00 Assignment Presentasi 2014 Edisi 4 Senini 18-8-2014

Embed Size (px)

DESCRIPTION

00 Assignment Presentasi 2014 Edisi 4 Senini 18-8-2014

Citation preview

  • INTERACTION THEORY

    [NEW PARADIGM] FOR SOLVING

    THE ASSIGNMENT PROBLEM

    Department of Industrial Engineering Institut Teknologi Bandung,Indonesia

    [email protected]

    Anang Zaini Gani

    Bandung, August 20-21th, 2014

    Department of Industrial Engineering Widyatama University,Indonesia [email protected]

  • INTERACTION THEORY

    [NEW PARADIGM] FOR

    SOLVING THE

    ASSIGNMENT PROBLEM

    Anang Zaini Gani

    Department of Industrial Engineering

    Institut Teknologi Bandung,Indonesia

    [email protected]

    Department of Industrial Engineering

    Widyatama University,Indonesia

    [email protected]

    AZG 2014

  • INTRODUCTION

    OBJECTIVETHE ASSIGNMENT

    PROBLEM

    INTERACTION THEORY

    COMPUTATIONAL EXAMPLES

    NEW PARADIGM

    CONCLUSION

    AZG 2014

  • I. INTRODUCTION

    The Assignment Problem is a problem of relationship

    or interaction between two independent groups. The

    first group is called worker or assignee (A) and the

    second group is task or job (J). . The purpose is to find

    a combination, that gives an optimal solution

    (minimum or maximum).

    AZG 2014

  • Objective : how to assign the jobs to the workers to minimize the cost?

    Constraint : each worker need perform only one job and each job need be assigned to only

    one worker.

    n! possible assignment sets (10! = 3,628,800), (100! = 9.3 10157)

    Job 1 Job 2 Job 3 Job 4

    Worker A 1 4 8 12 16

    Worker A2 22 14 6 8

    Worker A3 13 3 9 12

    Worker A4 7 8 12 5

    Workers: A1, A2, A3, A4 Jobs: 1, 2, 3, 4.

    Cost matrix:

    Total Cost : (A1-j1 = 4) + (A2-j3 = 6) + (A3-j2 = 3) + (A4-j4 = 5) = 18

    AZG 2014

  • AZG 2014

    II. OBJECTIVE

    A new method for solving assignment

    problem with a simple yet effective and efficient to solve all kinds of assignment problems (unbalanced assignment problem , with incomplete data and minimize and maximize objective)

  • III. THE ASSIGNMENT

    PROBLEM

    The assignment problem is a simple Combinatorial

    Optimization Problem

    A. Formal

    Mathematical

    Definition

    AZG 2014

  • 1. BRUTE-FORCE METHOD

    a) Enumerate all candidates sets

    b) n! possible assignment sets

    c) Exponential runtime complexity

    2. SIMPLEX METHOD

    a) More variables

    b) May lead to more iterations.

    c) Inefficient.

    AZG 2014

  • 3. HUNGARIAN METHOD

    Hungarian Method is one of the methods that get mostly used.

    Hungarian Method was developed by Harold Kuhn in 1955. The time complexity of the original algorithm is

    O(n4). Edmonds and Karp, and Tomizawa modified to

    achieve an O(n3) running time.

    There are restrictions to Hungarian Method, then the complicated iteration process occurs or limited in its

    usability. (square matrix, dummy, incomplete data)

    AZG 2014

  • 4. OTHER METHODS

    There are several other algorithms used to solve the

    assignment problem. be very complicated.

    5. INTERACTION THEORY

    The algorithm is simple yet effective and efficient to

    solve all kinds of assignment problems such as

    unbalanced assignment problem, and minimize and

    maximize objective. Moreover, the algorithm

    sometimes produces more than one optimal

    solution.

    AZG 2014

  • IV. INTERACTION THEORY

    In 1965 Anang Z. Gani [28] did research on the Facilities Planning

    and Traveling Salesman Problem as a special project

    (Georgia Tach in 1965).Supervision James Apple

    Later, J. M. Devis and K. M. Klein further continued the original

    work of Anang Z. Gani

    Then M. P. Deisenroth PLANET direction of James Apple (Georgia Tech in1971)

    Since 1966, Anang Z. Gani has been continuing his research and

    further developed a new concept which is called The Interaction Theory (INSTITUT TEKNOLOGI BANDUNG)

    AZG 2014

    1) Basic Concept

  • The Interaction Theory resulted in

    development of the model (matrix)

    representing the flow in general

    The absolute value or the number of a

    element as an individual of a matrix can not

    be used in priority setting

    the Asignmemt matrix has two values,

    1. the initial absolute value (interaction

    value)

    2. the relative value (interaction coefficient)

    DIM = The Delta Interaction Matrix

    AZG 2014

  • 1 2 3 4

    1 0 700 10 20

    2 2 0 800 15

    3 4 3 0 10

    4 10 2 30 0

    RELATIVE VALUE

    AZG 2014

  • 14

    Two parallel lines

    AZG 2014

  • Two parallel lines distorted

    (Hering illusion)

    AZG 2014

  • AZG 2014

  • AZG 2014

  • AZG 2014

  • AZG 2014

  • The formula for the interaction coefficient

    ( ci,j ) is:

    ci,j = xi,j2/(Xi. .X.j).

    Xi. =

    m

    j 1

    xij (i = 1 . m )

    X.j =

    n

    i 1

    xij (j = 1 . n )

    AZG 2014

  • The Interaction Theory has wide range of applications

    from solving hard problems Traveling Salesman

    Problem (TSP), Vehicle Routing Problem (VRP),

    Clustering, Transportation Problem to simple problem

    such as The Assignment Problem.

    AZG 2014

  • TABLE 2. THE INTERACTION MATRIX (IMAT)

    To

    From

    I

    J

    N

    Total

    1 x11 x1j xin Xi.

    I xii x1j xin Xi.

    M xm1 Xmn

    Total X.j Xi..

    2) The Proposed Method (Algorithm)

    1) The interaction matrix (IMAT)

    AZG 2014

  • TABLE 3.THE INTERACTION COEFFICIENT MATRIX (ICOM)

    To

    From

    i

    j

    n

    1 c11 Cij cin

    i ci1 cij cin

    m cm1 cmj cmn

    2) Normalization of IMAT (NIMAT)

    The formula for the interaction coefficient is:

    ci,j= xi,j2/(Xi. .X.j)

    3) The Interaction Coefficient Matrix (ICOM)

    AZG 2014

  • 4) The Smallest Element

    5) Unique PSE (Potential Solution Element)

    6) Comparison between 2 pairs

    If PSE(1)+PSE(3) is less than PSE(2)+PSE(4), then PSE(1) is defined as a solution.

    If PSE(1)+PSE(3) is more than PSE(2)+PSE(4), then PSE(2) is defined as a solution.

    The next process is to compile a new ICOM

    AZG 2014

  • three applications of the algorithm :

    1. standard problem with more than one

    solution

    2. unequal matrix

    3. incomplete data problem

    V. COMPUTATIONAL EXAMPLES

    AZG 2014

  • 1) The interaction matrix (IMAT)

    1 2 3 4

    Ship

    1 500 400 600 700

    2 600 600 700 500

    3 700 500 700 600

    4 500 400 600 600

    TABLE 1. THE INTERACTION MATRIX (IMAT)

    1. Assignment Problem 4x4, From Hilliers book, 7th Edition, page 399

    Four cargo ships will be used for shipping goods from one port to four other ports (labeled 1, 2, 3, 4). Any ship can be used for making any one of these four trips.

    AZG 2014

  • 2) Normalization of IMAT (NIMAT)

    1 2 3 4

    1 10500 10400 10600 10700 42200

    2 10600 10600 10700 10500 42400

    3 10700 10500 10700 10600 42500

    4 10500 10400 10600 10600 42100

    42300 41900 42600 42400

    TABLE 2. NORMALIZATION OF IMAT (NIMAT)

    each elements are added by 10.000

    C11= 105002 /42300 x 42200 = 617.63

    AZG 2014

  • 3) The Interaction Coefficient Matrix (ICOM)

    1 2 3

    4

    1 617.63 611.70 625.01 639.87

    2 626.48 632.46 633.86 613.26

    3 636.85 619.12 632.37 623.53

    4 619.09 613.16 626.50 629.45

    TABLE 3. THE INTERACTION COEFFICIENT MATIX (ICOM)

    AZG 2014

  • 4) The Smallest Element.

    1 2 3 4

    1 5.93 0.00 13.31 28.16

    2 14.78 20.76 22.16 1.56

    3 25.15 7.42 20.66 11.83

    4 7.39 1.46 14.80 17.75

    TABLE 4. EACH ELEMENTS SUBSTRACTED BY SMALLEST

    ELEMENTS (PSE=Potential Solution Element)

    PSE 1= PSE 2=

    PSE 3= PSE 4=

    AZG 2014

  • 5) Unique PSE

    Element 2-4 is a unique PSE, then 2-4 is the

    solution and row 2 and column 4 is blocked

    The three alternative solutions are:

    1. (1-1=500)+(2-4= 500)+(3-3 =700)+(4-2= 400)=2100

    2. (1-2=400)+( 2-4=500)+( 3-3=700)+(4-1=500)= 2100

    3. (1-1=500)+( 2-4=500)+( 3-2=500)+( 4-3=600)=2100

    AZG 2014

    6) Comparison between 2 pairs

    PSE 1(1-2) + PSE 3(4-1) = 7.93 with PSE 2(1-1) + PSE 4 (4-2) = 7.93.

  • 1) The interaction matrix (IMAT)

    Stroke

    Carl

    Chris

    David

    Tony

    Ken

    Backstroke 37.7 32.9 33.8 37 35.4

    Breaststroke 43.4 33.1 42.2 34.7 41.8

    Butterfly 33.3 28.5 38.9 30.4 33.6

    Freestyle 29.2 26.4 29.6 28.5 31.1

    TABLE 5. THE INTERACTION MATRIX (IMAT) 4x5

    Note : dummy is not necessary though unbalanced matrix

    2. Assignment Problem 4x5 (Hilier & Lieberman, page 399 problem 8.3-4 )

    The coach of an age group swim team needs to assign swimmers to a 200-yard medley relay team to be sent to the Junior Olympics.

    AZG 2014

  • 2) Normalization of IMAT (NIMAT)

    1 2 3 4 5

    1 10037.7 10032.9 10033.8 10037 10035.4 40141.4

    2 10043.4 10033.1 10042.2 10034.7 10041.8 40153.4

    3 10033.3 10028.5 10038.9 10030.4 10033.6 40131.1

    4 10029.2 10026.4 10029.6 10028.5 10031.1 40113.7

    40143.6 40120.9 40144.5 40130.6 40141.9

    TABLE 6. NORMALIZATION OF IMAT

    each elements are added by 10.000

    AZG 2014

  • 3) The Interaction Coefficient Matrix (ICOM)

    1 2 3 4 5

    1 625.26 625.01 624.76 625.37 625.00

    2 625.78 624.85 625.62 624.90 625.61

    3 624.87 624.63 625.55 624.71 624.93

    4 624.63 624.64 624.67 624.75 624.89

    TABLE 7. THE INTERACTION COEFFICIENT MATIX (ICOM)

    AZG 2014

  • 4) The Smallest Element

    1 2 3 4 5

    1 0.63 0.39 0.13 0.75 0.37

    2 1.16 0.23 0.99 0.27 0.98

    3 0.24 0.00 0.93 0.09 0.31

    4 0.00 0.01 0.04 0.12 0.27

    There are 6 PSE, marked by bold faces.

    TABLE 8 : EACH ELEMENTS SUBSTRACTED BY SMALLEST ELEMENTS

    PSE 1=

    PSE 2= PSE 3=

    PSE 4=

    AZG 2014

  • 5) Unique PSE

    Element 1-3 is a unique PSE, then1-3 is

    the solution and row 1 and column 3 is

    blocked.

    6) Comparison between 2 pairs

    the solution:

    (1-3=33.8)+(2-4=34.7)+(3-2=28.5)+(4-1=29.2)= 126.2.

    AZG 2014

  • 1) Original Matrix

    A B C D E

    1 11 19 M 19 20

    2 38 M 15 14 10

    3 23 17 21 M M

    4 31 37 28 35 46

    5 27 43 23 18 M

    6 15 21 33 17 28

    TABEL 9 . ORIGINAL MATRIX

    3. Assignment Problem 6x5 with M (Yih-

    long Chang, page 171 exercises 2)

    AZG 2014

  • 2). The interaction matrix (IMAT)

    A B C D E

    1 11 19 33 19 20

    2 38 43 15 14 10

    3 23 17 21 35 46

    4 31 37 28 35 46

    5 27 43 23 18 46

    6 15 21 33 17 28

    (M value taken from biggest value from column or row)

    TABEL 10 . THE INTERACTION MATRIX (IMAT) 6x5

    AZG 2014

  • 3). Normalization of Imat

    A B C D E

    1 10011 10019 10033 10019 10020

    2 10038 10043 10015 10014 10010

    3 10023 10017 10021 10035 10046

    4 10031 10037 10028 10035 10046

    5 10027 10043 10023 10018 10046

    6 10015 10021 10033 10017 10028

    TABEL 11 . NORMALIZATION OF IMAT

    each elements are added by 10.000

    AZG 2014

  • 4). The Interaction Coefficient Matix (ICOM)

    A B C D E

    1 332.58 332.92 334.00 333.15 332.90

    2 334.26 334.40 332.69 332.70 332.12

    3 333.12 332.52 332.94 333.95 334.36

    4 333.41 333.62 333.17 333.72 334.13

    5 333.28 334.15 332.97 332.72 334.26

    6 332.77 332.97 333.92 332.94 333.35

    TABEL 12 . THE INTERACTION COEFFICIENT MATIX (ICOM)

    AZG 2014

  • 5). Each Elements Substracted By Smallest Elements

    A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13 . EACH ELEMENTS SUBSTRACTED BY

    SMALLEST ELEMENTS

    AZG 2014

  • Element 3-B is a unique PSE, then 3-B is the solution and

    row 3 and column B is blocked.

    6). Unique PSE

    A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13b . UNIQUE PSE (3-B)

    AZG 2014

  • 7). Comparison between 2 pairs

    A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13c . COMPARISON BETWEEN 2 PAIRS [1]

    PSE1= PSE2=

    PSE3= PSE4=

    AZG 2014

  • A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13d . COMPARISON BETWEEN 2 PAIRS [2]

    PSE1=

    PSE2= PSE3=

    PSE4=

    AZG 2014

  • A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13e . COMPARISON BETWEEN 2 PAIRS [3]

    PSE1=

    PSE2= PSE3=

    PSE4=

    AZG 2014

  • A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13f . COMPARISON BETWEEN 2 PAIRS [4]

    PSE1=

    PSE2= PSE3=

    PSE4=

    AZG 2014

  • A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13g . COMPARISON BETWEEN 2 PAIRS [5]

    PSE1=

    PSE2= PSE3=

    PSE4=

    AZG 2014

  • A B C D E

    1 0.47 0.81 1.89 1.04 0.78

    2 2.14 2.28 0.57 0.59 0.00

    3 1.00 0.41 0.82 1.84 2.25

    4 1.30 1.50 1.05 1.60 2.01

    5 1.17 2.04 0.86 0.61 2.15

    6 0.65 0.86 1.81 0.83 1.24

    TABEL 13h . COMPARISON BETWEEN 2 PAIRS [6]

    PSE1=

    PSE2= PSE3=

    PSE4=

    AZG 2014

    the total assignment cost of: (1-A=11) + (3-B=17) +

    (5-C=23) + (6-D=17) + (2-E=10) equals 78.

  • TABLE 14. OLD PARADIGM VS NEW PARADIGM

    No OLD PARADIGM NEW PARADIGM

    1. Absolute value Interaction coefficient

    2. Balance matrix Balance and unbalance

    matrix

    3. Need dummy No dummy

    4. Need big M for

    incomplete data

    Incomplete data filled

    using existing data

    5. Often more than one

    iteration

    Only one iteration

    6. Limited applications Wide applications

    VI. NEW PARADIGM

    AZG 2014

  • VII. CONCLUSION

    THE INTERACTION THEORY HAS WIDE RANGE OF APPLICATIONS

    from solving hard problems such as Traveling Salesman Problem to simple problems

    such as The Assignment Problem.

    INTERACTION THEORY PROVIDES A NEW PARADIGM for solving The

    Assignment Problem. The algorithm is more simple yet very effective and efficient

    compare to the Hungarian Method.

    IT CAN BE USED TO SOLVE MXN matrix assignment problem easily and

    also the problem of INCOMPLETE DATA (BIG M). It also performs well in large size

    problem, and often provides MORE THAN ONE SOLUTION (minimum and maximum

    solution).

    This NEW PARADIGM has opened the door to WIDER APPLICATIONS and

    users due to its SIMPLICITY. Overall, The Interaction Theory shows A NEW

    CONCEPT which has the development in mathematics, computer science and

    operations research and their applications.

    AZG 2014

  • THANK YOU

    AZG 2014