88
S C B A 0 19 Rev BA STRUC 71-C 9/08/2015 W Date ATUR CTUR CEME WuLingyu Prep. by RAJA (PL RE CA NT SI Songguiqian Chkd. By F175 A CEM LANT ALCUI FOR ILO (F STR F175-CE ng F17 5- MENT T II) IATIO FOUN RUCTURE C EMENT SIL 75 – 71 – SC T PR ON RE NDATI CALCUIATI LO(FOUNDA – 001 ROJEC EPORT ION) ION REPOR ATION) Page CT T RT FOR Rev 0

03.00.08.14. Menghitung Pressure Blower Silo.pdf

Embed Size (px)

Citation preview

S

C

B

A

0 19

Rev

BA

STRUC

71-C

9/08/2015 W

Date

ATUR

CTUR

CEME

WuLingyu

Prep. by

RAJA(PL

RE CA

NT SI

Songguiqian

Chkd. By

F175A CEMLANT

ALCUI

FOR

ILO (F

STR

F175-CE

ngF17

5- MENTT II)

IATIO

FOUN

RUCTURE C

EMENT SIL

75 – 71 – SC

T PR

ON RE

NDATI

CALCUIATI

LO(FOUNDA

– 001

ROJEC

EPORT

ION)

ION REPOR

ATION)

Page

CT

T

RT FOR

Rev

0

Table of Contents

1. Introduction ................................................................................................................................................... 1 

1.1 General ......................................................................................................................................................... 1 

1.2Building description...................................................................................................................................... 1 

2. Design criteria ................................................................................................................................................ 3 

2.1Design priciples and basis ............................................................................................................................ 3 

2.2Design local conditions ................................................................................................................................. 3 

2.2.1Geological conditions ................................................................................................................................ 3 

2.2.2Earthquake response acceleration .............................................................................................................. 5 

2.2.3Wind pressure ............................................................................................................................................ 5 

2.2.4 Weather condition ..................................................................................................................................... 5 

2.3Design load ................................................................................................................................................... 5 

2.3.1 Dead load .................................................................................................................................................. 5 

2.3.2Live load .................................................................................................................................................... 5 

2.3.3Chart of vertical load ................................................................................................................................. 6 

2.3.4Wind load ................................................................................................................................................... 8 

2.3.5Seismic load ............................................................................................................................................. 12 

2.3.6Stored material load ................................................................................................................................. 15 

2.3.7Load combination .................................................................................................................................... 27 

2.4Building material ........................................................................................................................................ 28 

2.4.1Reinforcement ......................................................................................................................................... 28 

2.4.2Concrete ................................................................................................................................................... 29 

2.5Structure scheme ......................................................................................................................................... 29 

2.5.1Foundation ............................................................................................................................................... 29 

2.5.2Superstructure .......................................................................................................................................... 29 

2.6 Structure calculation .................................................................................................................................. 29 

3. 3Danalysis model(FEM) .............................................................................................................................. 30 

4. Load sketch of the silo ................................................................................................................................. 32 

5. Structure analysis ......................................................................................................................................... 33 

5.1Effective modal masses ratio ...................................................................................................................... 33 

5.2Base reaction ............................................................................................................................................... 35 

6.Foundation Design ........................................................................................................................................ 40 

6.1Foundation dimension ................................................................................................................................ 40 

6.2 Design of punching shear and shear reinforcement ................................................................................... 44 

6.2 Design of flexural reinforcement ............................................................................................................... 48 

6.2.1 Full silo ........................................................................................................................................... 48 

6.2.2 Empty silo ....................................................................................................................................... 70 

7. Inner Column Design ................................................................................................................................... 71 

7.1Design internal force from FEM analysis result ......................................................................................... 71 

7.2Design of inner column .............................................................................................................................. 74 

8. Lower Silo Wall(t=350mm) Design ............................................................................................................. 78 

8.1Design vertical reinforcement ..................................................................................................................... 79 

8.2Design hoop reinforcement ......................................................................................................................... 80 

8.3Openings added reinforcement ................................................................................................................... 81 

1

1. Introduction

1.1 General

This document is used for the foundation design of the cement silo workshop of Baturaja project.

The document is to show how the structures are calculated and designed,and it includes the below

parts:

1. Introduction

2. Design criteria

3. 3D analysis model(FEM)

4. Load sketch of the silo

5. Structural analysis

6. foundation design

7. Inner Column Design

8. Lower Silo Wall(t=350mm) Design

1.2Building description

The Cement silo have a storage capacity of 10400 ton and 9200 ton respectively.The silo is designed

to be circular in shape and consists of post tensionedpre-stressed walls above the silo bottom level

andnon pre-stressed wall below the silo bottom level which is rested on a ring shallow foundation.The

raft foundation thickness is 2000mm. The height and inner diameter of the cement silo are 51.00m and

18.00m respectively.Wall thickness of the cement silois considered as 350 mm over the bottom slab and

inner column down to the foundation,The silo roof is a flat RC floor with metal deck resting on the steel

beams. The calculations of the sheet roof will be submitted in a separate document .The bottom level of

the bottom slab is 16.00m and 19.5m respectively and the thickness of the bottom slab is 1500 mm. The

static and dynamic analysis of the cement silois performed by SAP2000.The analysis and design are

made according to the AMERICAN CODE.

The document is to show how the structures` foundation are calculated and designed.

The sketch of the silo structure as follows:

2

LayOut Plan

Section of the silo

3

Plan±0.000

2. Design criteria

2.1Design priciples and basis

1.Codes of practice and standards

(1)ASCE/SEI-7-10: Minimum Design Loads for Buliding and Other Structures.

(2)ACI313-97: Standard Practice for Design and Construction of Concrete Silos andStacking Tubes

for Stroring Materials (ACI313-97)and Commentary-ACI313R-97.

(3)ACI318-14: Buliding Code Requirements for Structural Concrete (ACI318-08)and Commentary.

2.Contract and minutes of meeting

(1) The provisions to civil and steel works in the contract.

(2) KICK OFF MEETING BTA II. Date:25-30 April,2015.

3. Geotechnical report

Binder-Soil Investigation Report for Baturaja II Project_April 2015(2015-04-30)

4. Reference drawings

Process drawings : F175- 71 - PD- 001

F175- 71 - PD- 002

F175- 71 - PD- 003

Structure drawings : F175- 71–SC-001~005

5. Design service life

The design service life shall be a minimum of 50 years.

2.2Design local conditions

2.2.1Geological conditions

1. Site conditions

PT. Semen Baturaja proposed to construct the new Cement Baturaja Plant Project5000

TPDproduction line-II at Baturaja, the south Sumatra Province, Indonesia. Theproject closed to the

4

existing Cement Baturaja plant the 1st Line at north side. The overallEngineering Procurement and

Construction (EPC) to be contracted by SINOMA TianjinCement Industry Design and Research Institute

co., LTD(TCDRI). An advanced for therequirements of geotechnical investigation works of the project,

SINOMA TCDRIinstructed PT. Soilens to perform soil investigation works of the proposed plant siteunder

the Contract No: F175(S)002.2.

Allowable bearing capability of soil:

3. Groundwater conditions:

No groundwater was observed within 35m depth of the surface in any of the 78explorations drilling

conducted at the site. However, it should be noted that perchedgroundwater could develop in the future

due to changes in the site drainage or antecedentrainfall.

4. Corrosivity of the soil

5

Based on the water levels monitored and recorded during the field works, no water levelswere

observed within 35.42m in the boreholes. Therefore, there is no need to consider thecorrosiveness of

ground water to reinforcement and concrete.

2.2.2Earthquake response acceleration

The 0.2 sec. spectral response acceleration (Ss) is 0.52, and the 1 sec. spectral response acceleration

(S1) is 0.33.

2.2.3Wind pressure

As per the contract and the local regulation, all structures shall be designed to withstand wind

pressure resulting from the basic wind velocity v(at a height of 10m, with return period of 50 years). The

value of W0 should be:

Wo=0.4KPa;

2.2.4 Weather condition

Site conditions are tropical and humid for the whole of the year.

Normal max ambient temperature °C 33

Normal min ambient temperature °C 23

Average annual ambient temperature °C 30

HumidityAverage 83%

Rainfall mm/month228 typical

Rainfall main season - November to April

2.3Design load

2.3.1 Dead load

1. Density of materials

lean concrete――22 kN/ m3

reinforced concrete――25 kN/ m3

brick masonry――to be determined

steel――78.5 kN/ m3

backfill――18 kN/ m3

cement mortar――20 kN/ m3

Bulk material(Cementl)――16 KN/m³

2. Utilities――according to requirement

2.3.2Live load

1. Industrial concrete or steel floor in process buildings, 5 kN/m2

6

2. Dust accumulation on roofs (uniform load) 1.0 KN/ m²

2.3.3Chart of vertical load

7

8

2.3.4Wind load

1.Wind load calculation will be according to ASCE7-10.

2.As per the ASCE7-10.,section6, The fundamental value of the basic wind velocity, v, is the

characteristic 3 second mean windvelocity, irrespective of wind direction and time of year, at 10 m above

ground level in open countryterrain with low vegetation such as grass and isolatedobstacles with

separations of at least 20obstacle heights.

Based on the definition of term ,v, in the ASCE code, and as per the contract ,the basic wind

velocity should be converted.

3. The calculation of wind load acting on silos follow the below steps:

9

10

11

12

2.3.5Seismic load

1. The calculation of the earthquake effects is in accordance with the ASCE7-10.

2. Design response spectrum

The 0.2 sec. spectral response acceleration (Ss) is 0.52, and the 1 sec. spectral response

acceleration (S1) is 0.33.

3.. Site class.

As per the Chapter 11&20 and Soil investigation, the site should classified as Site class C.

4. Site coefficient Faand Fv(see table 11.4-1 & 11.4-2)

Fa =1.31; Fv = 1.81

5. Risk-targeted Maximum Considered Earthquake Spectral Response Acceleration Parameters.

13

See Section 11.4.3

SMs = FaSs=1.31x0.52=0.681; SM1 = Fv S1=1.81x0.33=0.597.

6. Design Spectral Acceleration Parameters. See Section 11.4.4

SDS=2/3 Sms/Ra=0.454/Ra. SD1=2/3 Sm1/Ra =0.398/Ra.

Where:

Ra: for concrete silo and kiln, Ra=3,Ie=1;

SDS=0.454/(Ra/Ie)=0.151; SD1=0.398/(Ra/Ie)=0.133

7: Design Response Spectrum. See Section 11.4.5

8. Effective value of gravity load W

,k jG :Dead load

,k iQ : Live load

,E i :Combination coefficient of live loads

For the buildings of material storage, the value of ,E i equal to 0.8.

9. Mode response spectrum method analysis

(1)The response of all modes of vibration contributing significantly to the global response shall be

taken into account. The requirement may be deemed to be satisfied if either of the following can be

demonstrated

a)the sum of the effective modal masses for the modes taken into account amounts to at least

90% of the total mass of the structure.

b)all modes with effective modal mass greater than 5% of the total mass are taken into

14

account.

(2)If the requirements specified in (1) cannot be satisfied(e.g. in buildings with a significant

contribution from torsional modes),the minimum number k of modes to be taken into account in a

spatial analysis should satisfy both the following conditions:

where:

n:the number of storeys above the foundation

kT : the period of vibration of mode k

(2)combination of modal responses

SRSS method (Square Root of Sum of Square): Adopted when all relevant modal responses

may be regarded as independent of each other, and their period satisfy 0.9j iT T .

CQC method (Complete Quadratic Combination): Adopted when the relevant modal responses

can not be regarded as independent..

For the anti-sesmic design of the project,the CQC method is recommended,take into account

the relation between the relevant modal reponses

10. The calculation of seismic load acting on silos follow the below steps:

15

2.3.6Stored material load

1.material load for bottom slab level 16.000

16

17

18

19

20

21

22

2.material load for bottom slab level 19.500

23

24

25

26

27

2.3.7Load combination

1. The load combination will be as per the“Minimum Design Loads for Bulidings and Other

Structures”ASCE7-10;

2. Load combinations of the silo design

The load combination of the projectfor silo calculation are as followed: ( D— dead

load ,E—earthquake effect ,L—live load, ,Lr—roof live load,W—wind load,P- prestressing load,

PPm-material load,T—temperature load)

1) Basic Combination(LRFD)

1、U=1.4D

2、U=1.2D+“1.2P”+1.6 Pm+0.5Lr

2a、U=1.4D+“1.2 P”+1.4T+1.7 Pm+0.5Lr(ACI313-97)

3、U=1.2D+“1.2P”+1.6Lr+Pm

4、U=1.2D+“1.2P”+1.6Lr+0.8W(empty silo)

5、U=1.2D+1.0W +Pm +0.5Lr

6、U=1.2D+1.0E+Pm

7、U=0.9D+1.0W(empty silo)

8、U=0.9D+1.0E(empty silo)

2) Serviceability limit states

The characteristic combinations

1、U=D+“P”+ Pm+Lr+T

2、U= D+“P”+0.5Pm+0.7W

The quasi-permanent combination

U=D+P+0.5Pm

3) Load combinations for determination of the size of the foundations or pile numbers. (ASCE

7-10,section2.4.1, as the soil report is done according to the ASTM)

1、U= D+L+Pm

2、U=D+0.6W

3、D+0.75W+0.75Pm

28

4、0.6D+0.6W

5、D+0.7E

6、D+0.525 E+0.75Pm

7、0.6D+0.7E

2.4Building material

2.4.1Reinforcement

1. Reinforcement Origin:Indonesian, comply with SNI07-2052 1997.

2.The reinforcement characteristic value of the yield strength ykf =235Mpa(BJTP24), ykf

=390Mpa(BJTS40), material partial coefficient s =1.15, the design value of reinforcement strength ydf =

ykf / s =235/1.15Mpa﹠390/1.15Mpa =204Mpa﹠339Mpa, the elastic modulus of thereinforcement sE

=200 Gpa。

3.The type of the reinforcementfor BJTP24 is diameter 8、10mm,for BJTS40 is diameter 13、16、

19、22、25、29、32mm.

4. The symbol of reinforcement in the drawings will be

8、 10 (BJTP24)

D13、D16、D19、D22、D25、D29、D32(BJTS40)

5.Normal value of strength of prestressing tendon (Chinese type) shall be as follows(to be

determined):

Type Diameter

(mm)

Normal Value of

Strength of

Prestressing

Tendon(N/mm2)

Design Value of

Tensile Strength

of Prestressing

Tendon(N/mm2)

Design Value of

Crushing

Strength of

Prestressing

Tendon(N/mm2)

Young’sModulus

(x105N/mm2)

Steel

strand

1X3

8.6

10.8

12.9

1860 1320

390 1.95

1960 1390

1X7

9.5

12.7

15.2

17.8

1860 1320

1960 1390

The 1X7 ,diameter 15.2 prestressing tendon shall be used tin the silo wall design.

29

2.4.2Concrete

1. The strength of the concrete should comply with chinese code.

2. The concrere quality used in the silo design is as follows:

Silo wall —— C40

Silo bottom slab and raft foundation—— C40

Silo roof slab—— C30

4. The Poisson ratio of concrete is 0.2

2.5Structure scheme

2.5.1Foundation

1. Shallow raft foundation shall be adopted in the silo foundation design.

2.5.2Superstructure

The silo is designed to be circular in shape and consists of post tensioned walls above the silo

bottom level &non pre-stressed wall resting on a raft foundation .

2.6 Structure calculation

1.The program SAP2000 V15.1 is used for all the structure calculation in design.

2.Linear analysis is used to the analysis of the structure.

30

3. 3Danalysis model(FEM)

FEM MODAL FOR BOTTOM SLAB LEVEL 19.500

31

FEM MODAL FOR BOTTOM SLAB LEVEL 16.000

32

4. Load sketch of the silo

Load sketch

——Selfweight of the silo concrete has been taken into account by the sap2000 software.

——Bulk material load used to calculate the pile foundation is Pvmax,the value is 300.041KN/m²for bottom slab

level 16.000. the value is 291.152KN/m²for bottom slab level 19.500.

——Wind pressure acted on the silo wall is as follows:(see 2.3.3)

z qp(z)

(m) (KN/m²)

16/19.5-51 1.617

0-16/19.5 1.267

——Roof live load :5KN/m²(include the equipment live load).

——Roof dead load :3.4KN/m²(the steel beam and steel truss weight and the equipment weight are been taken

into account).

——Seismic load adopts mode response spectrum method analysis by the Sap2000 software.

33

5. Structure analysis

5.1Effective modal masses ratio

1. Bottom slab level 19.500

The Full silo:

The sum of the effective modal masses for the modes taken into account >90% of the total mass of the

structure.

The Emptysilo:

34

The sum of the effective modal masses for the modes taken into account >90% of the total mass of the

structure.

2. Bottom slab level 16.000

The Full silo:

The sum of the effective modal masses for the modes taken into account >90% of the total mass of the

structure.

35

The Emptysilo:

The sum of the effective modal masses for the modes taken into account >90% of the total mass of the

structure.

5.2Base reaction

1. Bottom slab level 19.500

The Full silo:

36

The Emptysilo:

37

38

2. Bottom slab level 16.000

The Full silo:

39

The Emptysilo:

40

6.Foundation Design

6.1Foundation dimension

1. Bottom slab level 19.500

41

42

2. Bottom slab level 16.000

43

44

6.2 Design of punching shear and shear reinforcement

Bottom slab level 16.000 (the most infavourable case)

45

46

47

V23(kN/m)

V23(kN/m)

48

6.2 Design of flexural reinforcement

6.2.1 Full silo

The Fem analysis result as follows:

The silo for the bottom level 16.00m.

1.The most unfavorable Load combination-1: ULS:1.2D+1.6Pm-pfmax

49

Hoop bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

50

Radial bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

51

2.The most unfavorable Load combination-2: ULS:1.2D+1.6Pm-pvmax

Hoop bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

52

Radial bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

53

3. The most unfavorable Load combination-3: ULS:1.2D+1.0Pm-pfmax +1.0Ex

Hoop bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

54

Radial bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

55

4.The most unfavorable Load combination-4: ULS:1.2D+1.0Pm-pfmax+1.0Ey

Hoop bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

56

Radial bending moment cloud picture

Section out (through the inner column)

Section out (Not through the inner column)

57

5.Conclusion:

5-1:The bottom reinforcement:

Under the Silowall:

The most unfavourable load combination is 1.2 D+1.0Pm-pfmax+1.0Ey

Hoop bending moment: M11=1955 kNm/m

Radial bending moment: M22=5463kNm/m

Ast1=3880mm²(hoop reinforcement need D29@170 (As=3885mm²).

Ast2=9200.3mm²(Radial reinforcement need 2D32@164(As=9822 mm²).

58

The loaction at 2m distance from the silowall:

Radial bending moment: M22=1850kNm/m

Ast2=3880 mm²(Radial reinforcement need D32@200 (As=4032 mm²).

59

Under the Column:

The most unfavourable load combination is1.2 D+1.6Pmvmax+0.5Lr

Hoop bending moment: M11=1997kNm/m

Radial bending moment: M22=3383kNm/m

Ast1=5619.5 mm²(hoop reinforcement need D32@200+D32@400 (As=6034.3 mm²).

Ast2=3880mm²(Radial reinforcement need D29@150 (As=4403mm²).

60

At the Edge of foundation:

According to the minimum reinforcement.

Hoop reinforcement need D29@170 (As=3885mm²).

Radial reinforcement need D32@200(As=3880 mm²).

At the centre of foundation( R<3m )

According to the minimum reinforcement.

Horizontal and vertical reinforcement need D25@120(As=4091mm²).

61

5-2:The top reinforcement:

At the Edge of foundation:

According to the minimum reinforcement.

Hoop reinforcement need D29@170 (As=3885mm²)..

Radial and hoop reinforcement need D32@200(As=4021 mm²).

Under the Silowall:

The minimum reinforcement control the top reinforcement.

Hoop reinforcement need D29@170 (As=3885mm²).

Radial reinforcement need D32@164(As=4911 mm²).

The location: R=8m

According to the minimum reinforcement.

Hoop reinforcement need D29@170 (As=3885mm²).

Radial reinforcement need D32@143(As=5623 mm²).

Under the Column:

The minimum reinforcement control the top reinforcement.

Hoop reinforcement need D29@170 (As=3885mm²).

Radial reinforcement need D32@200(As=4023 mm²).

Between the R=3m location and the R=4.3m

The location: R=4.3m

The most unfavourable load combination is1.2 D+1.6Pmvmax+0.5Lr

Hoop bending moment: M11=3026kNm/m

Radial bending moment: M22=2286kNm/m

Ast1=5014.9 mm²(horizontal reinforcement need D32@150(As=5361 mm²).

Ast2=3880mm² (Radial reinforcement need D32@176(As=5329.1mm²).

62

R=3m:

The most unfavourable load combination is1.2 D+1.6Pmvmax+0.5Lr

Hoop bending moment: M11=3125kNm/m

Radial bending moment: M22=3118kNm/m

Ast1=5182.3 mm²(horizontal reinforcement need D32@120 (As=6702 mm²).

Ast2=5170.5mm²(Vertical reinforcement need D32@120 (As=6702 mm²).

63

At the centre of foundation:

The most unfavourable load combination is1.2 D+1.6Pmvmax+0.5Lr

Hoop bending moment: M11=3805kNm/m

Radial bending moment: M22=3877kNm/m

Ast1=6337.9mm²(horizontal reinforcement need D32@120 (As=6702 mm²).

Ast2=6461mm²(Vertical reinforcement need D32@120 (As=6702 mm²).

64

65

The 1#silo(the bottom slab level is 19.500)foundation flexual calculation process as follows.

The reinforcement see the drawings.

66

67

68

69

70

6.2.2 Empty silo

The base reaction of the emty silo see 5.2Base reaction.

From the base reaction table ,we know there is no uplifting force of the foundation due to earthquake, so the

reinforcement of foundation for the full silo is satisfied.

71

7. Inner Column Design

7.1Design internal force from FEM analysis result

1. Bottom slab level 16.000

Inner column :

Inner column and silo bottom slab FEM model

The mostunfavorable load combination: 1.2D+1.6PVmaxi,the internal force is as follows:

72

Axial force(KN)

The most axial compressive force of column is 14777.55KN.

73

Bending moment -2axis (M2)(KN.m)

Bending moment -3axis (M3)(KN.m)

74

Shear force-3axis (V3)(KN)

7.2Design of inner column

C3(800x1200)

75

76

Reinforcement area (mm²)

Required reinforcement : As=19978mm²

Choose 28D32(22517.6mm²);

Reinforcement rario: 2.35%

Links: D13@200

C4(800x1000)

Required reinforcement : As=18022mm²

Choose 24D32(19300.8mm²);

Reinforcement rario: 2.41%

Links: D13@200

77

2. Bottom slab level 19.500

Reinforcement area (mm²)

C1(800x1200)

Required reinforcement : As=17061mm²

Choose 28D29(18494.6mm²);

Reinforcement rario: 1.93%

Links: D13@200

C2(800x1000)

Required reinforcement : As=14538mm²

Choose 24D29(15852.5mm²);

Reinforcement rario: 1.98%

Links: D13@200

78

8. Lower Silo Wall(t=350mm) Design

The thickness of lower silo wall is 350mm.

Lower silo wall FEM Model for bottom slab level 16.00

79

Lower silo wall FEM Model for bottom slab level 19.50

8.1Design vertical reinforcement

For bottom slab level 16.00

The most unfavorable load combination:1.2D+1.6Pmpfmax,the internal force is as follows:

80

The vertical internal force(F22) contour

The silowall internal force :

The maximum vertical force of silo wall: Ned=-5270KN/m

Choose 2D16@200(2011mm²);

Reinforcement rario: 0.57% >0.2% =Asmin

Axial compression ratio:Ned/fcA=0.64 ok!

8.2Design hoop reinforcement

The hoop internal force is as follows corresponding to F11 :

81

The horizontalp internal force(F11) contour

The hoop reinforcement is2D16@200,according to the minimum reinforcement(0.2%).

8.3Openings added reinforcement

1.opening 1 (4100mmx5050mm)

82

The horizontal internal force F11 arround the opening

The maximum horizontal tensile force :2595KN/m on the top of the opening.

As=F11/fyd=2595KN/m /339.13MPa=7652mm²

Need reinforcement:14D29 (9247.3mm²)

The maximum horizontal tensile force :2378KN/m at the bottom of the opening.

As=F11/fyd=2378KN/m /339.13MPa=7012.1mm²

Need reinforcement: 16D29 (10568.32mm²)

The hoop reinforcement of the lower silo wall(t=350mm) adopts 2D16@200. The opening height is

5050mm,Cutting-off reinforcement area is 5050mm/200mmx2x201.1mm²=10055mm²,so the top/bottom of the

opening need 0.6x10055mm²(6033mm²) at least. The choosed reinforcement area is satisfied.

83

The vertical internal force F22 arround the opening

The maximum vertical force :8937KN/m at the openingside.

As=(F22-Acxfcd)/fyd=(8937KN-900mmx600mmx0.8x0.65x0.85x31.6MPa) /339.13MPa=4112.6mm²

Need reinforcement:12D25(5892mm²)

The vertical reinforcement of the lower silo wall(t=350mm) adopts 2D16@200 The opening width is

4100mm,Cutting-off reinforcement area is 4100mm/200mmx2x201.1mm²=4122.5mm²,so the side of the opening

need 0.5x4122.5mm²(2061.3mm²) at least. The choosed reinforcement area is satisfied.

84

2.opening 2 (3500mmx4050mm)

The horizontal internal force F11 arround the opening

The maximum horizontal tensile force :2596KN/m on the top of the opening.

As=F11/fyd=2596KN/m /339.13MPa=7658mm²

Need reinforcement:14D29 (9247.3mm²)

The maximum horizontal tensile force :2413KN/m at the bottom of the opening.

As=F11/fyd=2413KN/m /339.13MPa=7118mm²

Need reinforcement: 13D29 (8586.8mm²)

The hoop reinforcement of the lower silo wall(t=350mm) adopts 2D16@200. The opening height is

4050mm,Cutting-off reinforcement area is 4050mm/200mmx2x201.1mm²=8044mm²,so the top/bottom of the

opening need 0.6x8044mm²(4826.4mm²) at least. The choosed reinforcement area is satisfied.

85

The vertical internal force F22 arround the opening

The maximum vertical force :9230KN/m at the openingside.

As=(F22-Acxfcd)/fyd=(9230KN-800mmx600mmx0.8x0.65x0.85x31.6MPa) /339.13MPa=858mm²

Need reinforcement:12D22(4561.2mm²)

The vertical reinforcement of the lower silo wall(t=350mm) adopts 2D16@200 The opening width is

3500mm,Cutting-off reinforcement area is 3500mm/200mmx2x201.1mm²=3019.25mm²,so the side of the

opening need 0.5x3019.25mm²(1508.25mm²) at least. The choosed reinforcement area is satisfied

1