosagecompensationbygene‐copy20

silencinginatriploidhybridfish.CurrentBiology18:1344‐1348.21

PATERSON,A.H.,S.DAMON,J.D.HEWITT,D.ZAMIR,H.D.RABINOWITCHetal.,199122

Mendelianfactorsunderlyingquantitativetraitsintomato:comparisonacross23

30

species,generations,andenvironments.Genetics127:181‐197.1

PERTUZE,R.A.,Y.JI,andR.T.CHETELAT,2002Comparativelinkagemapofthe2

SolanumlycopersicoidesandS.sitiensgenomesandtheirdifferentiationfrom3

tomato.Genome45:1003‐1012.4

PERTUZE,R.A.,Y.JI,andR.T.CHETELAT,2003Transmissionandrecombinationof5

homeologousSolanumsitienschromosomesintomato.Theor.Appl.Genet.107:6

1391‐1401.7

PETERS,S.A.,E.DATEMA,D.SZINAY,M.J.VANSTAVEREN,E.G.W.M.SCHIJLENetal.,8

2009Solanumlycopersicumcv.Heinz1706chromosome6:distributionand9

abundanceofgenesandretrotransposableelements.PlantJ.58:857‐869.10

PICKERSGILL,B.,1997GeneticresourcesandbreedingofCapsicumspp.Euphytica96:11

129‐133.12

QUIROS,C.,O.OCHOA,andD.DOUCHES,1986L.peruvianumxL.pennelliisexual13

hybrids.ReportTomatoGeneticsCoop.36:31‐32.14

RICK,C.M.,1969ControlledintrogressionofchromosomesofSolanumpennelliiinto15

Lycopersiconesculentum:segregationandrecombination.Genetics62:753‐768.16

RICK,C.M.,1979BiosystematicstudiesinLycopersiconandcloselyrelatedspeciesof17

Solanum,pp.667‐678in:TheBiologyandTaxonomyoftheSolanaceae.Editedby18

J.G.HAWKES,R.N.LESTER,andA.D.SKELDING.AcademicPress,NewYork.19

RICK,C.M.,andR.T.CHETELAT,199116.Thebreakdownofself‐incompatibilityin20

Lycopersiconhirsutum.SolanaceaeIII:Taxonomy,Chemistry,Evolution253‐256.21

SCHOENMAKER,H.C.H.,A.M.A.WOLTERS,E.M.NOBEL,C.M.J.DEKLEIN,andM.22

KOORNNEEF,1993Allotriploidsomatichybridsofdiploidtomato(Lycopersicon23

31

esculentum)andmonoploidpotato(Solanumtuberosum).THEOR.Appl.GENet.1

87:328‐336.2

SEAH,S.,J.YAGHOOBI,M.ROSSI,C.A.GLEASON,andV.M.WILLIAMSON,2004The3

nematode‐resistancegene,Mi­1,isassociatedwithaninvertedchromosomal4

segmentinsusceptiblecomparedtoresistanttomato.Theor.Appl.Genet.108:5

1635‐1642.6

SMITH,H.H.,andM.E.CONKLIN,1975Effectsofgenedosageonperoxidaseisozymes7

inDaturastramoniumtrisomics,pp.603‐618in:Isozymes:developmental8

biology.EditedbyC.L.MARKERT.AcademicPress,London,NewYork.9

TANKSLEY,S.D.,1979Linkage,chromosomalassociation,andexpressionofAdh‐1and10

Pgm‐2intomato.Biochem.Genet.17:1159‐1167.11

TANKSLEY,S.D.,andF.LOAIZA‐FIGUEROA,1985Gametophyticself‐incompatibilityis12

controlledbyasinglemajorlocusonchromosome1inLycopersiconperuvianum.13

Proc.Natl.Acad.Sci.USA82:5093‐5096.14

VANWORDRAGEN,M.F.,R.L.WEIDE,E.COPPOOLSE,M.KOORNNEEF,andP.ZABEL,15

1996Tomatochromosome6:ahighresolutionmapofthelongarmand16

constructionofacompositeintegratedmarker‐ordermap.Theor.Appl.Genet.17

92:1065‐1072.18

WEIDE,R.,M.F.VANWORDRAGEN,R.K.LANKHORST,R.VERKERK,C.HANHARTetal.,19

1993Integrationoftheclassicalandmolecularlinkagemapsoftomato20

chromosome6.Genetics135:1175‐1186.21

32

Table1.PollentubegrowthfollowingcompatibleandincompatiblepollinationsofSolanumlycopersicoidesandinterspecific1

Solanumhybrids.Pollencompatibilityisindicatedbythelengthofthelongestpollentubeexpressedasapercentageofthe2

totallengthofthestyleandstigma(avalueof100%indicatesacompatiblecross).Valuesaretheaverages(±SE)ofatleast33

replicatepistilsforeachcross.Onthefemaleside,thegenotypeswereS.lycopersicoides,anddiploidandallotriploidF1S.4

lycopersicumxS.lycopersicoideshybrids.Onthemaleside,crossesweremadewithpollenfromS.lycopersicoides,S.5

lycopersicum,S.pennellii,andbridginglinescontainingtheui1.1and/orui6.1factorsfromS.pennelliiintrogressedinto6

cultivatedtomato.ThesegenotypesaredescribedinMaterialsandMethods.7

PistilGenotype

PollenGenotype

LengthofLongestTube(%ofstyle)

LocationofRejection

#TubesinOvaries

S.lycopersicoidesLA2951 S.lycopersicoidesLA2951(self)S.lycopersicoidesLA2951(sib)

50.2±2.76100

stylen/a

0>50

S.pennelliiLA0716 100 n/a 4.9±2.91 S.lycopersicumcv.VF‐36 5.6±1.88 stigma 0 S.lycopersicum(ui1.1) 5.3±0.67 stigma 0 S.lycopersicum(ui6.1) 4.7±1.52 stigma 0 S.lycopersicum(ui1.1+ui6.1) 10.9±0.96 stigma/style 0S.lycopersicumxS.lycopersicoides S.lycopersicoidesLA2951 100 n/a >50(diploidhybrid90L4178) S.pennelliiLA0716 100 n/a >50 S.lycopersicumcv.VF‐36 16.6±1.86 style 0 S.lycopersicum(ui1.1) 13.7±0.71 style 0 S.lycopersicum(ui6.1) 15.3±3.14 style 0 S.lycopersicum(ui1.1+ui6.1) 42.3±14.5 style 0

S.lycopersicumxS.lycopersicoides S.lycopersicoidesLA2951 100 n/a >50(allotriploidhybridGH266) S.pennelliiLA0716 100 n/a >50

33

S.lycopersicumcv.VF‐36 47.8±4.93 style 0 S.lycopersicum(ui1.1) 45.9±6.40 style 0 S.lycopersicum(ui6.1) 53.0±11.4 style 0 S.lycopersicum(ui1.1+ui6.1) 100 n/a >501

34

FigureLegends1

Figure1.CrossingschemeusedtodevelopS.lycopersicumxS.lycopersicoides2

interspecifichybridsandbridginglinescontaininggametophyticunilateral3

incompatibilityfactorsfromS.pennellii.L=genomeofS.lycopersicum,S=genomeofS.4

lycopersicoides.PollenofS.lycopersicumisrejectedonpistilsofS.lycopersicoidesand5

itsinterspecifichybridswithcultivatedtomato,whereas‘bridginglines’containing6

specificgametophyticfactorsfromS.pennelliiarecompatible.7

8

Figure2.HistogramofpollentubelengthsfollowingpollinationsofallotriploidS.9

lycopersicumxS.lycopersicoideshybrids(♀)withbridginglinessegregatingfortwo10

pollencompatibilityfactorsfromS.pennellii.Pollentubelengthsaremeasuredfrom11

thepositionwherethemajorityoftubesarearrested,excludingoutliertubesthatmay12

growalittlefurther(seeFigure3).Measurementsweretaken24hoursafter13

pollination.14

15

Figure3.PollentubegrowthonpistilsofallotriploidS.lycopersicumxS.lycopersicoides16

hybridspollinatedbydifferentspeciesorgenotypes.Pistilswerefixed24hoursafter17

pollination,andstainedwithanilinebluetovisualizepollentubes.Fortheincompatible18

crosses,arrowheadsindicatethezoneofthestylewheregrowthofmosttubesstopped,19

andarrowsindicatethelongestpollentube.Thebridginglinegenotypescontainedone20

orbothpollencompatibilityfactors(ui1.1,ui6.1)fromS.pennelliiintrogressedintothe21

backgroundofS.lycopersicum.22

23

35

Figure4.Genotypesofrecombinantsrecoveredintheui6.1regioninF2progenyof1

bridginglienscontainingboththechromosome1and6factors.Thecompatibilityor2

incompatibilityofrecombinantswasdeterminedbypollinationsontopistilsofthe3

allotriploidS.lycopersicumxS.lycopersicoideshybrid.Openbars=homozygousforthe4

S.lycopersicumalleles,grey=heterozygous,andblack=homozygousfortheS.pennellii5

alleles.IntheabsenceoftheS.pennelliichromosome1factor,allplantselicitan6

incompatiblereaction,regardlessoftheirgenotypeatui6.1.Recombinantsthatwere7

heterozygousfortheparentalS.pennelliiintrogressionwereprogenytestedto8

determinethephenotypeofui6.1.9

10

Figure5.Comparisonofrecombinationfrequenciesnearui6.1indifferentmapping11

populations.TheF2mapsarebasedonrecombinationwithinarelativelyshort(32cM)12

S.pennelliisegment,whereastheBCmapsarederivedfromalongersegment(~80cM)13

inasubstitutionline.ThereferencemapisthetomatoEXPEN2000map14

(http://solgenomics.net).Geneticdistancesareinunitsofpercentrecombination,or,15

ontheEXPEN2000map,incentiMorgans.OntheF2‐bandBCmaps,ui6.1isshownat16

itsapproximatelocationbecausenotallplantsinthesepopulationswerephenotyped.17

18

Figure6.Crossingschemeusedtooptimizetherateofrecombinationaroundui6.1.A19

substitutionlinecontaininganearlyintactS.pennelliichromosome6(vanWordragen20

etal.1996)wascrossedtotomatocv.M‐82.Theresultinghybrid,heterozygousforthe21

pennelliichromosome,wasbackcrossedasmale(BC‐♂)orfemale(BC‐♀)parenttoa22

linehomozygousfortheS­locusregionfromS.pennellii.Recombinantswereidentified23

36

bymarkeranalysisinthetwoBCpopulations,thentestedforcompatibilityofpollenon1

pistilsoftheallotriploidhybrid.2

3

Figure7.Geneticmapoftheui6.1regionontheshortarmofchromosome6.Results4

arebasedonanalysisofprogenyfromthesubstitutionline,usedasfemaleparent(BC‐5

♀),crossedtoalinehomozygousfortheS.pennelliifactoronchromosome1.Markers6

arefromtheSGNdatabase(http://solgenomics.net).Theshadedregionofthe7

chromosomesindicatesazoneofelevatedrecombinationintheprogenyofSL‐68

relativetotheEXPEN2000referencemap.9

10

Figure8.Finescalegeneticandphysicalmapoftheui6.1region,andphenotypesof11

recombinantswithcrossoversintheflankingintervals.ThepositionofthreeBACsis12

shownrelativetoafinescalemapoftheregionbasedontheanalysisofrecombinants.13

Foreachmarkerinterval,thepercentrecombinationandthenumberofrecombinants14

obtainedfromallmappingpopulationsareshown.MarkerswerederivedfromtheS.15

lycopersicumBACsequences.Thegenotypesoffourrecombinants(solid=homozygous16

S.pennellii,hatched=heterozygous,open=homozygousS.lycopersicum)andtheir17

pollenphenotypesonpistilsoftheallotriploid(I=incompatible,C=compatible)are18

shown.19

map pollen UI factors from S. pennellii

Phenotyping and marker analysis

S. lycopersicum ×

Allotriploid hybrid (LLS)

colchicine

Allotetraploid hybrid (LLSS)

S. lycopersicum (LL) S. lycopersicoides (SS)×

F1 hybrid (LS)

Backcrosses &selection

Bridging lines

S. lycopersicum × S. pennellii

Pollen Tube Length (% of style)

30 40 50 60 70 80 90 100 110

Nu

mb

er o

f P

lan

ts

0

5

10

15

20

25

S. pennelliiS. lycopersicum ui1.1 + ui6.1 ui1.1 ui6.1

bridging lines

1 mm

Pollen Genotypes

Compatibility on LLS: I C

2No. of recombinants: 4 6 5 3 2 4 5 52 2 1 6

I I I I C C C C CI I

chr. 1

chr. 6

SSR47

T892

T507

T834

orS

TG184

SSR98

T1928

SSR47

T892

T507

T834

6.5

7.5

11.0

7.0

ui6.1SSR47

T892T507T834

0.430.901.02

T1928

SSR47T892T834

0.550.261.51

T1928

SSR47T892

T834

3.62

0.98

5.38

T1928

T892

T834

0.74

3.58

EXPEN 2000

Short Introgression

Long IntrogressionBC-♀

F2-a F2-bBC-♂

ui6.1

ui6.1

ui6.1

×

×

SL-6M-82

BC-♀

♀ ♂

ui1.1

BC-♂

♀ ♂

ui1.1

×

chr.1 chr.6 chr.1 chr.6

T1928

C2_At3g25120U218000MiSSR48SSR47

C2_At4g01900

U295750

T892

5.2

0.30.50.5

1.5

4.5

1.5

T1928

C2_At3g25120U218000

Mi, ui6.1SSR48SSR47C2_At4g01900U295750T892

1.10

2.13

0.330.060.220.540.22

EXPEN 2000

BC-♀

C06HBa0250I21 C06HBa0073H07

250I

21-1

4 25

0I21

-11

250I

21-1

0 25

0I21

-7

250I

21-2

7

73H

07-2

8 73

H07

-22

73H

07-2

1 73

H07

-17

1 73

H07

-8

1 73

H07

-7

73H

07-5

4

73H

07-3

3

73H

07-1

5 73

H07

-13

73H

07-1

1

1

ui6.

1

Mi

181H

03-2

7 / 6705

181H

03-1

LE_HBa00181H03

3

0.230 0.034 0.034 0.034 0.136 0.102 0.094 0.230 % Recombination:

# Recombinants:

19-89 44-32

71-61

50-58

ICII