43
NTU GIEE NanoSiOE RT O RTCV D pol y RTCV D nitride Clean M odule Load lock ellipso- m eter foup 1 應應應應應應應應應應應 應應應 Strain Effect on Crystalline and Na no-scale Silicon Solids 應應應應 : 應應應 應應 應應 : 應應應 應應應應應應應應應應應應應應

應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

  • Upload
    matty

  • View
    62

  • Download
    0

Embed Size (px)

DESCRIPTION

應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids. 指導教授 : 劉致為 博士 學生 : 黃筱鈞 國立臺灣大學電子工程學研究所. Outline. Thesis organization Chapter 2 : Strain-induced Raman Shift Chapter 3 : Carrier Mobility in Orthorhombically Strained Silicon - PowerPoint PPT Presentation

Citation preview

Page 1: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

1

應力於結晶與奈米級矽固體之作用Strain Effect on Crystalline and Nano-scale

Silicon Solids

指導教授 : 劉致為 博士學生 : 黃筱鈞國立臺灣大學電子工程學研究所

Page 2: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

2

Outline

□ Thesis organization□ Chapter 2: Strain-induced Raman Shift□ Chapter 3: Carrier Mobility in Orthorhombically Strained Silicon□ Chapter 4: 2-D Electrons in Strained Silicon Inversion Layers□ Chapter 5: Surface Effect on Strained Silicon Clusters□ Chapter 6: Strain Effect on Silicon Atomic Wires□ Summary and Future Work

Page 3: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

3

Thesis organization

Strain Type

Phonon-limited Mobility

Silicon Structure

Hooke’s Law

Modeling/

Simulation

Chap 2 Biaxial & tensile on Si1-xGex

Bulk

(diamond)

Spring Equation

MATLAB

Chap 3 Orthorhombic

Bulk Mobility

Bulk

(diamond)

MATLAB

Chap 4 Biaxial & tensile on Si1-xGex

Channel Mobility

(2DEG)

Bulk

(diamond)

MATLAB

Chap 5 Biaxial & tensile on Ge

Cluster (diamond)

Generalized form

Gaussian

(DFT)

Chap 6 Distorted Cluster

(relax Si3)

TranSIESTA-C

(DFT+NEGF)

Page 4: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

4

Thesis organization: Strain Type

Strain Type

Phonon-limited Mobility

Silicon Structure

Hooke’s Law

Modeling/

Simulation

Chap 2 Biaxial & tensile on Si1-xGex

Bulk

(diamond)

Spring Equation

MATLAB

Chap 3 Orthorhombic

Bulk Mobility

Bulk

(diamond)

MATLAB

Chap 4 Biaxial & tensile on Si1-xGex

Channel Mobility

(2DEG)

Bulk

(diamond)

MATLAB

Chap 5 Biaxial & tensile on Ge

Cluster (diamond)

Generalized form

Gaussian

(DFT)

Chap 6 Distorted Cluster

(relax Si3)

TranSIESTA-C

(DFT+NEGF)

Si1-xGex

TS-Si

Bulk Si

CS-Si1-xGex OS-Si

Si3 atomic wire

Page 5: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

5

Strain-induced Raman Shift

□ Raman spectra of a typical thin Si epilayer grown above a thick Si

1-xGex buffer layer on Si (001) substrate

Page 6: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

6

Strain-induced Raman Shift

□ Qualitative and quantitative prediction of Raman shift□ Simplified unit cell in Si epi-layer (instead of diamond structure)□ Backscattering geometry (only singlet is observed)

[D. J. Lockwood, PRB, 1992]□ Forced to vibrate at a different force constant when strain is applied

Singlet

Dou

blet

Deformation under tensile strain

Triply degenerate

Page 7: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

7

Strain-induced Raman Shift

□ Spring equation form of Hooke’s Law□ Frequency is related to the square root of U’s second derivative

2

2

d xF ma m kx

dt

2

20

d x kx

dt m

0

kw

m

21

2U kxdx kx

Restoring force

Potential energy

DE describing motion

Angular frequency of SHO

Page 8: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

8

Strain-induced Raman Shift

□ U from Harrison’s total/cohesive energy (1972, 1981)□ U’s second derivative

0coh pro bondE E V r E

1.5 2 2.5 3 3.5 4-5

-4

-3

-2

-1

0

1

2

3

4

5

interatomic distance(A)

-Eco

h/bo

nd(e

V)

2 4-10

-5

0

5

10

15

20

Der

ivat

ives

interatomic distance(A)

B' B''

Page 9: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

9

Strain-induced Raman Shift

□ Sqrt(k) vs. bond length

□ Region of interest: 2.35 ~ 2.4 A (Si1-xGex, 0<x<0.5)

□ Compare with Raman data from published empirical equation□ a~200, a good prediction

2.35 2.36 2.37 2.38 2.39 2.40

2.46

2.48

2.50

2.52

2.54

2.56

2.58

2.60

2.62

2.64

sqrt

(k)

bond length(A)2.35 2.36 2.37 2.38 2.39 2.40

502

504

506

508

510

512

514

516

518

520

522

Ram

an P

eak(

cm-1

)

bond length(A)

Si Siw a k

~ 200a

Page 10: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

10

Carrier Mobility in Orthorhombically Strained Silicon

□ Vertical MOSFET□ Unstrained Si substrate□ Compressively strained SiGe pillar□ Orthorhombically strained Si sidewall layer

Bulk Si

CS-Si1-xGex OS-Si

[001]

[010]

[100]

Page 11: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

11

Carrier Mobility in Orthorhombically Strained Silicon

LCAO 16x16 Hamiltonian

(spin-orbit, 2nd nearest neighbor)

TB parametersStrain

εxx, εyy, εzz

Bond length, bond angle (direction cosines)

Bandstructure

Density of states per spin

for each band n

Square of group velocity for each band n

Scattering rates (acoustic, optical phonon) for each

band n

Phonon-limited Mobility

(diagonal components)

Page 12: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

12

Carrier Mobility in Orthorhombically Strained Silicon

□ Band splitting of orthorhombically strained silicon

0.0 0.2 0.4 0.6 0.8

0

1

2

valence band edge

conduction band edge

SOHH

LH

x [100]

y [010]

z [001]

En

erg

y (e

V)

Ge mole fraction x

[010][100][001]

Page 13: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

13

Carrier Mobility in Orthorhombically Strained Silicon

□ Electron and hole mobility of orthorhombically strained silicon□ Two-fold electron mobility enhancement at 20% Ge□ Two-fold hole mobility enhancement at 30% Ge

0.0 0.1 0.2 0.3 0.4 0.5 0.6

750

1000

1250

1500

1750

2000

2250

Ele

ctro

n M

ob

ility

(cm

2 /Vs)

Pilar Ge mole fraction x

xx

(growth direction)

zz(channel direction)

yy

0.0 0.1 0.2 0.3 0.40

500

1000

1500

2000

Ho

le m

ob

ility

(cm

2 /(V

s))

Pilar Ge mole fraction x

xx

(growth direction)

yy

zz

(channel direction)

Page 14: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

14

2-D Electrons in Strained Silicon Inversion Layers

□ Planar MOSFET□ Channel mobility modeled as 2DEG

Ev

Ec

EF

subbands

N+ poly gateP substrate

Ec

Ev

2 2

232 i i i

dz e z z E z

m dz

2

22

0

1depl i i

Si

d zz e N z

dz

Self-consistently

Airy function approximation

1/32 3 3/ 2 , 0,1,2,...

2 4i z sE m qF i i

Page 15: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

15

2-D Electrons in Strained Silicon Inversion Layers

□ Constant-energy ellipses (6 equivalent valleys) of Si conduction band

□ Energy lineups of Si conduction band w. and w/o tensile strain

Δ2 Δ4

E0

E1E2

E6

E0'

E1'E2'

Δ2

Δ4

E0

E1E2

E6

E0'

E1'E2'

ΔE=Δstrain+(ΔE0'-ΔE0)

Δ2Δ4

[001]

Page 16: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

16

2-D Electrons in Strained Silicon Inversion Layers

μi

Subband mobility

ΔEstrain= 0.67xinto step function

Momentum relaxation rate (intra, inter)

1/τ=Σ U(E-ΔEstrain)/τfor each subband

μi

Subband mobility

μi

Subband mobility

……

Mobility (averaged over

subband occupation)

Airy function approximation (w/o iteration)

Subband levels Wavefunctions

Iteration with Airy function approximation

UCB’ s SC calculation(w. iteration)Vg Fs

20 subbands/WFs

NiInversion charge

per subband

Effective field(Inversion +

depletion charge)

Page 17: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

17

2-D Electrons in Strained Silicon Inversion Layers

0 20 40 60 80 100

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

Delta4;Subband1

Distance from surface (A)

SC Airy

0 20 40 60 80 100-5.00E+007

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

3.50E+008

4.00E+008

Delta2;Subband2

Distance from surface (A)

SC Airy

0 20 40 60 80 100

0.00E+000

1.00E+008

2.00E+008

3.00E+008

4.00E+008

5.00E+008

Delta2;Subband1

Distance from surface (A)

SC Airy

0 20 40 60 80 100

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008Delta4;Subband2

Distance from surface (A)

SC Airy

0 20 40 60 80 100

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

Delta2;Subband3

Distance from surface (A)

SC Airy

0 20 40 60 80 100

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

Delta4;Subband3

Distance from surface (A)

SC Airy

□ Airy function vs. SC wavefunctions for delta 2 and delta 4 valleys

Page 18: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

18

2-D Electrons in Strained Silicon Inversion Layers

0 2 4 6 8 100.0

0.5

1.0

Delta 2

En

erg

y(e

V)

Subband level

Airy SC

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Delta 4E

ne

rgy(

eV

)

Subband level

Airy SC

□ Airy function vs. SC subband levels for delta 2 and delta 4 valleys

Page 19: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

19

2-D Electrons in Strained Silicon Inversion Layers

0.1 1

1000

Ph

on

on

-lim

ited

Mo

bili

ty (

cm2

/Vse

c)

Effective Field (MV/cm)

Unstrained Si MOS Strained Si MOS on Si0.7Ge0.3

0.0 0.1 0.2 0.3 0.40.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Mo

bili

ty E

nh

an

cem

en

t Fa

cto

r

Substrate Ge Content (%)

□ Phonon-limited mobility vs. effective field□ Mobility enhancement factor vs. substrate Ge content

Page 20: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

20

Surface Effect on Strained Silicon Clusters

□ Generalized Hooke’s Law

* *(i, j=1-6, sum over j)i ij jC

1 111 12 12

2 212 11 12

3 312 12 11

4 444

5 544

6 644

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ec c c

ec c c

ec c c

ec

ec

ec

x ye e f 123

11

2ce e f f

c

?

-0.77

Page 21: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

21

Surface Effect on Strained Silicon Clusters

□ Horizontal fixed (5.65A); vertical tuned various α□ Searching for min E(α)□ Simulation building block: single silicon unit cell (diamond structure)

1x1y1z□ 2x1y1z, 1x2y1z, 1x1y2z represent two unit cells stacking up in x, y,

z direction, respectively□ From 1x1y1z (18 atoms) to 3x3y1z (110 atoms)

2x1y1z 1x2y1z 1x1y2zx

yz

(a) (b) (c)

1x1y1z

a┴=5.43+0.22α

a||=5.65

Page 22: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

22

Surface Effect on Strained Silicon Clusters

□ Gaussian 03 and GaussView□ Model Chemistry [theoretical method/basis set]: BLY3P/6-31G(d)□ No min E(α) on the plot of total E versus α candidates for 1x1y1z, 2x

2y1z, etc□ Squeezed (more negative α), total energy goes down

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1-5209.906

-5209.904

-5209.902

-5209.900

-5209.898

-5209.896

-5209.894

-5209.892

-5209.890

tota

l en

erg

y (h

art

ree

s)

alpha

1x1y1z w/o H

Page 23: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

23

Surface Effect on Strained Silicon Clusters

□ Clusters w. bare silicon (w. dangling bonds)□ Clusters w. silicon and valence hydrogen atoms (instead of dangling

bonds)□ Min E(α) on the plot of total E versus α candidates for 1x1y1z□ Min E(α) by (1) squeezed (more negative α), total energy goes up

(2) a energy step (4.8 eV) for all α> -0.77

-0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

-5234.85

-5234.80

-5234.75

-5234.70

-5234.65

tota

l en

erg

y (h

art

ree

s)

alpha

1x1y1z w H

Page 24: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

24

Surface Effect on Strained Silicon Clusters

x

yz

1x1y1z 2x2y1z 3x3y1z x

yz

-0.80 -0.75 -0.70 -0.65 -0.60-15685.8

-15685.6

-15685.4

-15685.2

-15685.0

-15684.8

tota

l en

erg

y (h

art

ree

s)

alpha

2x2y1z w H

-0.80 -0.78 -0.76 -0.74 -0.72 -0.70-31936.5

-31936.0

-31935.5

-31935.0

-31934.5

-31934.0

tota

l en

erg

y (h

art

ree

s)

alpha

3x3y1z w H

□ Valence hydrogen pair with angle of 54.7 degree (instead of 109.8)□ 1x1y1z (1), 2x2y1z (5), 3x3y1z (13): yes

Page 25: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

25

Surface Effect on Strained Silicon Clusters

0 -0.1 -0.11 -0.12 -0.15 -0.22 -0.24 -0.26 -0.28 -0.4

V V V V V V V V V V

-0.5 -0.6 -0.7 -0.75 -0.76 -0.77 -0.78 -0.8 -0.85 -0.88

V V V V V

-0.9 -0.95 -1.0 -1.1 -1.5 -1.6 -1.7 -1.8 -2.0

Antenna check for 2x2y1z

Page 26: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

26

Surface Effect on Strained Silicon Clusters

□ Only 1x1y2z has antenna (same with 1x1y3z, 1x1y4z, etc)□ 3x2y1z no, 2x2y2z yes□ Square symmetry on x-y plane required?

2x1y1z 1x2y1z 1x1y2zx

yz

(a) (b) (c)

-0.80 -0.75 -0.70 -0.65 -0.60

-9010.34

-9010.32

-9010.30

-9010.28

-9010.26

-9010.24

-9010.22

-9010.20

-9010.18

-9010.16

-9010.14

tota

l ene

rgy

(har

tree

s)alpha

1x1y2z w H

2x2y2z3x2y1zx

yz

Page 27: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

27

Surface Effect on Strained Silicon Clusters

□ 2x2y1z minus one (3), 3x3y1z minus one (11): yes□ 3x3y1z minus two, 2x1y2z, 3x1y3z: no

2x2y1z minus one

3x3y1z minus one 3x3y1z minus two

3x1y3z2x1y2zx

yz

Near square symmetry, x-y plane

Page 28: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

28

Surface Effect on Strained Silicon Clusters

□ Simulation of up to 9 unit cells□ Bare silicon clusters: unstable with dangling bonds□ With surface hydrogen: obey the same rule with bulk silicon- deform

ation of shorten heights with α = -0.77 by (1) squeezed, total energy goes up (2) energy step starting at α = -0.77

□ Bond angle effect under deformation□ Near-square symmetry on one of the surface of the x-y plane

Page 29: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

29

Strain Effect on Silicon Atomic Wires

□ Molecule systems (equilibrium) coupled to electrodes and bias voltage is applied (non-equilibrium)

□ TranSIESTA-C: Density Functional Theory (DFT) and Non-equilibrium Greens Function (NEGF) solving self-consistently

□ Several approximation is adopted

SIESTA: Electronic StructureDensity Functional TheoryLCAO, numerical orbitals w. finite rangePseudo-potentials

TransportFull description of electrodes using ab initio self-energiesNon-equilibrium electron distribution using NEGFCalculation of electron current

D H

Page 30: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

30

Strain Effect on Silicon Atomic Wires

□ Molecular system: Si3 cluster (Si3 atomic wire in zigzag fashion)

□ Electrode: Li [He]2s1 closely resembles Au [Xe]4f145d106s1

□ Two-probe system: Si3 cluster coupled to lithium electrode

2.28Å 2.28Å

2.73Å2.23Å 2.23Å

Lithium electrodeLithium electrode

Si3 atomic wire

Page 31: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

31

Strain Effect on Silicon Atomic Wires

□ Isolated Si3 cluster (van der Waals radii; HOMO; LUMO)

□ Relaxed Si3 atomic wire (new MPSH LUMO as a channel)

□ MPSH: Molecular Projected Self-Consistent Hamiltonian

Page 32: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

32

Strain Effect on Silicon Atomic Wires

□ I-V characteristic of relaxed Si3 atomic wire

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5-300

-200

-100

0

100

200

300C

urr

en

t(u

A)

Voltage(V)

relaxed Si3 atomic wire

,R

Lb bI V T E V dE

Page 33: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

33

Strain Effect on Silicon Atomic Wires□ Transmission spectrum vs. MPSH eigenstates (red dot)

□ T(E, Vb) at Vb= 0, 1, 2V; LUMO closely associate with the peak

-1.1 -0.1 0.9 1.90.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Vb=0V

LUMOHOMO

T(E

)

E(eV)

-1.1 -0.1 0.9 1.90.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Vb=1V

LUMOHOMO

T(E

)

E(eV)

-1.1 -0.1 0.9 1.90.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Vb=2V

LUMOHOMO

T(E

)

E(eV)

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Vb(V)

E(eV)

T(E

,V)

Page 34: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

34

Strain Effect on Silicon Atomic Wires

□ Three strain type

CASE I n=1~4(a1, a2, a3, a4)

CASE II n=1~4(m1, m2, m3, m4)

CASE III n=1~2(d1, d2)

2.28Å 2.28Å

2.73Å2.23Å 2.23Å

an=0.1*n Å

2.28Å 2.28Å

2.73Å2.23Å 2.23Å

mn=0.1*n Å

2.28Å 2.28Å

2.73Å2.23Å 2.23Å

dn=0.2*n Å

CASE I

CASE II

CASE III

Page 35: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

35

Strain Effect on Silicon Atomic Wires□ I-V characteristic of strained Si3 atomic wire (CASE I)

□ 0V ~ 1.2V: a4 < a3 < a2 < a1 < relax□ 1.2V ~ 2V: relax < a1 < a2 < a3 < a4

0.0 0.5 1.0 1.5 2.0

0

50

100

150

200

250

300

Cu

rre

nt(

uA

)

Voltage(V)

relax a1 a2 a3 a4

Page 36: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

36

Strain Effect on Silicon Atomic Wires□ I-V characteristic of strained Si3 atomic wire (CASE II)

□ 0V and 2V: m4 ~ m3 ~ m2 ~ m1 ~ relax□ Between 0V and 2V (esp. 1V): relax < m1 < m2 < m4 < m3

0.0 0.5 1.0 1.5 2.0

0

50

100

150

200

250

Cu

rren

t(u

A)

Voltage(V)

relax m1 m2 m3 m4

Page 37: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

37

Strain Effect on Silicon Atomic Wires□ I-V characteristic of strained Si3 atomic wire (CASE III)

□ 0V ~ 2V: d2 < d1 < relax

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5-300

-200

-100

0

100

200

300

Cu

rre

nt(

uA

)

Voltage(V)

relax d1 d2

Page 38: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

38

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

sa2

T(E

,V)

Vb(V)

E(eV)

Strain Effect on Silicon Atomic Wires

□ T(E, Vb) for CASE I, n=1~4

□ T(E, Vb) for CASE II, n=1~4

□ T(E, Vb) for CASE III, n=1~2

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

sa1

Vb(V)

E(eV)

T(E

,V)

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

T(E

,V)

Vb(V)

sa3E(eV)

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

T(E

,V)

Vb(V)

sa4E(eV)

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

T(E

,V)

Vb(V)

sm1E(eV)-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2T

(E,V

)

Vb(V)

sm2E(eV)

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

T(E

,V)

Vb(V)

sm3E(eV)-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

T(E

,V)

Vb(V)

sm4E(eV)

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

T(E

,V)

Vb(V)

d1E(eV)-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

0.20.4

0.60.8

1.01.2

1.41.6

1.82.0

2.2

T(E

,V)

Vb(V)

d2E(eV)

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Vb(V)

E(eV)

T(E

,V)

Relax

Page 39: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

39

Strain Effect on Silicon Atomic Wires

□ Current is obtained by Landauer-Buttiker formula□ Bias window: the energy region which contributes to the current inte

gral (only positive part is shown)

0 1 2

1

0.5

0

-0.5

-1

Bias voltage (V)

Ene

rgy

(eV

) ,R

Lb bI V T E V dE

0 / 2L b L bV eV

0 / 2R b R bV eV

Page 40: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

40

Strain Effect on Silicon Atomic Wires□ Transmission spectrum within bias window at Vb= 1 and 2 V

□ LUMO peak (1) bottom (2) move to center (3) bottom

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.50.0

0.5

1.0

1.5

2.0

2.5

T(E

)

E(eV)

relax a1 a2 a3 a4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

T(E

)

E(eV)

relax a1 a2 a3 a4

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T(E

)

E(eV)

relax m1 m2 m3 m4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

T(E

)

E(eV)

relax m1 m2 m3 m4

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.50.0

0.5

1.0

1.5

2.0

2.5

T(E

)

E(eV)

relax d1 d2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

T(E

)

E(eV)

relax d1 d2

Page 41: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

41

Strain Effect on Silicon Atomic Wires□ MPSH eigenstates at Vb= 1 and 2 V

□ LUMO with (1) HOMO/HOMO+1 (2) LUMO+1; HOMO/HOMO-1 (3) LUMO+2; HOMO

0 1 2 3 4-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vb=1V

E(e

V)

an(=n*0.1A)

HOMO-1(4) HOMO(5) LUMO(6) LUMO+1(7) LUMO+2(8)

0 1 2 3 4-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vb=2V

an(=n*0.1A)

HOMO-1(4) HOMO(5) LUMO(6) LUMO+1(7) LUMO+2(8)

E(e

V)

0 1 2 3 4-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vb=1V

mn(=n*0.1A)

HOMO-1(4) HOMO(5) LUMO(6) LUMO+1(7) LUMO+2(8)

E(e

V)

0 1 2 3 4-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vb=2V

mn(=n*0.1A)

HOMO-1(4) HOMO(5) LUMO(6) LUMO+1(7) LUMO+2(8)

E(e

V)

0 1 2-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vb=1V

dn(=n*0.2A)

HOMO-1(4) HOMO(5) LUMO(6) LUMO+1(7) LUMO+2(8)

E(e

V)

0 1 2-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vb=2V

dn(=n*0.2A)

HOMO-1(4) HOMO(5) LUMO(6) LUMO+1(7) LUMO+2(8)

E(e

V)

Page 42: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

42

Summary and Future Work: Summary

□ A simple spring model is developed to make qualitative and quantitative predictions of Raman peak red-shift in tensile strain silicon epi-layer.

□ Phonon-limited bulk mobility under orthorhombic strain is calculated. Strong electron and hole mobility enhancement is observed.

□ Phonon-limited electron channel mobility under tensile strain is calculated. Airy function is a fair approximation. Enhancement factor saturates at 20% Ge content.

□ Surface hydrogen atoms is necessary to stabilize silicon clusters up to 9 unit cells in a morphology of shorten heights (α = -0.77) under tensile strain. Near square symmetry is required for above observation.

□ I-V characteristic of relaxed and strained Si3 atomic wire is investigated. Bias window and MPSH eigenstates are helpful in understanding the changes in I-V characteristic in three strain conditions.

Page 43: 應力於結晶與奈米級矽固體之作用 Strain Effect on Crystalline and Nano-scale Silicon Solids

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

43

Summary and Future Work: Future Work

□ Experimental confirmation□ More sophisticated molecular electronics with realistic metal

electrodes