46
Session 7 (I) Windows and Glazed Curtain Walls 7.1. Introduction 7.1.1. A mechanism to control energy 7.1.2. Terminology 7.2. A short history of the window 7.3. Spanish functional requirements 7.4. Materials, comoponents and systems 7.5. Details 7.6. Case Studies 7.7 Standard simplified details 7.8. Blibliography Based on the original presentations by Prof. Julián García – [email protected] Translated by Luis M. Martín Oporto. A metal cremona at the Serralbes Palace

07 (i) windows and glazed curtain walls

Embed Size (px)

DESCRIPTION

Construction, facades, roofs

Citation preview

Page 1: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Session 7 (I)Windows and Glazed Curtain Walls

7.1. Introduction7.1.1. A mechanism to controlenergy7.1.2. Terminology

7.2. A short history of the window7.3. Spanish functional requirements7.4. Materials, comoponents and

systems7.5. Details7.6. Case Studies7.7 Standard simplified details7.8. Blibliography

Based on the original presentations by Prof. Julián García – [email protected]

Translated by Luis M. MartínOporto. A metal cremona at

the Serralbes Palace

Page 2: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.1. Introduction· Relationship between interior and exterior, both physical and visual. Access control mechanisms. · Similar requirements (in what comes to resistance, temperature control, water tightness, air tightness, condensation control, etc) to the rest of the façade. And some more, specific of this area: aperture system, solar control, etc.· It is often the most sensitive point of the facade, and therefore requires more accuracy. Most windows are prefabricated and installed with dry construction methods. · Main elements: frame, sash and glass. Complementary: hardware, filters (blinds, verandas) etc.

p02

Page 3: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p03

Windows must perform the following basic functions: · Resistance to actions:

· Own Weight · Pressure and wind suction · Physical aggression · Water Pressure

· Sealing: · Water · Air

· Insulation according to the required comfort: · Thermal · Acoustic

The Spanish CTE regulates these values for external joinery in the DB HE1 - Limitation of energy demand.

A picture window in Toronto, Canada.

Page 4: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.1.1. A mechanism to control energyThe window can be considered -as could the whole façade- an energy regulation mechanism. But not only in what comes to thermal and acoustic control; solar control must also be considered (both light and associated radiation, ultraviolet and infrared).

p04

Page 5: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

A good passive solar design of windows and shadings can improve the energy efficiency of the building.

VV.AA. Un Vitrubio ecológico. Gustavo Gili. Barcelona, 2007. p.42-43

p05

Page 6: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.1

.2. S

peci

ficte

rmin

olog

y

p06

Page 7: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Specific terminology

p07

Page 8: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Specific terminology

p08

Page 9: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Specific terminology

p09

Page 10: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Specific terminology

p10

Page 11: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.9. Existen múltiples sistemas de apertura. Los más habituales son los reflejados aquí, que pueden combinarse de diversos modos. Los códigos abreviados de representación de cada sistema que se adjuntan proceden del catálogo de Technal - Saphir.

Specific terminology

p11

Page 12: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.8. Sistemas de apertura habituales.

Specific terminology

p12

Page 13: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Site building in Anantapur, India. Different Jalis in Kerala, India.

7.2. A short history of the window

p13

Page 14: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Small windows in a mosque in Egypt and in a Hospital en Mauritania. Veranda and Louvres in Meknes, Morocco. Shadings in San’a, Yemen.

A short history of the window

p14

Page 15: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Ancient times and Middle Ages· Use of glazed windows in Rome I AD · Showcases in Romanesque churches. Buildings had smaller and fewer windows. The earliest surviving examples date from the thirteenth century, although there is evidence of its use in some S. VII buildings

San Miguel de Lillo in Oviedo,

Spain. S IX.

p15

Page 16: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

King’s College Chapel, 1532-

1536. Cambridge, UK.

Gothic, Renaissance and Baroque· Progressive enlargement of glazed openings in churches and cathedrals, especially in countries without much light. · First developments of new materials (Venetian glass, for example) to allow increased size of holes. During the Baroque, widespread use of glass.

p16

Page 17: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Cristal Palace. (Addis 2007, p.359). Semi-curtain walls at La Coruña and New York.

The nineteenth century· Industrial Revolution. Glass iron architecture (Paxton, Labrouste) -The Crystal Palace and the Library of St. Genevieve. Glass as the only envelope of the building. · Early developments of glazed curtain walls. The use of large windows relates to the new technological architecture.

p17

Page 18: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Fagus Factory (W. Gropius, 1911). UN Headquarters y NY ( W. Harrison, 1950)

The twentieth century· Construction of fully glazed buildings, initially with problems of thermal and acoustic performance. · Development of new materials for fences and racks (aluminum, PVC), glass (double and triple glazing) and gaskets (EPDM, neutral sealants) that improve thermal and solar control of the building.

p18

Page 19: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

Telefónica headquarters (R. de la Hoz, 2007) Sacyr Tower (C. Rubio y E. Álvarez-Sala, 2009)

The twenty-first century· New materials, such as solar control glass, allow better thermal and solar control of the building. Active façades. · The increasing energy efficiency requirements lead to a recovery of traditional thermal control strategies, using elements -sunscreens, verandas, double sheets, etc. associated with traditional architecture. These systems start being used in large scale buildings.

p19

Page 20: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

· Características obligatorias1. Transmitancia térmica2. Condensación superficial3. Resistencia a las acciones del viento4. Permeabilidad al aire5. Propiedades frente a radiación solar6. Aislamiento al ruido aéreo

· Características no obligatorias1. Estanquidad al agua2. Reacción al fuego3. Resistencia a cargas permanentes4. Emisión de sustancias peligrosas5. Resistencia al impacto6. Resistencia a apertura y cierre repetido

7.28. Termografía de ventana de PVC. Del catálogo de Deceuninck.

7.3. Functional and structural requirements7.3.1. Spanish CTE requirements.

p20

Page 21: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.3.2. Transmitancia térmica.· La transmitancia térmica de una ventana es función de la zona climática, del porcentaje de huecos en la fachada (Sv) y de la transmitancia límite del muro (UM).· Según el criterio de severidad climática de invierno (5 categorías designadas de A a E) y de verano (4 categorías designadas de 1 a 4) existen 20 casos posibles de los cuales sólo 12 se dan en la realidad, que son las 12 zonas climáticas del CTE.· En términos generales, puede estimarse:

Zonas A-B. Todo tipo de carpintería. Zona C. No aluminio sin RPTZona D. Aluminio con RPT min.4 mm.Zona E. No aluminio de ningún tipo.

7.29. Mapa zonas climáticas. Zonificación dinámica según capital de provincia. Tabla de relación material-transmitancia para PVC, Madera y metal. Tabla de severidad climática. Relación de temperaturas máximas y mínimas invierno - verano.

p21

Page 22: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.3.3. Condensación superficial.· El CTE exige comprobar la limitación de condensaciones superficiales, comparando el factor de temperatura de la superficie interior fRsi y el de la superficie interior mínimo fRsi,min. fRsi es función de la transmitancia U, siendo fRsi=1 – U/4 · Los valores de fRsi,min son los de las tablas, en función de la clase de higrometría CH. Tres tipos:

7.30. Mapa zonas climáticas. Zonificación dinámica según capital de provincia. Tabla de Factores de temperatura. Valores de fRsi, min. Factor de temperatura de la superficie interior mínimo. Tabla valores de vivienda según zona climática.

CH5. Espacios de gran producción de humedad (lavanderías, piscinas, etc.)(70%)CH4. Espacios de alta producción de humedad (cocinas industriales, restau-rantes, pabellones deportivos, etc.) (62%).CH3. Espacios sin alta producción de humedad (edificios residenciales y espacios no indicados anteriormente (50%).

p22

Page 23: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.3.4. Resistencia al viento.· La presión de cálculo a viento de la ventana es qe = qb x Ce x Cp, siendo:

qb, presión dinámica del viento, función de su velocidad y densidad. DB SE AE, 3.3.2.Ce, coeficiente de exposición, función de turbulencias de topografía. DB SE AE, 3.4.Cp, coeficiente eólico (presión-succión) función de la orientación de cada fachada. DB SE AE, 3.5.

· Con el valor de qe se entra en el cuadro adjunto para obtener la clase de ventana.· A partir de 20 m. de altura en terrenos tipo I, II o III, la ventana debe ser clase 5. A partir de 20 m. de altura en terrenos tipo IV o V, debe ser clase 4. En los centros de ciudades de gran parte del país (5/6 plantas), suelen ser clase 3 o clase 2.

7.31. Mapa de isotacas. Mapa de zonas con igual velocidad de viento. Tabla de clasificación de carpinterías según presión a viento. Tabla de clasificación de carpinterías según la flecha relativa frontal.

p23

Page 24: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.3.5. Estanquidad al agua.· La estanquidad al agua de la ventana es función de la zona pluviométrica y la resistencia al viento. El DB HS establece las condiciones de estanqueidad al agua sólo para cerramientos ciegos; en huecos de exteriores, se complementa con la UNE EN 14351-1.· La clasificación de las ventanas por su estanqueidad al agua se determina en función del escalón de presiónen el que se produce la infiltración de agua.· Existen dos métodos de ensayo; para productos totalmente expuestos y para productos parcialmente protegidos. El primero es el más habitual.

7.32. Mapa de zonas pluviométricas promedio en función del índice anual. Tabla de clasificación de ventanas por su estanquidad al agua según UNE EN 14351-1.

p24

Page 25: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

· El resto de exigencias no tratadas en este resumen (permeabilidad al aire, propiedades frente a radiación solar, aislamiento al ruido aéreo, reacción al fuego, resistencia a cargas permanentes, emisión de sustancias peligrosas, resistencia al impacto y resistencia a apertura y cierre repetido) se estudian en el CTE.

Existen algunos conceptos generales que interesan para comprender estas exigencias. Los principales son:· El puente térmico es un efecto que se produce en una zona de la envolvente del edificio en la que existe una discontinuidad en la construcción (sea debida a un cambio de material, del espesor de éste, etc.) que conlleva una reducción puntual de la resistencia térmica respecto al resto del cerramiento. Son zonas en las que existen intercambios indeseables de temperatura, que suelen manifestarse en condensaciones superficiales en épocas frías.· El efecto pared fría es, de hecho, una manifestación de un puente térmico. Se produce con frecuencia cerca de huecos de fachada cuando estos cuentan con un acristalamiento de luna simple.· El efecto invernadero es un efecto de calentamiento por radiación de onda corta. La mayor parte de los vidrios son permeables a estas ondas (del orden de un 80% de la radiación atraviesa el vidrio) que calientan las superficies interiores de la edificación, contra la cuales inciden. Estas, a su vez, reirradian al ambiente parte de esa energía, en onda larga; frente a este tipo de onda, el vidrio se comporta como un cuerpo opaco, reteniendo la energía en el interior del recinto.

7.33. Termografía de una fachada en la que se aprecian las pérdidas a través de los huecos y la fábrica. Del catálogo de Deceuninck.

p25

Page 26: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.4. Materials, Components and SystemsWindow profiles are usually made of different materials: folded steel, aluminum, polyvinyl chloride and timber.

· Timber used in exterior areas should always be stabilized at an approximate density of 600 kg / m3. It is usually complemented with stainless steel or aluminum. It is a good material for outdoor use, but requires some maintenance. · Steel profiles, widely used for years in window making, are still used in curtain walls. Expansion problems (their high expansion coefficient can create adjustment problems) and corrosion issues (except in stainless steel) might occur if there is no proper maintenance.

p26

Page 27: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

· Aluminum profiles fit well and require little maintenance. This material allows different finishes, from traditional anodised aluminum to a variety of coatings. However, aluminum is a good heat conductor, and may cause thermal bridge problems –therefore we must incorporate mechanisms to prevent it. · Polyvinyl chloride or PVC is also common and versatile, and offers as many options as aluminum. Furthermore, it is a good thermal insulator, so it does not require a thermal bridge break mechanism. There are, however, doubts about its durability, while the trials offer sufficient guarantees. · You can also use combined profiles of various materials. It is common in Central Europe, to combine wood and steel, or wood and aluminum, to take advantage of the properties of both materials.

p27

Page 28: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

· Many types of glazing can be used in windiws. Traditional 4mm. thick sections, drawn glass, gave way to double glazing with desiccated cavity, usually tempered glass with high resistance to bending. In addition, high performance systems, with variations in thermal, solar and noise control, are now being used. Many of these are laminated glass, composed of sheets by adhering materials such as butyral. · Different materials are used for joinery, including EPDM (Ethylene Propylene Diene M type) and neoprene (polychloroprene or other variants). Seal between window and façade are made with neutral products, usually silicones or polysulfides.

p28

Page 29: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

· The following standards for transmitance values are used in Spain.

p29

Page 30: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.5

. Det

ails

p30

Page 31: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p31

Page 32: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p32

Page 33: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p33

Page 34: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p34

Page 35: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p35

Page 36: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

The assemble of elements is shown in most manufacturer catalogs. Schüco or Technal’s catalogs are very interesting, as are so many others, and offer good information. They can be downloaded at:http://www.schueco.com/web/esand http://www.technal.es/es/· The basic information of each window system is reflected in a sheet, which must, in addition to the geometry of the horizontal and vertical sections, show the opening system, materials and assembly instructions, etc. But above all, it must show the certified qualities of the window: wind classification, water resistance, etc. Some examples are attached.

p36

Page 37: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.6

. Cas

e st

udie

s

p37

Page 38: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p38

Page 39: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p39

Page 40: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p40

Page 41: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p41

Page 42: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p42

Page 43: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p43

Page 44: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p44

Page 45: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls

7.7. Standard simplified details· The following simplifications and color codes are recommended to represent different types of window.

Generic Timber Timber+aluminum Aluminum PVC

p45

Page 46: 07 (i) windows and glazed curtain walls

07 (I). Windows and Glazed Curtain Walls p46

7.8. Bibliography

Herzog, T. et al (2004) Facade Construction Manual. Birkhäuser, BaselKnaack, U.; Klein, T.; Bilow, M.; Auer, T. (2007) Façades. Principles of Construction. Birkhäuser, BaselNeila, F.J. et al. El comportamiento higrotérmico de la envolvente constructiva del edificio. Determinaciones del CTE. Instituto Juan de Herrera. Madrid, 2007.Paricio, I. Vocabulario de arquitectura y construcción. Bisagra. Barcelona, 1999.Poirazis, H. (2004) Double Skin Façades for Office Buildings. Division of Energy and Building Design. Department of Construction and Architecture. Lund Institute of Technology. Lund University.Reichel, A. (2007) Open-Close. Windows, Doors, Filters. Birkhäuser, Basel

Spanish regulations:· Código Técnico de la Edificación:

· DB-H, especialmente el apartado 2.4.4.2, puntos singulares:http://www.codigotecnico.org/web/recursos/documentos/dbhs/hs1/100.html

· DB-SI, DB-SUA, DB-HR y DB-SE-AE, especialmente 3.3.2, 3.4 y 3.5.· Normas UNE-EN 10077-1, UNE-EN 12210, UNE-EN 12207, UNE-EN 12208, UNE-EN 12400, UNE-EN 12567-1, UNE-EN 14351-1 y UNE-EN -ISO 140-3