16
1S Supporting Information Coordination-driven self-assembly of iridium-cornered prismatic cage and encapsulation of three hetero guests in its large cavity Nem Singh, a Jae Ho Jo, a Young Ho Song, a Hyunuk Kim, b Dongwook Kim, c Myoung Soo Lah, c Ki-Whan Chi* a a Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea b Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea c Department of Chemistry, Ulsan National Institute of Science & Technology, Ulsan 689-805, Republic of Korea Table of Contents S.N. Contents Page 1. Materials and methods 2S 2. Synthesis of acceptor clip 1, cage 2, inclusion complexes 2(G) 2 , [2(G 1 ) 2 ] and [2(G 2 •G 1 •G 2 )] 2-3S 3. Crystallographic data collection and refinement of the structures 3S 4. X-Ray crystal structure parameters of compounds 1, [2(G 1 ) 2 ] and [2(G 2 •G 1 •G 2 )] 4S 5. ESI-MS of acceptor clip 1 5S 6. NMR spectra of 1, 2, 2(G) 2 , [2(G 1 ) 2 ] and [2(G 2 •G 1 •G 2 )] 6-9S 7. Transformation of 1 H-NMR spectrums of [2(G 2 )] and [2(G 1 ) 2 ] in to the spectrum of [2(G 1 •G 2 •G 1 )] upon increasing addition of G 1 and G 2 respectively 10S 8. 1 H- 1 H ROESY NMR spectra of 2 and [2(G 2 •G 1 •G 2 )] 11-12S 9. DOSY NMR spectrum of 2 and [2(G 1 •G 2 •G 1 )] 13-14S 10. Different views of crystal structures of 1, [2(G 1 ) 2 ] and [2(G 2 •G 1 •G 2 )] 14-15S 11. References 16S Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

0DWHULDO (6, IRU&KHP&RPP 7KLV Supporting Information · Supporting Information Coordination-driven self-assembly of iridium-cornered prismatic cage and encapsulation of three hetero

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

1S

Supporting InformationCoordination-driven self-assembly of iridium-cornered prismatic cage and encapsulation of three hetero guests in its large cavity

Nem Singha Jae Ho Jo a Young Ho Song a Hyunuk Kimb Dongwook Kimc Myoung Soo Lahc Ki-Whan Chia

aDepartment of Chemistry University of Ulsan Ulsan 680-749 Republic of Korea

bEnergy Materials and Convergence Research Department Korea Institute of Energy Research Daejeon 305-343 Republic of Korea cDepartment of Chemistry Ulsan National Institute of Science amp Technology Ulsan 689-805 Republic of Korea

Table of Contents

SN Contents Page

1 Materials and methods 2S

2 Synthesis of acceptor clip 1 cage 2 inclusion complexes 2sup(G)2 [2sup(G1)2] and

[2sup(G2bullG1bullG2)]

2-3S

3 Crystallographic data collection and refinement of the structures 3S

4 X-Ray crystal structure parameters of compounds 1 [2sup(G1)2] and [2sup(G2bullG1bullG2)] 4S

5 ESI-MS of acceptor clip 1 5S

6 NMR spectra of 1 2 2sup(G)2 [2sup(G1)2] and [2sup(G2bullG1bullG2)] 6-9S

7 Transformation of 1H-NMR spectrums of [2sup(G2)] and [2sup(G1)2] in to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1 and G2 respectively

10S

8 1H-1H ROESY NMR spectra of 2 and [2sup(G2bullG1bullG2)] 11-12S

9 DOSY NMR spectrum of 2 and [2sup(G1bullG2bullG1)] 13-14S

10 Different views of crystal structures of 1 [2sup(G1)2] and [2sup(G2bullG1bullG2)] 14-15S

11 References 16S

Electronic Supplementary Material (ESI) for ChemCommThis journal is copy The Royal Society of Chemistry 2015

2S

1 Materials and methods

246-tris(pyridin-4-yl)-135-triazine(L)S1 14-Bis(dipyrromethan-5-yl)benzeneS2 and NN-dimethyl-1458-naphthalenetetracarboxylicdiimide(G2)S3 were synthesized following the reported procedures by standard Schlenk technique All other reagents were commercially available (Sigma-Aldrich TCI Korea Alfa Aesar) and used as received The solvents were dried and distilled according to the standard literature procedures The 1H 13C NMR 1H-1H ROESY NMR and DOSY NMR spectra were recorded on a Bruker 300 MHz 600 MHz and 800 MHz spectrometer The chemical shifts (δ) in 1H NMR spectra are reported in ppm relative to tetramethylsilane (Me4Si) as internal standard (00 ppm) Mass spectra were recorded on a Micromass Quattro II triple-quadrupole mass spectrometer using electrospray ionization (ESI) with the MassLynx software suite Elemental analyses were performed using an Elemental GmbH Vario EL-3 instrument Absorption spectra were recorded using a CARY 100 Conc UV-Visible spectrophotometer

2 1 Synthesis of [(η5-C5Me5)IrCl(bdpmb)] (1)

HNNH

HNNH

1 DDQ CH2Cl2

CH3OH CH2Cl2

14-Bis(dipyrromethan-5-yl)-benzene

2 (CpIrCl2)2 NEt3

1

NN

NNIr

IrCl

Cl

Scheme 1S Synthesis and X-ray structure of 1

The solution of 14-Bis(dipyrromethan-5-yl)benzene (bdpmb) (722 mg 02 mmol) in CH2Cl2 (30 mL) was cooled using ice bath To This solution DDQ (500 mg 022 mmol) dissolved in tuluene (20 mL) was added dropwise with stirring over a period of 10 min and completion of the reaction was confirmed by TLC After two hour the solvent was removed using rotavapour The remaining red residue was dissolved in CH2Cl2MeOH (40 mL 11 vv) and transferred to another two necked round bottom flask discarding the insolubles if any Triethylamine (05 mL) and dimeric iridium complex [CpIr(μ-Cl)Cl2] (1593 mg 020 mmol) were added successively with continuous stirring at rt After 4 h the solvent was removed using rotavapour and the resulting residue was purified by flash column chromatography (SiO2 CH2Cl2 with 2 MeOH) to afford complex 2 as a red solid Yield 1128 mg (52) Mp 197-200degC (dec) Anal calcd for C44H46Cl2Ir2N4 C 4865 H 427 N 516 Found C 4827 H 440 N 536 1H NMR (300 MHz CDCl3) δ 769(m 4H pyrroleHa) 748 (s 4H PhHd) 660 (dd J = 44 11 Hz 4H pyrroleHb) 648 (dd J = 44 14 Hz 4H pyrroleHc) 151(S 30H CpHe) 13C NMR (75 MHz CDCl3) δ 15349 14635 13791 13318 13162 12925 11811 8657 835 ESI-MS for C44H46Cl2Ir2N4 calculated 105126 [1-Cl]+1 observed 105141

22 Synthesis of hollow cage 2

The acceptor clip 1 (326 mg 003 mmol) ligand L (63 mg 002 mmol) and AgO3SCF3 (154 mg 006 mmol) was taken in a reaction vial and 2 mL of MeOHMeNO2 (11) was added The mixture was stirred at room temperature for 2 h The reaction mixture was then filtered and concentrated to 05 mL under vacuum then diethyl ether was added to precipitate a red solid which was filtered washed with diethyl ether and dried to furnish 2 as a red crystalline solid Yield 438 mg (96) Mp 208-210degC (dec) Anal calcd for

3S

C174H162F18Ir6N24O18S6 C 4578 H 358 N 736 S 421 Found C 4542 H 343 N 714 S 438 1H NMR (300 MHz CD3ODCD3NO2) δ 858 (broad s 24H PyHαβ) 827 (s 12H pyrroleHb) 754 (s 6H PhHd) 684 (s 6H PhHd) 675 (dd J = 45 16 Hz 12H pyrroleHa) 667 (dd J = 45 11 Hz 12H pyrroleHc) 165 (s 90H CpHe) 13C NMR (75 MHz CD3ODCD3NO2) δ 17077 15348 15239 14778 14574 13858 13452 13318 12990 12967 12618 12363 12058 9059 828

23 Synthesis of inclusion complexes [2sup(G1)2] [2sup(G2)] and [2sup(G1bullG2bullG1)]

To a CD3ODCD3NO2 (11 1 mL) solution of Cage 2 (18 mg 0004 mmol) in a reaction vial electron-rich planner guest coronene (G1 3 mol eq) was added and the reaction mixture was stirred at room temperature for 5 min The excess of insoluble guest G1 was separated using centrifugation and the 1H-NMR of the clear solution revealed the quantitative formation of the inclusion complex [2sup(G1)2] Similarly inclusion complex [2sup(G2)] was obtained by the encapsulation of guest NN-dimethyl-1458-naphthalenetetracarboxylic diimide (G2) and the quintuple-stacking structure [2sup(G1bullG2bullG1)] was formed by the encapsulation of two molecules of G1 and one molecule of G2 into cage 2

[2sup(G1)2]

1H NMR (300 MHz CD3ODCD3NO2) 882 (d J = 58 Hz 12H PyHα) 847 (s 12H pyrroleHa) 788 (s 6H outPhHd) 720 (d J = 39 Hz 12H pyrroleHb) 712 (d J = 39 Hz 12H pyrroleHc) 698 (s 6H inPhHd) 696 (d J = 50 Hz 12H PyHβ) 691 (s 24H coroneneH) 161 (s 90H CpHe)

[ 2sup(G2)]

1H NMR (300 MHz CD3ODCD3NO2) δ 869 (s 4H NpHg) 857 (m 24H PyHαβ) 827 (s 12H pyrroleHb) 756 (s 6H outPhHd) 686 (s 6H inPhHd) 675 (dd J = 44 16 Hz 12H pyrroleHa) 668 (dd J = 44 08 Hz 12H pyrroleHc) 351 (s 6H N-methylHh) 165 (s 90H CpHe)

[2sup(G1middotG2middotG1)]

1H NMR (300 MHz CD3ODCD3ON2) δ 868 (d J = 67 Hz 12H PyHα) 843 (s 12H pyrroleHa) 801 (s 6H outPhHd) 770 (s 6H inPhHd) 734 (dd J = 45 11 Hz 12H pyrroleHc) 724 (dd J = 46 16 Hz 12H pyrroleHb) 671 (d J = 67Hz 12H PyHβ) 447 (s 4H NpHg) 202 (s 1H N-methylHh) 158 (s 90H CpHe)

23 Synthesis of encapsulated cage [2sup(G1middotG2middotG1)] direct from ligand L and acceptor clip 1

The encapsulated cage [2sup(G1middotG2middotG1)] was also synthesized by an identical method described above for the synthesis of hollow cage 2 except that G1 (1 mol eq of L) and G2 (05 mol eq of L) was also added The quantitative product obtained after workup was identical with [2sup(G1middotG2middotG1)] synthesized from hollow cage as described above

3 Crystallographic data collection and refinement of the structures

Single crystal of 1 [2sup(G2)] and [2sup(G1bullG2bullG1)] were coated with paratone-N oil and the diffraction data measured at 100 K with synchrotron radiation ( = 061000 Aring) on a ADSC Quantum-210 detector at 2D SMC with a silicon (111) double crystal monochromator (DCM) at the Pohang Accelerator Laboratory Korea The ADSC Q210 ADX programS4 was used for data collection (detector distance is 125 mm omega scan ∆ω = 3ordm exposure time is 1 sec per frame) and HKL3000sm (Ver 703r)S5 was used for cell refinement reduction and absorption correction The crystal structures were solved by the direct method with SHELXTL-XS program and refined by full-matrix least-squares calculations with the SHELXTL-XL (Ver 2008) program packageS6

All non-hydrogen atoms are refined anisotropically the hydrogen atoms were assigned isotropic displacement coefficients U(H) = 12U (C) and 15U (Cmethyl) their coordinates were allowed to ride on their respective

4S

atoms For [2sup(G1bullG2bullG1)] the least-squares refinement of the structural model was performed under displacement parameter restraints such as DANG DELU DFIX FLAT ISOR SAME and SIMU The final refinement was performed with the modification of the structure factors for the electron densities of the unidentified molecules and the disordered solvents using the SQUEEZE option of PLATONS7 The largest difference peak and hole were 1536 and 0742 emiddotAring3 respectively A summary of crystals and important crystallographic data are given in Table S1

4 Table S1 X-Ray crystal structure parameters of compounds 1 [2sup(G1)2] and [2sup(G2bullG1bullG2)]

Parameters 1 [2sup(G1)2] [2sup(G1bullG2bullG1)]

Formula C46H50Cl6Ir2N4 C254H218F18Ir6N24O21S6 [C256 H208Ir6N26O4]+6

mol wt 125604 563021 486581cryst syst Triclinic Monoclinic TetragonalSpace group PError P21n I-42da (Aring) 7991(2) 27189(5) 46154(7)b (Aring) 9776(2) 30491(6) 46154(7)c (Aring) 15449(3) 29069(6) 49592(10)α (deg) 10026(3) 90 90β (deg) 10215(3) 10026(3) 90γ (deg) 10355(3) 90 90V (Aring3) 11137(5) 23713(8) 105641(38)Z 1 4 16T K 100 100 100λ (Aring) 070000 070000 061000ρcalcd (gcm3) 1873 1577 1224μ (mm-1) 6092 3342 2062Goodness of fit 1093 1155 0922θ range (deg) 227-260 172-2594 052-2001total no of rflns 7504 48385 277146no of unique rflns 3838 48385 39030no of obsd data(I gt 2σ(I)) 3820 41929 23480Rint 00179 00000 01018R(F2 gt 2σ(F2)) wR(F2)a

CCDC00317 009331036112

00781 028261036113

00711 020271036114

aR =Σ||Fo| - |Fc||Σ|Fo| wR2 = Σ [w(|Fo2 -|Fc

2|)2] Σ|w( Fo2)2| frac12

5S

Figure 1S Calculated (in blue) and experimental (in red) ESI-MS of acceptor clip [1]+

6S

0102030405060708090100110120130140150160170

ppm

83

5

765

8770

0774

2

865

7

1181

1

1292

51316

21331

8

1379

1

1463

5

1534

9

Figure 2S 1H (top) and 13C (bottom) NMR spectrum of 1 in CDCl3

7S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

c

e

dodi

α β

α β

ba

do dib c

e

a

0102030405060708090100110120130140150160170180f1 (ppm)

82

8

479

8482

7485

5488

3491

2494

0496

9612

7615

7618

6621

6624

6627

5630

5

905

9

1205

81236

31261

81296

71299

01331

81345

21385

8

1457

41477

81523

91534

8

1707

7

Figure 3S 1H (top) and 13C (bottom) NMR spectrum of 2 in CD3ODCD3NO2

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

2S

1 Materials and methods

246-tris(pyridin-4-yl)-135-triazine(L)S1 14-Bis(dipyrromethan-5-yl)benzeneS2 and NN-dimethyl-1458-naphthalenetetracarboxylicdiimide(G2)S3 were synthesized following the reported procedures by standard Schlenk technique All other reagents were commercially available (Sigma-Aldrich TCI Korea Alfa Aesar) and used as received The solvents were dried and distilled according to the standard literature procedures The 1H 13C NMR 1H-1H ROESY NMR and DOSY NMR spectra were recorded on a Bruker 300 MHz 600 MHz and 800 MHz spectrometer The chemical shifts (δ) in 1H NMR spectra are reported in ppm relative to tetramethylsilane (Me4Si) as internal standard (00 ppm) Mass spectra were recorded on a Micromass Quattro II triple-quadrupole mass spectrometer using electrospray ionization (ESI) with the MassLynx software suite Elemental analyses were performed using an Elemental GmbH Vario EL-3 instrument Absorption spectra were recorded using a CARY 100 Conc UV-Visible spectrophotometer

2 1 Synthesis of [(η5-C5Me5)IrCl(bdpmb)] (1)

HNNH

HNNH

1 DDQ CH2Cl2

CH3OH CH2Cl2

14-Bis(dipyrromethan-5-yl)-benzene

2 (CpIrCl2)2 NEt3

1

NN

NNIr

IrCl

Cl

Scheme 1S Synthesis and X-ray structure of 1

The solution of 14-Bis(dipyrromethan-5-yl)benzene (bdpmb) (722 mg 02 mmol) in CH2Cl2 (30 mL) was cooled using ice bath To This solution DDQ (500 mg 022 mmol) dissolved in tuluene (20 mL) was added dropwise with stirring over a period of 10 min and completion of the reaction was confirmed by TLC After two hour the solvent was removed using rotavapour The remaining red residue was dissolved in CH2Cl2MeOH (40 mL 11 vv) and transferred to another two necked round bottom flask discarding the insolubles if any Triethylamine (05 mL) and dimeric iridium complex [CpIr(μ-Cl)Cl2] (1593 mg 020 mmol) were added successively with continuous stirring at rt After 4 h the solvent was removed using rotavapour and the resulting residue was purified by flash column chromatography (SiO2 CH2Cl2 with 2 MeOH) to afford complex 2 as a red solid Yield 1128 mg (52) Mp 197-200degC (dec) Anal calcd for C44H46Cl2Ir2N4 C 4865 H 427 N 516 Found C 4827 H 440 N 536 1H NMR (300 MHz CDCl3) δ 769(m 4H pyrroleHa) 748 (s 4H PhHd) 660 (dd J = 44 11 Hz 4H pyrroleHb) 648 (dd J = 44 14 Hz 4H pyrroleHc) 151(S 30H CpHe) 13C NMR (75 MHz CDCl3) δ 15349 14635 13791 13318 13162 12925 11811 8657 835 ESI-MS for C44H46Cl2Ir2N4 calculated 105126 [1-Cl]+1 observed 105141

22 Synthesis of hollow cage 2

The acceptor clip 1 (326 mg 003 mmol) ligand L (63 mg 002 mmol) and AgO3SCF3 (154 mg 006 mmol) was taken in a reaction vial and 2 mL of MeOHMeNO2 (11) was added The mixture was stirred at room temperature for 2 h The reaction mixture was then filtered and concentrated to 05 mL under vacuum then diethyl ether was added to precipitate a red solid which was filtered washed with diethyl ether and dried to furnish 2 as a red crystalline solid Yield 438 mg (96) Mp 208-210degC (dec) Anal calcd for

3S

C174H162F18Ir6N24O18S6 C 4578 H 358 N 736 S 421 Found C 4542 H 343 N 714 S 438 1H NMR (300 MHz CD3ODCD3NO2) δ 858 (broad s 24H PyHαβ) 827 (s 12H pyrroleHb) 754 (s 6H PhHd) 684 (s 6H PhHd) 675 (dd J = 45 16 Hz 12H pyrroleHa) 667 (dd J = 45 11 Hz 12H pyrroleHc) 165 (s 90H CpHe) 13C NMR (75 MHz CD3ODCD3NO2) δ 17077 15348 15239 14778 14574 13858 13452 13318 12990 12967 12618 12363 12058 9059 828

23 Synthesis of inclusion complexes [2sup(G1)2] [2sup(G2)] and [2sup(G1bullG2bullG1)]

To a CD3ODCD3NO2 (11 1 mL) solution of Cage 2 (18 mg 0004 mmol) in a reaction vial electron-rich planner guest coronene (G1 3 mol eq) was added and the reaction mixture was stirred at room temperature for 5 min The excess of insoluble guest G1 was separated using centrifugation and the 1H-NMR of the clear solution revealed the quantitative formation of the inclusion complex [2sup(G1)2] Similarly inclusion complex [2sup(G2)] was obtained by the encapsulation of guest NN-dimethyl-1458-naphthalenetetracarboxylic diimide (G2) and the quintuple-stacking structure [2sup(G1bullG2bullG1)] was formed by the encapsulation of two molecules of G1 and one molecule of G2 into cage 2

[2sup(G1)2]

1H NMR (300 MHz CD3ODCD3NO2) 882 (d J = 58 Hz 12H PyHα) 847 (s 12H pyrroleHa) 788 (s 6H outPhHd) 720 (d J = 39 Hz 12H pyrroleHb) 712 (d J = 39 Hz 12H pyrroleHc) 698 (s 6H inPhHd) 696 (d J = 50 Hz 12H PyHβ) 691 (s 24H coroneneH) 161 (s 90H CpHe)

[ 2sup(G2)]

1H NMR (300 MHz CD3ODCD3NO2) δ 869 (s 4H NpHg) 857 (m 24H PyHαβ) 827 (s 12H pyrroleHb) 756 (s 6H outPhHd) 686 (s 6H inPhHd) 675 (dd J = 44 16 Hz 12H pyrroleHa) 668 (dd J = 44 08 Hz 12H pyrroleHc) 351 (s 6H N-methylHh) 165 (s 90H CpHe)

[2sup(G1middotG2middotG1)]

1H NMR (300 MHz CD3ODCD3ON2) δ 868 (d J = 67 Hz 12H PyHα) 843 (s 12H pyrroleHa) 801 (s 6H outPhHd) 770 (s 6H inPhHd) 734 (dd J = 45 11 Hz 12H pyrroleHc) 724 (dd J = 46 16 Hz 12H pyrroleHb) 671 (d J = 67Hz 12H PyHβ) 447 (s 4H NpHg) 202 (s 1H N-methylHh) 158 (s 90H CpHe)

23 Synthesis of encapsulated cage [2sup(G1middotG2middotG1)] direct from ligand L and acceptor clip 1

The encapsulated cage [2sup(G1middotG2middotG1)] was also synthesized by an identical method described above for the synthesis of hollow cage 2 except that G1 (1 mol eq of L) and G2 (05 mol eq of L) was also added The quantitative product obtained after workup was identical with [2sup(G1middotG2middotG1)] synthesized from hollow cage as described above

3 Crystallographic data collection and refinement of the structures

Single crystal of 1 [2sup(G2)] and [2sup(G1bullG2bullG1)] were coated with paratone-N oil and the diffraction data measured at 100 K with synchrotron radiation ( = 061000 Aring) on a ADSC Quantum-210 detector at 2D SMC with a silicon (111) double crystal monochromator (DCM) at the Pohang Accelerator Laboratory Korea The ADSC Q210 ADX programS4 was used for data collection (detector distance is 125 mm omega scan ∆ω = 3ordm exposure time is 1 sec per frame) and HKL3000sm (Ver 703r)S5 was used for cell refinement reduction and absorption correction The crystal structures were solved by the direct method with SHELXTL-XS program and refined by full-matrix least-squares calculations with the SHELXTL-XL (Ver 2008) program packageS6

All non-hydrogen atoms are refined anisotropically the hydrogen atoms were assigned isotropic displacement coefficients U(H) = 12U (C) and 15U (Cmethyl) their coordinates were allowed to ride on their respective

4S

atoms For [2sup(G1bullG2bullG1)] the least-squares refinement of the structural model was performed under displacement parameter restraints such as DANG DELU DFIX FLAT ISOR SAME and SIMU The final refinement was performed with the modification of the structure factors for the electron densities of the unidentified molecules and the disordered solvents using the SQUEEZE option of PLATONS7 The largest difference peak and hole were 1536 and 0742 emiddotAring3 respectively A summary of crystals and important crystallographic data are given in Table S1

4 Table S1 X-Ray crystal structure parameters of compounds 1 [2sup(G1)2] and [2sup(G2bullG1bullG2)]

Parameters 1 [2sup(G1)2] [2sup(G1bullG2bullG1)]

Formula C46H50Cl6Ir2N4 C254H218F18Ir6N24O21S6 [C256 H208Ir6N26O4]+6

mol wt 125604 563021 486581cryst syst Triclinic Monoclinic TetragonalSpace group PError P21n I-42da (Aring) 7991(2) 27189(5) 46154(7)b (Aring) 9776(2) 30491(6) 46154(7)c (Aring) 15449(3) 29069(6) 49592(10)α (deg) 10026(3) 90 90β (deg) 10215(3) 10026(3) 90γ (deg) 10355(3) 90 90V (Aring3) 11137(5) 23713(8) 105641(38)Z 1 4 16T K 100 100 100λ (Aring) 070000 070000 061000ρcalcd (gcm3) 1873 1577 1224μ (mm-1) 6092 3342 2062Goodness of fit 1093 1155 0922θ range (deg) 227-260 172-2594 052-2001total no of rflns 7504 48385 277146no of unique rflns 3838 48385 39030no of obsd data(I gt 2σ(I)) 3820 41929 23480Rint 00179 00000 01018R(F2 gt 2σ(F2)) wR(F2)a

CCDC00317 009331036112

00781 028261036113

00711 020271036114

aR =Σ||Fo| - |Fc||Σ|Fo| wR2 = Σ [w(|Fo2 -|Fc

2|)2] Σ|w( Fo2)2| frac12

5S

Figure 1S Calculated (in blue) and experimental (in red) ESI-MS of acceptor clip [1]+

6S

0102030405060708090100110120130140150160170

ppm

83

5

765

8770

0774

2

865

7

1181

1

1292

51316

21331

8

1379

1

1463

5

1534

9

Figure 2S 1H (top) and 13C (bottom) NMR spectrum of 1 in CDCl3

7S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

c

e

dodi

α β

α β

ba

do dib c

e

a

0102030405060708090100110120130140150160170180f1 (ppm)

82

8

479

8482

7485

5488

3491

2494

0496

9612

7615

7618

6621

6624

6627

5630

5

905

9

1205

81236

31261

81296

71299

01331

81345

21385

8

1457

41477

81523

91534

8

1707

7

Figure 3S 1H (top) and 13C (bottom) NMR spectrum of 2 in CD3ODCD3NO2

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

3S

C174H162F18Ir6N24O18S6 C 4578 H 358 N 736 S 421 Found C 4542 H 343 N 714 S 438 1H NMR (300 MHz CD3ODCD3NO2) δ 858 (broad s 24H PyHαβ) 827 (s 12H pyrroleHb) 754 (s 6H PhHd) 684 (s 6H PhHd) 675 (dd J = 45 16 Hz 12H pyrroleHa) 667 (dd J = 45 11 Hz 12H pyrroleHc) 165 (s 90H CpHe) 13C NMR (75 MHz CD3ODCD3NO2) δ 17077 15348 15239 14778 14574 13858 13452 13318 12990 12967 12618 12363 12058 9059 828

23 Synthesis of inclusion complexes [2sup(G1)2] [2sup(G2)] and [2sup(G1bullG2bullG1)]

To a CD3ODCD3NO2 (11 1 mL) solution of Cage 2 (18 mg 0004 mmol) in a reaction vial electron-rich planner guest coronene (G1 3 mol eq) was added and the reaction mixture was stirred at room temperature for 5 min The excess of insoluble guest G1 was separated using centrifugation and the 1H-NMR of the clear solution revealed the quantitative formation of the inclusion complex [2sup(G1)2] Similarly inclusion complex [2sup(G2)] was obtained by the encapsulation of guest NN-dimethyl-1458-naphthalenetetracarboxylic diimide (G2) and the quintuple-stacking structure [2sup(G1bullG2bullG1)] was formed by the encapsulation of two molecules of G1 and one molecule of G2 into cage 2

[2sup(G1)2]

1H NMR (300 MHz CD3ODCD3NO2) 882 (d J = 58 Hz 12H PyHα) 847 (s 12H pyrroleHa) 788 (s 6H outPhHd) 720 (d J = 39 Hz 12H pyrroleHb) 712 (d J = 39 Hz 12H pyrroleHc) 698 (s 6H inPhHd) 696 (d J = 50 Hz 12H PyHβ) 691 (s 24H coroneneH) 161 (s 90H CpHe)

[ 2sup(G2)]

1H NMR (300 MHz CD3ODCD3NO2) δ 869 (s 4H NpHg) 857 (m 24H PyHαβ) 827 (s 12H pyrroleHb) 756 (s 6H outPhHd) 686 (s 6H inPhHd) 675 (dd J = 44 16 Hz 12H pyrroleHa) 668 (dd J = 44 08 Hz 12H pyrroleHc) 351 (s 6H N-methylHh) 165 (s 90H CpHe)

[2sup(G1middotG2middotG1)]

1H NMR (300 MHz CD3ODCD3ON2) δ 868 (d J = 67 Hz 12H PyHα) 843 (s 12H pyrroleHa) 801 (s 6H outPhHd) 770 (s 6H inPhHd) 734 (dd J = 45 11 Hz 12H pyrroleHc) 724 (dd J = 46 16 Hz 12H pyrroleHb) 671 (d J = 67Hz 12H PyHβ) 447 (s 4H NpHg) 202 (s 1H N-methylHh) 158 (s 90H CpHe)

23 Synthesis of encapsulated cage [2sup(G1middotG2middotG1)] direct from ligand L and acceptor clip 1

The encapsulated cage [2sup(G1middotG2middotG1)] was also synthesized by an identical method described above for the synthesis of hollow cage 2 except that G1 (1 mol eq of L) and G2 (05 mol eq of L) was also added The quantitative product obtained after workup was identical with [2sup(G1middotG2middotG1)] synthesized from hollow cage as described above

3 Crystallographic data collection and refinement of the structures

Single crystal of 1 [2sup(G2)] and [2sup(G1bullG2bullG1)] were coated with paratone-N oil and the diffraction data measured at 100 K with synchrotron radiation ( = 061000 Aring) on a ADSC Quantum-210 detector at 2D SMC with a silicon (111) double crystal monochromator (DCM) at the Pohang Accelerator Laboratory Korea The ADSC Q210 ADX programS4 was used for data collection (detector distance is 125 mm omega scan ∆ω = 3ordm exposure time is 1 sec per frame) and HKL3000sm (Ver 703r)S5 was used for cell refinement reduction and absorption correction The crystal structures were solved by the direct method with SHELXTL-XS program and refined by full-matrix least-squares calculations with the SHELXTL-XL (Ver 2008) program packageS6

All non-hydrogen atoms are refined anisotropically the hydrogen atoms were assigned isotropic displacement coefficients U(H) = 12U (C) and 15U (Cmethyl) their coordinates were allowed to ride on their respective

4S

atoms For [2sup(G1bullG2bullG1)] the least-squares refinement of the structural model was performed under displacement parameter restraints such as DANG DELU DFIX FLAT ISOR SAME and SIMU The final refinement was performed with the modification of the structure factors for the electron densities of the unidentified molecules and the disordered solvents using the SQUEEZE option of PLATONS7 The largest difference peak and hole were 1536 and 0742 emiddotAring3 respectively A summary of crystals and important crystallographic data are given in Table S1

4 Table S1 X-Ray crystal structure parameters of compounds 1 [2sup(G1)2] and [2sup(G2bullG1bullG2)]

Parameters 1 [2sup(G1)2] [2sup(G1bullG2bullG1)]

Formula C46H50Cl6Ir2N4 C254H218F18Ir6N24O21S6 [C256 H208Ir6N26O4]+6

mol wt 125604 563021 486581cryst syst Triclinic Monoclinic TetragonalSpace group PError P21n I-42da (Aring) 7991(2) 27189(5) 46154(7)b (Aring) 9776(2) 30491(6) 46154(7)c (Aring) 15449(3) 29069(6) 49592(10)α (deg) 10026(3) 90 90β (deg) 10215(3) 10026(3) 90γ (deg) 10355(3) 90 90V (Aring3) 11137(5) 23713(8) 105641(38)Z 1 4 16T K 100 100 100λ (Aring) 070000 070000 061000ρcalcd (gcm3) 1873 1577 1224μ (mm-1) 6092 3342 2062Goodness of fit 1093 1155 0922θ range (deg) 227-260 172-2594 052-2001total no of rflns 7504 48385 277146no of unique rflns 3838 48385 39030no of obsd data(I gt 2σ(I)) 3820 41929 23480Rint 00179 00000 01018R(F2 gt 2σ(F2)) wR(F2)a

CCDC00317 009331036112

00781 028261036113

00711 020271036114

aR =Σ||Fo| - |Fc||Σ|Fo| wR2 = Σ [w(|Fo2 -|Fc

2|)2] Σ|w( Fo2)2| frac12

5S

Figure 1S Calculated (in blue) and experimental (in red) ESI-MS of acceptor clip [1]+

6S

0102030405060708090100110120130140150160170

ppm

83

5

765

8770

0774

2

865

7

1181

1

1292

51316

21331

8

1379

1

1463

5

1534

9

Figure 2S 1H (top) and 13C (bottom) NMR spectrum of 1 in CDCl3

7S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

c

e

dodi

α β

α β

ba

do dib c

e

a

0102030405060708090100110120130140150160170180f1 (ppm)

82

8

479

8482

7485

5488

3491

2494

0496

9612

7615

7618

6621

6624

6627

5630

5

905

9

1205

81236

31261

81296

71299

01331

81345

21385

8

1457

41477

81523

91534

8

1707

7

Figure 3S 1H (top) and 13C (bottom) NMR spectrum of 2 in CD3ODCD3NO2

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

4S

atoms For [2sup(G1bullG2bullG1)] the least-squares refinement of the structural model was performed under displacement parameter restraints such as DANG DELU DFIX FLAT ISOR SAME and SIMU The final refinement was performed with the modification of the structure factors for the electron densities of the unidentified molecules and the disordered solvents using the SQUEEZE option of PLATONS7 The largest difference peak and hole were 1536 and 0742 emiddotAring3 respectively A summary of crystals and important crystallographic data are given in Table S1

4 Table S1 X-Ray crystal structure parameters of compounds 1 [2sup(G1)2] and [2sup(G2bullG1bullG2)]

Parameters 1 [2sup(G1)2] [2sup(G1bullG2bullG1)]

Formula C46H50Cl6Ir2N4 C254H218F18Ir6N24O21S6 [C256 H208Ir6N26O4]+6

mol wt 125604 563021 486581cryst syst Triclinic Monoclinic TetragonalSpace group PError P21n I-42da (Aring) 7991(2) 27189(5) 46154(7)b (Aring) 9776(2) 30491(6) 46154(7)c (Aring) 15449(3) 29069(6) 49592(10)α (deg) 10026(3) 90 90β (deg) 10215(3) 10026(3) 90γ (deg) 10355(3) 90 90V (Aring3) 11137(5) 23713(8) 105641(38)Z 1 4 16T K 100 100 100λ (Aring) 070000 070000 061000ρcalcd (gcm3) 1873 1577 1224μ (mm-1) 6092 3342 2062Goodness of fit 1093 1155 0922θ range (deg) 227-260 172-2594 052-2001total no of rflns 7504 48385 277146no of unique rflns 3838 48385 39030no of obsd data(I gt 2σ(I)) 3820 41929 23480Rint 00179 00000 01018R(F2 gt 2σ(F2)) wR(F2)a

CCDC00317 009331036112

00781 028261036113

00711 020271036114

aR =Σ||Fo| - |Fc||Σ|Fo| wR2 = Σ [w(|Fo2 -|Fc

2|)2] Σ|w( Fo2)2| frac12

5S

Figure 1S Calculated (in blue) and experimental (in red) ESI-MS of acceptor clip [1]+

6S

0102030405060708090100110120130140150160170

ppm

83

5

765

8770

0774

2

865

7

1181

1

1292

51316

21331

8

1379

1

1463

5

1534

9

Figure 2S 1H (top) and 13C (bottom) NMR spectrum of 1 in CDCl3

7S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

c

e

dodi

α β

α β

ba

do dib c

e

a

0102030405060708090100110120130140150160170180f1 (ppm)

82

8

479

8482

7485

5488

3491

2494

0496

9612

7615

7618

6621

6624

6627

5630

5

905

9

1205

81236

31261

81296

71299

01331

81345

21385

8

1457

41477

81523

91534

8

1707

7

Figure 3S 1H (top) and 13C (bottom) NMR spectrum of 2 in CD3ODCD3NO2

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

5S

Figure 1S Calculated (in blue) and experimental (in red) ESI-MS of acceptor clip [1]+

6S

0102030405060708090100110120130140150160170

ppm

83

5

765

8770

0774

2

865

7

1181

1

1292

51316

21331

8

1379

1

1463

5

1534

9

Figure 2S 1H (top) and 13C (bottom) NMR spectrum of 1 in CDCl3

7S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

c

e

dodi

α β

α β

ba

do dib c

e

a

0102030405060708090100110120130140150160170180f1 (ppm)

82

8

479

8482

7485

5488

3491

2494

0496

9612

7615

7618

6621

6624

6627

5630

5

905

9

1205

81236

31261

81296

71299

01331

81345

21385

8

1457

41477

81523

91534

8

1707

7

Figure 3S 1H (top) and 13C (bottom) NMR spectrum of 2 in CD3ODCD3NO2

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

6S

0102030405060708090100110120130140150160170

ppm

83

5

765

8770

0774

2

865

7

1181

1

1292

51316

21331

8

1379

1

1463

5

1534

9

Figure 2S 1H (top) and 13C (bottom) NMR spectrum of 1 in CDCl3

7S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

c

e

dodi

α β

α β

ba

do dib c

e

a

0102030405060708090100110120130140150160170180f1 (ppm)

82

8

479

8482

7485

5488

3491

2494

0496

9612

7615

7618

6621

6624

6627

5630

5

905

9

1205

81236

31261

81296

71299

01331

81345

21385

8

1457

41477

81523

91534

8

1707

7

Figure 3S 1H (top) and 13C (bottom) NMR spectrum of 2 in CD3ODCD3NO2

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

7S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

c

e

dodi

α β

α β

ba

do dib c

e

a

0102030405060708090100110120130140150160170180f1 (ppm)

82

8

479

8482

7485

5488

3491

2494

0496

9612

7615

7618

6621

6624

6627

5630

5

905

9

1205

81236

31261

81296

71299

01331

81345

21385

8

1457

41477

81523

91534

8

1707

7

Figure 3S 1H (top) and 13C (bottom) NMR spectrum of 2 in CD3ODCD3NO2

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

8S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

c

e

do

di

α β

ba

g

h

h

gα β

e

do dib c

a

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

α βdodi

ba

c

e

dodi

α β

ba

f

f

e

c

Figure 4S 1H NMR spectrum of [2supG2] (top) and [2sup(G1)2] (bottom) in CD3ODCD3NO2

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

9S

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

c

e

dodi

α β

α β

ba

f

g

h

hg

f

do dic b

e

a

Figure 5S 1H NMR spectrum of [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

N NO

O

O

O

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

NNN

N

N N

NN

NNIr

IrN N

N NIr

Ir

N N

Figure 6S Comparison of 1H NMR spectra of 2 [2supG2] [2sup(G1)2] and [2sup(G1bullG2bullG1)] in CD3ODCD3NO2

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

10S

2sup(G1)2 + 10 eqG2

no change on

2sup(G1)2 + 025 eq

2sup(G1)2 + 00 eq

2sup(G1)2 + 050 eq

2sup(G1)2 + 075 eq

Identical with2sup(G1G2

Figure 7S Transformation of 1H-NMR spectrum of [2sup(G1)2] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G2

2sup(G2) + 15 eq

2sup(G2) + 05 eq

Identical with2sup(G1G2

2sup(G2) + 10 eq

2sup(G2)

2sup(G2) + 20 eq

Figure 8S Transformation of 1H-NMR spectrum of [2sup(G2)] to the spectrum of [2sup(G1bullG2bullG1)] upon increasing addition of G1

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

11S

NN

NNIr

Ir

NNN

N

N N

NN

NNIr

Ir

NNN

N

N N

N N

N NIr

Ir

c

dodi

α β

ba

do

dibc

β

αβ

a

bdido c

a--b

di--cb--c

a--α

α--β

do--c

Figure 9S Partial 1H-1H ROESY NMR spectrum of 2 with coupling interactions highlighted (11 CD3ODCD2Cl2 298 K 600 MHz) (Green arrow indicating observed coupling interactions)

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

12S

c

e

dodi

α β

ba g

h

NN

NNIr

Ir

NNN

N

NNN

N

N NNN

NNIr

IrN N

N NIr

Ir

N N

N NO

O

O

O

dodi

bc

β

α

a

bdido

c

a--α

di--g

g

g--α g--c g--b

a--b do--c di--c

Figure 10S Partial 1H-1H ROESY NMR spectrum of [2sup(G1bullG2bullG1)] with coupling interactions highlighted (11 CD3ODCD3NO2 298 K 600 MHz) (Pink arrow indicating observed coupling interactions)

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

13S

Figure 11S DOSY NMR spectrum of 2 (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage 2 with diffusion coefficient of 793X10-10 m2sec

Figure 12S DOSY NMR spectrum of [2sup(G1bullG2bullG1)] (11 CD3NO2CD3OD 298 K 800 MHz) showing peaks associated with the prismatic cage encapsulated guests with diffusion coefficient of 622X10-10 m2sec

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

14S

log(m2s)

ppm

Figure 13S Comparison of DOSY NMR spectrum of 2(red) and [2sup(G1bullG2bullG1)](blue)

Figure 14S Crystal structure of 1 showing metal-metal distance in the acceptor clip and crystal structure of [2sup(G1)2] showing two ether molecules trapped inside the cage and a free coronene molecule stacked outside the

cage

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

15S

Figure 15S Crystal structure of [2sup(G1bullG2bullG1)] showing distances between stacked aromatics (left) and another view showing nearly perfect trigonal prismatic structure of [2sup(G1bullG2bullG1)]

Figure 16S Crystal structure of G1bullG2bullG1)] showing a coronene molecule stacked between the two molecules and another view showing superimposed space filling model

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148

16S

Reference

S1 H L Anderson S Anderson and J K M J Sanders Chem Soc Perkin Trans 1995 1 2231

S2 C-H Lee and J S Lindsey Tetrahedron 1994 50 11427

S3 P J Stang D H Cao S Saito and A M Arif J Am Chem Soc 1995 117 6273

S4 A J Arvai and C Nielsen ADSC Quantum-210 ADX Program Area Detector System Corporation

Poway CA USA 1983

S5 Z Otwinowski and W Minor in Methods in Enzymology ed Jr C W Carter and R M Sweet Academic

Press New York 1997 vol 276 part A pp 307

S6 SHELX program G M Sheldrick Acta Crystallogr Sect A 2008 64 112

S7 PLATON program A L Spek Acta Crystallogr Sect D 2009 65 148