34
slide 1 of 34 University of Toronto © D.A. Johns, K. Martin, 1997 Processing and Layout  David Johns and Ken Martin University of Toronto ([email protected]) ([email protected])

02 Processing Layout

Embed Size (px)

Citation preview

Page 1: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 1/34

slide 1 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Processing and Layout

David Johns and Ken MartinUniversity of Toronto([email protected])

([email protected])

Page 2: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 2/34

slide 2 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Silicon Wafer• Create 8” diameter cylinder (1m long) of single-crystaline

silicon with light doping (usually p-)• Ingot cut into wafers about 1mm thick

Photolithography• Portions of silicon wafer are masked out so processing can

be applied to remaining areas

• First create glass mask with dark areas using e-beam(cost of mask set often >$50k)• Thermally grow SiO 2 on wafer, apply negative

photoresist, align glass mask and expose to UV light

• Photoresist hardens (after baking) where exposed to light,remaining region removed (including SiO 2)

• Negative since SiO 2 removed where mask is light

Page 3: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 3/34

slide 3 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Photolithography

Opaque

Ultraviolet light

Translucent

Hardened photoresist, PR 1

Glass

SiO2

p – substrate

mask

regionregion

Page 4: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 4/34

slide 4 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Diffusion

• Introduce dopants where well will be located

• Phosphorus gas used in furnace (1000 C)

2PH 3 + 4O 2

p – substrate

SiO2n well

Gas containing phosphorus

°

Page 5: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 5/34

slide 5 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Ion Implantation

• More control as can set concentration and thickness

• Acceleration sets depth, current and time set dosage• However, lattice damage and narrow doping profile

— requires annealing

Ion source

Focusing

FocusingSeparating Acceleration

Vertical and horizontal

TargetIon

deflection plates

beam

slit lens plates

lens

Page 6: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 6/34

slide 6 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Annealing

• Heat to 1000 then cool slowly

Ion dopant

Depth into

Before annealing

After annealing

concentration

silicon wafer

°C

Page 7: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 7/34

slide 7 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Field-implants

• Ensures silicon under field-oxide will not invert (willremain p-) although conductors above

n well

SiO 2

p – substrate

Si3 N4PR 3

PR 2PR 2

Field-implants

Boron ions

Page 8: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 8/34

slide 8 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Field-oxide

• Thick SiO 2 where no transistors

• Wet process (H 2O) — fast but more defects• Dry process (O 2) — slower but denser and higher quality

(high temp so called thermal oxide )

Si3 N4 SiO2 Field-oxide

p+ field-implants

n well

p –

substrate

Page 9: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 9/34

slide 9 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Thin gate-oxide and threshold-adjust

• Thin oxide grown using dry process (0.01 )

• If n-well more heavily doped then single boron implantwill adjustV tn from -0.1V to 0.8V andV tp from -1.6V to -0.8V

Thin gate SiO 2 Field-oxide

p+ field-implants

n well

p –

substrate

Gate threshold-voltage-adjustimplant

µm

Page 10: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 10/34

slide 10 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Polysilicon Gates

• Apply gate but only heat to 650 — polysilicon (rather than single crystal)

• 10 to 30 and thickness of 0.25

p+

n well

p – substrate

SiO2

PR 4 Polysilicon gate

°C

Ω ⁄ µm

Page 11: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 11/34

slide 11 of 34University of Toronto© D.A. Johns, K. Martin, 1997

P+ Junctions

• Gates and drains formed for p-channel• Use ion implantation

• Self-aligned as gate determines edges• Substrate connection also shown

p+

Substrate connection

n well

p – substrate

p+ p+ p+ p+

PR 5 PR 4 Polysilicon PR 5Polysilicon PR 4

p+ p+

Page 12: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 12/34

slide 12 of 34University of Toronto© D.A. Johns, K. Martin, 1997

N+ Junctions

• p+ regions protected and n+ implanted• Requires annealing after since ion implantation used

• Would melt gate if it were metal

p+

Substrate tie

n

p – substrate

p+ p+ p+

Polysilicon gates

n+ p+ p+ n+ n+n+

n-channel junctions

PR 6 PR 6

Well tie p-channel junctions

Page 13: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 13/34

slide 13 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Final Cross Section

Overglass

Metal 2Metal 1 Polysilicon gate

p+

CVD SiO 2

p+ field-implant

p-channel transistor

Well tie

p – substrate n-channel transistor

Substrate tie

p+

Field-oxide

Via

p+ n+ p+n+ n+n+ p+

p+n

Page 14: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 14/34

slide 14 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Bipolar Cross Section

Collector Base Emitter

n+

p+

p+ p

p –

substrate

p+

p+ poly n + poly

BaseAl

n+ poly

n+

n –

n+ SiO

2

Page 15: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 15/34

slide 15 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Transistor Layout

W

LActive region

Polysilicon mask Field-oxide region

Active-region mask Contact mask

2λ 2λ

λ

W

Effective gate region

L

λ

Page 16: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 16/34

slide 16 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Mask misalignmentGate poly

Source junction Drain junction

Noncatastrophic

misalignment

Source-to-gateshort circuit

Source-to-drainshort circuit

Page 17: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 17/34

slide 17 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Series Transistor Layout

J2Q1 Q2J1

J1Q

1Q

2

J2

Q1 10λ

2λ 2λ

J3

J32λ 2λ λ

Q2Less capacitance at nodeJ3 since less area ANDnot beside field implants

Page 18: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 18/34

slide 18 of 34University of Toronto© D.A. Johns, K. Martin, 1997

CMOS Inverter

Vin Vout

VDD

Gnd

n+ well tie p+ junction

n well

p-channeltransistor

Polyinterconnect

λ Metal interconnect

n-channel

n+ junctions p+ substrate tie

Gnd

Vin

Vout

VDD

λ

Active region

transistor

Q2

Q1

Q1

Q2

Page 19: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 19/34

slide 19 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Single Large Transistor (4 in parallel)

Metal interconnect

Active region

J 1

Gates

Q1 Q2 Q3 Q4

J 2 J 3 J 4 J 5

Node 1

Node 2 VG

Page 20: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 20/34

slide 20 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Schematic of Large Transistor

Node 2 VG

Node 1

Q1 Q2 Q3 Q4

J1 J2

J3

J4 J5

VG

J1 J3

J2 J2

J3

J4 J4

J5

Node 1

Node 2

Q1 Q2 Q3 Q4

Page 21: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 21/34

slide 21 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Actual sizes different from MasksSiO2 protection

Lateral diffusion under SiO 2 mask

Well

SiO2 protection Polysilicon gate

Overetching

p+ field implants

Polysilicon gate

Channel width narrowing

Transistor channel

Page 22: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 22/34

slide 22 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Common Centroid Layout for Diff Pair

M 1

M 2

M 2

M 1

M 2

M 2

M 1

M 1

M 2

GM1

M 1

DM2

GM2

DM1 SM1,M2

Page 23: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 23/34

slide 23 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Capacitor Errors due to Overetching

• Use unit sized capacitors as much as possible• If not unit sized, keep the same perimeter-to-area ratio to

minimize errors

∆e

∆e

x1

y1

x1 2∆e –

y1 2∆e –

True capacitor size

Ideal capacitor size

Page 24: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 24/34

slide 24 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Capacitor Layout

• Want to maintain ratio of 4 to 2.314• Rectangular capacitor of size 1.314 units used

— has same perimeter-to-area ratio as square — also has same number of corners

10 µm

10 µm

19.6 µm

6.72 µm

10 µm

10 µm

4 units 2.314 units

Page 25: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 25/34

slide 25 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Capacitor Layout Equation• Assume K is non-unit sized and between 1 and 2

— otherwise use another unit sized capacitor

(1)

• Can show that

(2)

(+/- simply changes orientation of rectangle and sqrt is positive since K>1)

• Also

(3)

K C 2

C 1------≡

A2

A1------

x2 y2

x12----------= =

2x

1K K 2 K – ±( )=

x2 Kx1

2

y2---------=

Page 26: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 26/34

slide 26 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Example Capacitor Layout

C1

C2 C1

C2

Polysilicon bottom plate

Polysilicon top plates

Well contacts

Polysilicon edge matching

Well region

Page 27: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 27/34

slide 27 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Typical Resistor Layout

10

2.11

0.14

Page 28: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 28/34

Page 29: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 29/34

slide 29 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Separate Analog and Digital Power Supplies

• Connect analog and digital supplies together as close tosupply as possible

I/O pad

Digital power-supply netAnalog power-supply net

Page 30: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 30/34

slide 30 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Guard Ring to Sheild Analog

• Depth of well causes higher impedance since dopingusually higher near surface of p- substrate (perhaps 10times higher resistance!)

p+

p – substrate

n+

n well

Depletion regionacts as bypasscapacitor

Analogregion

Digitalregion

VDD

p+

Page 31: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 31/34

slide 31 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Sheilding Signals

• Shields keep noise from being capacitively coupled into or out of substrate

n+ n+ n+

n well

Ground line used for shielding Analog interconnectDigital interconnect

p – substrate

Page 32: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 32/34

slide 32 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Example Analog Floorplan

Opamp 1 Opamp 3Opamp 2

V SS Gn d

n well under capacitor region

Region for n-channel switches

n well under p-channel switch region

Gn d

V DD

VDD

φ1

φ1

φ2

φ2

Clock lines

Switches

Capacitors

Opamps

Contact to substrate

n well shield and bypass capacitor

Page 33: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 33/34

slide 33 of 34University of Toronto© D.A. Johns, K. Martin, 1997

Latch-Up

• Occurs when large substrate or well currents

• Creates an SCR that might turn on and not off until harmdone (or power turned off)

Vin

Q1 Q2

R p p

– substrate

n well R n

p+ p+n+ n+ n+ p+

VDDVDD

Page 34: 02 Processing Layout

8/3/2019 02 Processing Layout

http://slidepdf.com/reader/full/02-processing-layout 34/34